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Abstract—Multi-goal reinforcement learning (RL) agent aims
at achieving and generalizing over various goals. Due to the
sparsity of goal-reaching rewards, it suffers from unreliable value
estimation and is thus unable to efficiently identify essential
states towards specific goal-reaching. To deal with the problem,
we propose Exploring Successor Matching (ESM), a framework
that enables goal-conditioned policy and progressively encourages
the multi-goal exploration towards the promising frontier. ESM
adopts the idea of successor feature and extends it to goal-
reaching successor mapping that serves as a more stable state
feature under sparse rewards. After acquiring the successor
mapping, it further explores intrinsic goals that are more likely
to be achieved from a diverse set of states in terms of future state
occupancies. Experiments on challenging manipulation tasks
show that ESM deals well with sparse rewards and achieves
better sample efficiency.

Index Terms—multi-goal reinforcement learning, exploration,
successor feature, sparse rewards

I. INTRODUCTION

Recent advances in reinforcement learning (RL) make it
possible to solve various decision-making problems, especially
for large sequential problems such as atari games [1]–[5],
computer Go [6]–[8] and continuous control tasks [9]–[16].
Traditional RL provides an elegant Markov decision process
(MDP) framework for agents to achieve a specific goal guided
by rewards, i.e. goal-reaching signals. However, many realistic
settings where we might want to apply RL are inherently
multi-goal tasks, where the RL agent has to deal with diverse
goals with the same dynamics. For example, manipulate a
robotic arm to different positions, where each position cor-
responds to a different goal. Without loss of generality, the
agent could not apply the optimal policy for one goal to
achieve another goal because of the different goal-reaching
signals. Instead of learning a diverse set of optimal policies
for different goals, multi-goal RL [17]–[19] extends the typical
RL to universal policies that take goals as additional input to
enable goal-conditioned learning. Multi-goal RL generalizes
Q-learning over goals, which is especially essential for goal-
reaching continuous control tasks.

However, the sparsity of multi-goal rewards hinders effi-
ciently exploring goals. To encourage the exploration for the
whole goal space, existing works try to select and set intrinsic
goals [20]–[25] for collecting rare or valuable experiences.
If properly arranged during the training, the agent may pro-
gressively acquire the ability to achieve desired goals if the

desired goal distribution is too far to offering valid goal-
reaching signals. For visual RL, RIG [20] fits a generative
model to encode raw inputs into a learned latent space as state
representations and compute rewards. However, it fails to scale
to long-horizon high-dimensional tasks, as the goal-reaching
signal decreases exponentially with the horizon [26] then the
exploration is quite limited. The multi-goal agent thus fails
to select valuable goals for exploration and collect valuable
experience for efficient learning.

To deal with the problem, we adopt the concept of successor
feature [27]–[30], a feature representation that captures tran-
sition dynamics, which has been used to get rid of unreliable
value estimation with sparse rewards and discover essential
sub-goals [31]–[34]. It decomposes the value function into a
reward predictor that maps states to scalar rewards and a suc-
cessor map that represents the expected future state occupancy
from any given state then obtains the value estimation from
the inner product between the successor map and the reward
weights. Notice that for multi-goal tasks, the reward function
changes between goals but the environment’s dynamics remain
the same. Thus we take advantage of successor feature to
transfer across goals and extract bottleneck intrinsic goals for
multi-goal exploration [28].

The main idea of this work is to perform intrinsic goals
setting with successor matching for multi-goal exploration,
namely Exploring Successor Matching (ESM). Our proposed
ESM first learns a goal-reaching successor mapping that cap-
tures the transition dynamic, then discovers the most valuable
goals to explore on the basis of successor feature matching.
By framing the long-horizon intrinsic goal setting as successor
matching, multi-goal RL is more likely to achieve the de-
sired goals and progressively expand the exploration over the
achievable goal space. It shows how multi-goal RL identifies
essential intrinsic goals for achieving the desired goal in long-
horizon tasks. To evaluate the performance, we implement
ESM on various multi-goal manipulation tasks and experi-
ments demonstrate that ESM learns efficiently with sparse
goal-reaching signals and is competitive against the state-of-
the-art multi-goal exploration solutions on performance.

II. RELATED WORKS

Goal-related learning attracts attention and is a quite active
research area. In the following, we list the most relevant works



as many as possible.

A. Goal-conditioned learning

In general, goal-conditioned learning takes advantage of be-
havior cloning [35]–[40], model-based approaches [41], [42],
Q-learning [17]–[19], [43], [44], and semi-parametric planning
[45]–[48]. The behavior cloning approaches mainly imitate
the trajectories towards some specific goals. The model-based
approaches learn dynamic models for the following goal-aware
planning. The semi-parametric planning approaches search
for the general-purpose behaviors for each specific goal. Our
work is related to the Q-learning approaches, which extend
universal value function to goals and extend Q-learning with
goal-conditioned policies.

B. Multi-goal exploration

Multi-goal RL pursues various goals with a unified frame-
work: rollout for desired goals and replay achieved goals.
Except for sampling the desired goals from the environment,
multi-goal exploration focuses on selectively rollouts with
manually setting goals. RIG [20] and GoalGan [21] sample
from the distribution of achieved goals. DISCERN [23] and
Skew-Fit [24] skew the distribution of achieved goals to
sample diverse achieved goals. MEGA [25] focuses on low-
density regions of achieved goals. HGG [22] evaluates and
selects goals to construct a learning curriculum on achieved
goals guiding the agent to explore the environment. Our work
uses successor features to aid in evaluating goals and selecting
the most likely ones to achieve. Further, it is similar with
digging sub-goals for hierarchy RL [37], [49]–[51].

To better understand the multi-goal exploration, we remark
the common definitions of goals listed below:

• desired goals. A desired goal is sampled from a task-
related goal distribution defined by the environment of
the task to be solved at the beginning of each episode. If
the agent achieves the desired goals, it will receive the
goal-reaching reward.

• achieved goals. In multi-goal tasks, it can abstract a
corresponding goal from a state. The abstracted goals
from collected experience are called achieved goals.

• behavior goals. In each rollout, the multi-goal agent can
pursue a manually setting goal that is different from the
desired goal. It is termed as a behavior goal, which may
also be restricted to the task-related goal distribution.

III. BACKGROUND

In this paper, we focus on intrinsic goals setting of the multi-
goal exploration. In the following, we give a detailed statement
about the multi-goal RL framework and successor feature.

A. Multi-goal RL

Multi-goal RL extends Q-learning with goal-conditioned
policies. Consider a multi-goal MDP (S,A,G, P, r, γ), where
S represents a set of states, A represents a set of actions,
G represents a set of goals, P : S × A × S → R and
r : S×A×G → R are environment dynamics, i.e. the transition

probability distribution and the reward function, γ ∈ (0, 1) is
a discount factor. At each timestep t, it observes st ∈ S with
given g ∈ G then performs at ∈ A. After that it receives
resulting reward rt = r(st, at, g) at next timestep. In our
setting, the reward is a sparse goal-reaching signal:

rt =

{
1, ||ϕo(st+1)− g||2 ≤ δg
0, otherwise

where ϕo : S → G is an available mapping from achievable
states to the corresponding goals and δg is a pre-defined thresh-
old that evaluates the task-specific goal-reaching tolerance
[19]. Denote π : S × G → A as an universal policy. Let
V π : S×G → R and Qπ : S×G×A → R denote its universal
value functions [18]. After sampling experience (s, a, s′, g) , it
optimizes π via performing policy improvement on π, V π, Qπ .

Multi-goal RL usually couples with hindsight experience
replay [43], which replays the experience with a pseudo goal.

B. Successor feature

Successor feature is an extension for the successor repre-
sentation in the tabular case [27], [28], which represents the
expected discounted occupancy of futures state s′ by executing
π from any state-action pair (s, a), i.e.

Mπ(s, a, s
′) = Eπ

[ ∞∑
t′=t

γt
′−tI(st′ = s′)|st = s, at = a

]
.

Thus in the tabular case, the successor representation
is solely calculated for each s′. When it comes to high-
dimensional, continuous control task, it could not afford to
enumerate all the states. Instead, it considers the expected
discounted occupancy of future state feature ϕs′ . The corre-
sponding successor feature is

ψπ(s, a) = Eπ

[ ∞∑
t′=t

γt
′−tϕst′ |st = s, at = a

]
. (1)

In traditional RL, the reward function can be approximated
by r(s, a, s′) = ϕ(s, a, s′)Tw = ϕTs′w, where w is reward
mapping weight. Then it rewrites the value function as

Qπ(s, a) = Eπ

[ ∞∑
t′=t

γt
′−trt′ |st = s, at = a

]

= Eπ

[ ∞∑
t′=t

γt
′−tϕTs′w|st = s, at = a

]

= Eπ

[ ∞∑
t′=t

γt
′−tϕTs′ |st = s, at = a

]
w

= ψπ(s, a)Tw.

As stated before, it decouples value function into two
irrelevant parts: one captures transition dynamics following
π, the other reflects the specific goal-reaching. Note that the
successor features for (s, a) changes as executing different π.
Prior works either fix π or let it be uniformly random. Then the
successor feature, which reflects the states that will be further
visited, is only related to the dynamics of the environment.



(a) Universal Q-net (b) Successor Q-net (c) Our Q-net

Fig. 1. Illustration for different Q-nets. (a) represents UVFA with a monolithic network, which takes (s, a, g) as input then maps it to Q-value estimation;
(b) is a basic implementation of deep successor Q-net, where the reward mapping r(s, a, s′) and the Q-value mapping Q(s, a) share the same predicting
weight w; (c) is our modified goal-reaching successor Q-net that decomposes Q-value into the inner dot product of the successor feature ψ(s, a) and the
goal-reaching feature φ(s′, g). Our Q-net extends (b) to the multi-goal setting and avoids the complicated training stages controlling.

Then facing with different w, the successor feature can help
transfer value function across different goals.

IV. EXPLORING SUCCESSOR MATCHING

In this paper, we frame multi-goal intrinsic goals setting
as a successor matching problem, which is built on the
similarity evaluation between successor features of different
observations, to guide the exploration for a diverse set of goals.
The motivation lies on the successor Q-net, which decomposes
the value estimation into the inner dot product of two irrelevant
parts: a reward predictor that indicates goal-reaching signals
and a successor map that reflects the transition dynamic. If
we obtain the expected future state occupancy from any given
state-action pair, i.e. the successor feature, we are more likely
to discover the possible goal-reaching in hindsight. It indicates
that the possible hindsight goals are achievable for the current
policy but may be in lack of exploration. To encourage the
exploration for the promising frontier of achievable goals, we
present Exploring Successor Matching that 1) learns a stable
successor mapping by extending to goal-reaching successor Q-
net in the struggle with sparse rewards, 2) abstracts the most
representative transition set by evaluating the similarities of the
successor features then discover the hindsight goals that are
more likely to be achieved from the transition set. After that,
it utilizes the hindsight goals for goal-conditioned rollouts,
which further explores the goal space.

A. Goal-reaching successor Q-net

The key insight behind the successor feature is to forecast
the occupation of the future states independent of guiding
rewards. When it comes to multi-goal tasks, the agent only
gets informative feedback at the desired goal, i.e. the agent
will not get any rewards until reaches the desired goal. Thus,
when extending the successor feature to multi-goal RL, we can
simplify the reward mapping concentrated on the desired goal.
Specifically, we can approximate the weight corresponding to
ϕs′ of w as φ(s, g) and neglect other states, which equals

to assigning zero weight to the others. Then we extend the
successor feature for traditional RL in Eq.(1) to

Qπ(s, g, a) ≈ ψπ(s, a)Tφ(s′, g) (2)

for multi-goal RL. The comparison between monolithic uni-
versal Q-value function [18], deep successor Q-network and
the implementation of Eq.(2) is shown in Fig. 3. In our
Q-net, ψπ(s, a) can also get rid of approximating ϕ with
sparse rewards, which may result in unstable learning. Instead
of learning the successor feature ψπ(s, a) from a uniformly
random policy π, we optimize our goal-reaching successor
Q-net with experience replay, which indicates an moving
average policy over replay buffer D. The training for goal-
reaching successor Q-net is similar to traditional Q-learning
via minimizing the temporal difference (TD) error

L(s, a, s′, g) = E [r + γQπ(s′, g, a′)−Qπ(s, g, a)] . (3)

The successor feature is related to where to go and the
reward feature is related to goal-reaching. Thus, for a learned
successor feature, it gives a chance to select possible goals
that are more likely to obtain high values if we manually set
them as behavior goals. In a way, a high Q-value is a hint
for achieving the goals. Thus, by analyzing the possible goal-
reaching from a state-action pair, we are able to approach the
frontier of exploration. To make it clear, the possible goal-
reaching can be formalized as

g ← arg max
(s,a,s′),g′∈D

ψπ(s, a)Tφ(s′, g′), (4)

for some transition (s, a, s′) and sampled achieved goal g′.
Due to the one-step forward-looking at the next state s′, we

can not directly apply Eq.(2) online. To address this problem,
we maintain an universal policy to perform rollouts. The
universal policy will be updated with a target Q-value provides
by our successor Q-net. Specifically, we train the rollouter
πrollout(s, g) to maximize the Q-value estimation of Q-net by
the gradient

∇πJ(π) = E
[
∇aQ

π(s, g, a)|a=πrollout(s,g)

]
= E

[
∇aψ

π(s, a)Tφ(s′, g)|a=πrollout(s,g)

]
,

(5)



which is a kind of actor-critic framework. As shown in Algo-
rithm 1, we present the whole training process that alternates
between rollouts and optimization of the current goal-reaching
successor Q-net.

Algorithm 1 Training process
Require: Replay buffer D, goals G

1: Initialize ψ,φ, πrollout with random parameters θ1, θ2, θ3
2: while not converge do
3: g ∼ G
4: while rollout do
5: a← πrollout(s, g)
6: Execute a and transit to s′

7: Store (s, a, s′, g) in D
8: s← s′

9: end while
10: Sample a minibatch of experiences B from D
11: Optimize θ3 with B and gradient Eq.(5)
12: while not converge do
13: Sample a minibatch of experiences B1 from D
14: Optimize θ1 with B1 via minimizing Eq.(3)
15: Sample a minibatch of experiences B2 from D
16: Optimize θ2 with B2 via minimizing Eq.(3)
17: end while
18: end while

B. Successor Matching

The foundation of ESM is based on selecting the possible
achievable goals via Eq.(4) to encourage exploration over
goals. However, it’s unreasonable to find the most suitable
goals by traversing all the transitions and achieved goals. To
deal with the problem, we first acquire the most informative
subset from the replay buffer that is the best representative for
the experiences, then perform the goals selection in the subset
to ensure the goals are with a high likelihood to be visited.

In view of the successor feature, the most informative
experience subset indicates that the expected discounted state-
occupancies of state-action pairs differ from each other
as much as possible. The most informative subset should
contains experiences with the most state-coverage. For any
(s1, a1), (s2, a2), we adopt the similarity fπ((s1, a1), (s2, a2))
of their successor features [34] as

fπ((s1, a1), (s2, a2)) = ψπ(s1, a1)
Tψπ(s2, a2).

The successor feature will be normalized before. Thus
fπ((s1, a1), (s2, a2)) is actually the cosine similarity between
feature vectors. To select the most informative subset, we
perform a greedy selection by iteratively adding the transition
with the least f to some transition that is already in the subset.

Firstly, we uniformly sample a set of n experiences and
construct

F =


ψπ(s1, a1)

T

ψπ(s2, a2)
T

. . .
ψπ(sn, an)

T

 [
ψπ(s1, a1) ψπ(s2, a2) . . . ψπ(sn, an)

]

where Fi,j = ψπ(si, ai)
Tψπ(sj , aj). The metric F stores the

similarities between all the possible matching of transitions.
Secondly, we greedily select the first k < n transitions from F
by performing shortest paths search with Dijkstra’s algorithm
[52]. We get a subset U = {(s1, a1), (s2, a2), . . . , (sk, ak)}
(The transitions are resorted according to the selecting order.)

After acquiring the most informative subset, we uniformly
sample a batch of ng achieved goals and find the most kg
promising goals to be achieved via maximizing∑

g∈G

∑
i∈[1,k]

ψπ(si, ai)
Tφ(s′i, g) (6)

with restriction |G| ≤ kg . In this way, we pick kg goals that
are likely to be capable for the current policy to support further
multi-goal exploration.

The whole goals selection, presented in Algorithm 2, is
based on the successor feature, including operating on the sim-
ilarity between experiences and evaluating the potential goals
with respect to the goal-reaching successor value estimation.

Algorithm 2 Intrinsic goals selection
Require: Replay buffer D, network ψ,φ
Require: Constant n, k, kg

1: Sample a minibatch of experiences B from D
2: for (s, a) in B do
3: Obtain ψπ(s, a)
4: end for
5: Construct Fn×n, where Fi,j = ψπ(si, ai)

Tψπ(sj , aj)
6: Obtain U = {(s1, a1), (s2, a2), . . . , (sk, ak)} by perform-

ing the shortest paths search using F
7: Sample a minibatch of experiences B1 from D
8: Obtain G by maximizing Eq.(6) using U and B1

Here we give the pseudo code for our ESM (Algorithm
3). At the start of training, we sample behavior goals from
the distribution of desired goals. As the training goes on,
we perform the successor matching with experience to select
valuable behavior goals from achieved goals.

Algorithm 3 Exploring successor matching
Require: Replay buffer D, constant n, k, kg

1: Initialize ψ,φ, πrollout with random parameters θ1, θ2, θ3
2: G← ∅
3: while not done do
4: if D is ∅ then

G ∼ Uniform(desired goals, kg)
5: else
6: G← Algorithm 2 (D,ψ, φ, n, k, kg)
7: end if
8: Optimizing ψ,φ, πrollout with Algorithm 1
9: end while

V. EXPERIMENTS

After describing our ESM framework and the proposed
implementation, we consider evaluating ESM on challenging
multi-goal tasks.
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(a) AntMaze

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Million step

0.0

0.2

0.4

0.6

0.8

1.0

M
ed

ia
n 

su
cc

es
s r

at
e

pickplace_obj_obj
ACHIEVED
ESM
HER
OMEGA

(b) Pick-and-Place in Long Horizons

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Million step

0.0

0.2

0.4

0.6

0.8

1.0

M
ed

ia
n 

su
cc

es
s r

at
e

pointmaze
ACHIEVED
ESM
HER
OMEGA

(c) PointMaze

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Million step

0.0

0.2

0.4

0.6

0.8

M
ed

ia
n 

su
cc

es
s r

at
e

stack2_obj_obj
ACHIEVED
ESM
HER
OMEGA

(d) Stacking

Fig. 2. Learning curves for multi-goal exploration methods. The tasks are hard to solve, which can be seen from that ACHIEVED and HER fail all the tasks.
OMEGA may obtain effective learning when exposed to more samples. However, in the limited training steps, it fails on AntMaze. Our ESM achieves the
best average both on sample efficiency and finally median success rate.

A. Multi-goal tasks

We evaluate ESM on multi-goal tasks with long horizons:

• AntMaze, where an ant navigates through a U -shaped
hallway to get to the desired goal area.

• Pick-and-Place in long horizons, where a robotic arm
struggles to grasp and manipulate an item to a distant
desired position.

• PointMaze, where a pointmass navigates around a barrier
to reach the desired goal.

• Stacking, where a robotic arm struggles to move two
blocks to a stacking desired position.

We also test our goal-reaching successor Q-net on both the
long-horizon tasks and Fetch task introduced by [19]:

• Pushing, where a robotic arm struggles to push an item
to a distant desired position.

• Pick-and Place, where a robotic arm struggles to grasp
and manipulate an item to some desired position. It is the
simple version of Pick-and-Place in long horizons with
a relatively shorter horizon.

The detailed description of tasks can be found in [19], [49],
[53]. For each task, there is a pre-defined tolerance threshold.

Once the RL agent approaches the desired goal within the
tolerance threshold, we consider it a success.

B. Baselines

We compare the performances of our proposed ESM and
advanced density-based multi-goal exploration methods:

• HER [43], which is the basic version for multi-goal
exploration that samples behavior goals from the target
distribution of tasks.

• ACHIEVED [20], which samples behavior goals from the
distribution of achieved goals.

• OMEGA [25], which concentrates on maximizing en-
tropy gain of the exploration then samples behavior goals
from low density regions of achieved goals.

We implement the vanilla variants of each method and
conduct experiments on a TITAN V with 6 random seeds.
For all the methods, we enforce them with HER that rela-
bels experience with achieved goals. They share the hyper-
parameters used for goals selection, if needed. Then the main
results show the median test success rate across random
seeds with shaded areas representing performance fluctuations.
Specifically, the bold line shows the median test success rate



(a) Pushing (b) Pick-and-Place

Fig. 3. The performance comparison between different Q-nets on Fetch tasks. As the training goes on, both variants obtain stable learning curves. Our
goal-reaching successor Q-net achieves better sample efficiency, which attains the same median test success rate with fewer samples (measured by the number
of epochs).

(a) AntMaze (b) Pick-and-Place in Long Horizons

Fig. 4. The behavior goals-reaching. As the training goes on, all the variants are more likely to achieve the selected behavior goals in terms of exploring
success rates. The learning curves shows that our ESM is able to achieve the selected goals with successor Q-net.

over 6 random seeds and the shaded areas represent the 25th to
75th percentile. The performance is presented by the success
rate, sample efficiency and the stability of learning in the
learning curve.

Notice that in Eq.(2), the decomposition is not unique.
To give a stable learning, we perform a constrained update
on ψ,φ. Concretely, we constraint the gradients of one step
optimization on θ1 and θ2 when minimizing Eq.(3). To give a
stable successor Q-net for exploring the matching, we first
obtain sufficient experience in replay buffer then train the
rollout policy.

C. Results
For tasks with long horizons, the goal-reaching signal

decreases exponentially with the horizon. Exploration for
possible achievable behavior goals may give more hints about
the task, which is especially essential when the agent learns to
solve the task from scratch. To validate our proposed ESM, we
conduct experiments on overall performance, successor Q-net
and possible goal-reaching.

1) Multi-goal Exploration with long horizons: We compare
the performance of different multi-goal exploration methods
on all four tasks: AntMaze, Pick-and-Place in long horizons,
PointMaze, Stacking. The learning curve shows the median
test success and its variation range along with the training
process for each method. From Fig. 2, we can see that after
millions steps of interactions,

• HER and ACHIEVED fail all four long-horizon tasks. In
all the tasks, the evaluation median success rates are zero.
It indicates that simply sampling behavior goals from
desired goals or achieved goals can hardly help across
the gap between desired goals and achievable goals.

• OMEGA, which focuses on the low-density area of
achieved goals (as well as the uniform sampling from
achieved goals), is able to solve tasks (b)(c)(d) by
progressively exploring and expanding the achievable
area. However, it fails to solve task (a), given sufficient
interactions.

• our ESM obtains best sample efficiency and achieves



highest success rate on tasks (a)(b)(c), and on task(d),
it enables efficient learning and yields a high median
success rate finally.

• In terms of learning curves, our ESM maintains more
stable learning than OMEGA, which is reflected in the
shaded area of learning curves.

2) Successor Q-net: We evaluate the successor Q-net by
performing HER with different Q-net on tasks Pushing and
Pick-and-Place. The behavior goals are simply sampled from
the tasks. In this way, we try to answer the question that
whether goal-reaching successor Q-net learned a reliable Q-
value. We perform multi-goal exploration on two Fetch tasks
with our successor Q-net (labeled as Ours) and universal Q-
net (labeled as UVFA). As shown in Fig. 3, both variants
fit well with multi-goal evaluation and our successor Q-net
outperforms UVFA at sample efficiency. Our successor Q-net
do help yield a stable high performance.

3) Possible goal-reaching: We also verify whether the
selected goals are more likely to be achieved as we expected.
It is the intuition behind our goals selection (, but maybe not
essential for effective Q-learning). We evaluate the median
success rates of the exploration for the selected goals on two
long horizon tasks. As shown in Fig. 4, we can see that our
ESM does not lose the ability to achieve the selected goals, just
like ACHIEVED and OMEGA. The behavior goals sampled
from achieved goals or task-specific goals distribution are
more likely to be achieved than those used for evaluation,
compared to the learning cures in Fig. 2. On task (a)(b),
the variants progressively acquire the ability to achieve the
selected goals, whilst with the same amount of interactions,
the variants can still fail. However, our ESM outperforms other
methods as shown in Fig. 2. In the future, we will dig out
whether the valuable goals selection explicitly expands the
achievable area and gives rise to more effective Q-learning.

VI. CONCLUSION

In this paper, we adopt the idea of performing intrinsic
goals setting with successor matching for multi-goal explo-
ration and implement Exploring Successor Matching (ESM)
to learn a goal-reaching successor mapping then discover the
most valuable goals to explore on the basis of successor
feature matching. By exploring the most possible achievable
goals, it progressively identifies the valuable states and learns
more from exploration in long-horizon tasks. We evaluate our
proposed ESM on various multi-goal manipulation tasks and
experiments demonstrate that it learns a stable Q-net and do
explore the most promising behavior goals.

Multi-goal RL is promising in solving games with complex,
diverse goals. In this work, we implement our ESM on tasks
with pre-defined goal space. Except for games with nicely
structured goal hierarchies, our ESM also has the potential to
explore the unseen state space with self-supervised learning for
games without explicit goals, where it regards future states as
intrinsic goals. In that case, it encourages exploring the frontier
of achieved states. We will explore it in future work.

APPENDIX

Hyperparameters

Our successor Q-net performs a hyperparameter search over
the parameters shown on TABLE I. We search for these
hyperparameters with reference to the state/action space.

TABLE I
HYPERPARAMETER SEARCH

Hyperparameter Scope
n {32, 64, 128, 256}
k {8, 16, 24, 32}
kg {2, 4, 8, 16}

Buffer size {10e6, 5e6, 1e6}

To give a fair-minded comparison, all the methods share
the same basic policy for HER. It is based on the DDPG [9]
with a hyperparameter search over the parameters, as shown
on TABLE II.

TABLE II
HYPERPARAMETER SEARCH

Hyperparameter Scope
Actor learning rate {3e−4, 6e−4, 1e−3, 3e−3, 6e−3, 1e−2}
Critic learning rate {3e−4, 6e−4, 1e−3, 3e−3, 6e−3, 1e−2}

Batch size {32, 64, 128, 256}
Action L2 norm coefficient {0, 0.01, 0.03, 0.1, 0.3, 0.6, 1.0}
Polyak-averaging coefficient {0.9, 0.93, 0.95, 0.97, 0.99}
Probability of random action {0, 0.1, 0.2, 0.3, 0.4}

additive Gaussian noise {0, 0.1, 0.2, 0.3, 0.4}
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