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Abstract—Declarative methods such as Answer Set Program-
ming show potential in cutting down development costs in
commercial videogames and real-time applications in general.
Many shortcomings, however, prevent their adoption, such as
performance and integration gaps. In this work we illustrate
our ThinkEngine, a framework in which a tight integration
of declarative formalisms within the typical game development
workflow is made possible in the context of the Unity game
engine. ThinkEngine allows to wire declarative AI modules to the
game logic and to move the computational load of reasoning tasks
outside the main game loop using an hybrid deliberative/reactive
architecture. In this paper, we illustrate the architecture of the
ThinkEngine and its role both at design and run-time. Then we
show how to program declarative modules in a proof-of-concept
game, and report about performance and related work.

Index Terms—Answer Set Programming, Declarative Methods,
Game Design, Knowledge Representation and Reasoning, Unity

I. INTRODUCTION

The AI research field shares a past and a present of recipro-
cal exchange with the game design industry, both whether we
are talking of inductive/machine learning-based techniques or
knowledge-based, deductive techniques. Although very useful
in several respects, the reception of the machine learning
revolution in game design had so far been limited by the
fact that in this approach one has to deal with black-box AI
modules which are not easily “tunable” and configurable at
will, and have non-negligible design-time costs (the reader can
refer to [1] for a survey of AI techniques used in videogames).

In order to overcome the above limits, one can consider
the introduction of declarative knowledge representation tech-
niques. Declarative methods potentially allow to specify parts
of the game logic in a few lines of high-level statements:
high-level declarative specifications can then be processed at
run-time by a specific external engine, whose outputs can be
converted back to effects in the game environment. Possible
applications range from defining the general game logic, to
describing non-player characters, programming tactic and/or
strategic credible AI behaviors, to defining path planning
desiderata, non-player resource management policies and so
on. These methods have some appeal in videogame design,
since their integration can potentially result in requiring much
lesser design effort. Declarative AI modules promise to be
much easier to manage, tune and configure, in that it is fair
to define them as “glass-box” methods by construction.

We are specifically interested in the usage of knowledge-
based declarative techniques: although the historical example

of the F.E.A.R. game [2], which used STRIPS-based plan-
ning [3], inspired many other games using forms of declarative
planning, such as Halo [4] and Black & White [5], known
performance and integration shortcomings limited so far the
usage of these techniques in videogames.

We can see knowledge-based declarative techniques as lying
in the middle between commercial AI engines, where little
or no coding is necessary, yet flexibility is constrained to
what the AI design GUI allows (unless some coding effort is
added), and ad-hoc coding, where great flexibility comes at the
price of consuming much development time. This promising
versatility motivated the proposal of game modeling tools
based on PDDL [6]–[8], fuzzy logic [9] and event calculus [10]
in videogames.

Among declarative approaches, Answer Set Programming
(ASP) has been successfully used as a declarative tool to
model planning problems, robotics, computational biology
as well as some industrial applications [11]. ASP has also
been experimentally used in videogames to various extents,
such as declaratively generating level maps [12] and artificial
architectural buildings [13]; it has been used as an alternative
for specifying general game playing [14], to define artifi-
cial players [15] for the Angry Birds AI competition [16],
and for modelling resource production in real-time strategy
games [17]. ASP makes no exception with respect to the
shortcomings that restrict the utility of declarative approaches.
Two aspects are of concern: performance in real-time contexts
and integration, i.e., ease of wiring with other standard parts of
the game logic. Concerning the first, much research has been
done recently, whose outputs are competitive, incremental
ASP engines capable of evaluating fast-paced and repeated
decision-making tasks [18]–[20]. These contributions enlarged
the range of applications for ASP to high-performance settings
like stream reasoning [21]. It is thus appealing to explore the
role of ASP as tool for designing AI real-time decision-making
modules for videogames.

Although welcome, performance improvements might not
be sufficient when one has to implement complex decision
making processes. Recall that a videogame is typically exe-
cuted by running the so called game loop routine [22]. The
game loop consists in a single-threaded repeated execution of
update operations to the current game scene: within each step
of this cycle, user input is processed, AI decision-making op-
erations and physics simulations are made, and the game scene
is modified accordingly. The operations performed within the



Fig. 1: Hybrid Deliberative/Reactive (HDR) schema.

game loop share many similarities with the reactive sense-
think-act cycle typical of agents and robotic systems [23], in
which an agent cyclically reads the surrounding environment
with sensors, makes some decision making task and then acts
on the environment itself.

Reactive AI modules coexist in general very well with
the above architecture, in that they are usually implemented
using relatively fast techniques, such as behavior trees, finite
state automata, rule sets or combinations thereof [1], and can
possibly be executed in one iteration of the main game-loop.
This type of module comes into play when quick “instinctive”
decisions need to be taken by artificial characters: think e.g.,
at programmed fight responses when an artificial soldier is
attacked.

However, when one considers common videogame AI mod-
ules such as path-planning, hierarchical task planning and
resource management, longer running computing jobs are
required. The execution of time consuming jobs within the
default game-loop requires to spread processing over several
iterations using either coroutines or multi-threading. In order
to accomodate both reactive and non reactive AIs, it comes
natural to consider the so called hybrid deliberative/reactive
paradigm [23] (HDR), in which fast “instinctive” behaviors
are combined in a proper way with long term reasoning tasks
such as plan generation.

In the HDR scheme (Figure 1) long running reasoning
tasks are offloaded, and thus they do not enforce heavy
computational loads on the main game loop. A typical AI
which is programmed using this scheme can follow a fast
sense-think-act loop, in which the think step is fast and reactive
(green dot in the figure); one can however introduce offline,
non-reactive, reasoning tasks. The outcome of non-reactive
tasks can be used to act directly on the game logic, or to
reprogram reactive behaviors of game characters.

In this paper we report about the latest version of our system
ThinkEngine, an asset working for the Unity game engine. Our
tool enables the possibility of introducing ASP-based reason-
ing modules within Unity-made games. Our contributions are
the following:
- We describe an architecture were AI decision making-
modules, defined in terms of ASP specifications, can be
integrated and used within a game engine, in particular the

Unity game engine.
- AI modules can be either reactive or deliberative. In this
latter case we propose an hybrid-deliberative scheme in which
multiple competing plans can be computed outside of the main
game loop; plans can be selected according to programmable
priorities. Also they can be aborted, replaced or restarted.
- A proper information passing layer to and from the offloaded
reasoning jobs is proposed, including also data type mapping
facilities and an adaptive computational load control for those
parts of our ThinkEngine working in the main loop. The
language of AI modules is not necessarily restricted to ASP, as
we provide data type mapping facilities useful to incorporate
other declarative languages (e.g., PDDL).
- We illustrate how ThinkEngine can be used for developing
deliberative strategies in the context of a Space Invaders-like
proof-of-concept game.
- We report about the impact of ThinkEngine-based modules
on run-time frame rate and on reaction times of artificial
players.
- We finally compare in better detail with related work and
then draw conclusions.

II. THE ThinkEngine: OVERVIEW

The ThinkEngine works as a plugin for Unity [24], the
known cross-platform game engine primarily used to develop
videogames or simulations for more than 20 different plat-
forms like mobile, computers and consoles.

The large share of Unity in the game engine market is
justified by its rapid development speed, ease of learning,
the availability of a very active community, cross-platform
integration, and the wide availability of assets such as 2D and
3D models, scripts, shaders and other extensions. The Unity
community offers a wide range of re-usable assets, some of
them aimed to provide Artificial Intelligence capabilities1. In
particular, at the time of writing, the usage of knowledge-based
declarative tools stays substantially unexplored.

The main purpose of the ThinkEngine plugin is to offer the
possibility of declaratively programming AI modules called
Brains. Brains can be attached at will to non-player-characters,
they can drive the overall game logic, and can be used in
general for delivering AI at the tactical or strategic level within
the game at hand. Differently from earlier prototypes of the
ThinkEngine, brains can synthesise and prioritize plans, i.e.,
sets of actions to be executed in a programmed order.

In the following, we will first briefly introduce Answer Set
Programming, then we will overview how the ThinkEngine
interacts with the Unity game loop at run-time. The section
is concluded by describing how ThinkEngine interacts with
Unity at design-time.

A. Answer Set Programming

Answer Set Programming (ASP) is a prominent representa-
tive of declarative approaches to modelling. ASP specifications
are composed of set of rules, hard and soft constraints, by

1https://assetstore.unity.com/categories/tools/ai



means of which it is possible to express qualitative and quan-
titative statements defining desirable outcomes of a reasoning
task. A set of input values F (called facts), describing the
current state of the world, are fed together with an ASP
specification S to a solver. Solvers in turn produce one or
more output A(S∪F ) called Answer Set. Answer sets contain
the result of the decision-making process at hand in terms of
logical assertions which, depending on the applicative domain
at hand, encode buttons to be pushed, shifts to be scheduled,
protein sequences, and so on.

B. Run-time interaction between Unity and the ThinkEngine.

The Unity game loop is single-threaded, and it is based on
a game scene update cycle which is run periodically with a
pace depending on the target frame rate of choice [25].

The run-time game world consists of a collection of game
objects (GOs in the following), which are subject to iterative
updates. Modifications to the game scene depend on user input,
on the physics simulation of the game world, and on the game
logic enforced by the game designer. A GO consists of a
recursive hierarchy of basic properties, such as numeric, string
and boolean fields, and complex properties, such as matrices,
collections, nested objects, etc.

Game designers can customize the game behavior by imple-
menting specific user callback functions, which are executed
within the main thread. For instance, one can provide custom
code for the Update block of specific GOs, or provide
custom coroutines. Coroutines constitute a way for implement-
ing asynchronous, single-threaded cooperative multitasking.
Additional threads can be introduced, although they don’t
have direct access to the game scene and are subject to other
limitations.

The run-time architecture of the ThinkEngine is shown in
Figure 2. The ThinkEngine makes use of some coroutines
working in the Unity main loop, but it also uses additional
threads for offloading decision tasks. Intuitively, one or more
programmable Brain is in charge of decision-making tasks
which run in separate ThinkEngine threads. Brains are con-
nected to the game scene using sensors, actuators and plans.
Sensors allow read access to desired parts of the current game
state, whereas actuators and plans allow to make changes to
the game scene itself. The ThinkEngine consists of:
- The reasoning layer. This layer is in charge of collecting,
processing and executing reasoning jobs. A reasoning job J ,
in the form of an ASP specification S and a set of encoded
sensor values F is elaborated by an answer set solver which
produces decisions, encoded in the form of answer sets. Two
types of decisions can be produced: deliberative ones (i.e.,
plans), which, in the terminology of our ThinkEngine, are
generic sets of actions to be executed in a programmable order,
or reactive actions which can have immediate impact on the
game scene. These are respectively dealt with by the Planning
Executors and the Reactive Executors which in turn submit
reasoning jobs to the ASP solver. The ASP solver is reached
using the EMBASP library, a multi solver engine capable of

bridging ASP solvers and PDDL solvers [26]. EMBASP is also
available in a specialized version for Unity [27]. This layer
runs exclusively in auxiliary thread(s) so that time-consuming
operations do not affect the game performance.
- The information passing layer. This layer buffers data
passing between the reasoning layer and the actual game state.
Sensors correspond to parts of the game data structures which
are visible from the reasoning layer. These are buffered in the
sensor data store. On the other hand, actuators and plans data
stores collect decisions taken by the reasoning layer and are
used to modify the game state in the Unity run-time.
- The reflection layer, in which some Plan Schedulers, a
Sensors Manager and an Actuators Manager keep the mapping
between the game world data structures and the lower layers.
The Sensors Manager cyclically reads selected game world
data which, this way, are made accessible to the reasoning
layer. The duration of the sensors update cycle is adaptive.
An apposite coroutine spreads the update phase on a number
of frames, adapting the time available in each frame depending
on the current frame rate. The Plan Schedulers select and run
generated plans (which in turn can act on the game scene),
whereas the Actuators Manager updates immediately selected
parts of the game world depending on the decisions of reactive
brains. Both the Plan Schedulers and the Actuators Manager
behave according to input coming from the reasoning layer.
All the modules in the reflection layer are coroutines in the
main game loop.
- One or more Brains can control the three layers. Each
brain can access his own view of the world (i.e., a selected
collection of sensors), and can be used for programming a
separate AI decision-making activity. We have two types of
brains: Planning Brains, which are meant for deliberative long
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running reasoning tasks and can generate list of consecutive
actions (i.e., plans), and Reactive Brains, whose decisions are
applied immediately on the game scene. Brains submit their
reasoning jobs to the reasoning layer; then, the output of a
reasoning job travels back to the reflection layer and modifies
the game world in the Unity runtime. A brain is substantially a
high-level declarative specification written in the ASP-Core-2
language [28], whose content drives the decision process.

Reasoning tasks, either deliberative or reactive, can be
activated in two different ways: on a completed sensors update
or on a configurable trigger condition. When an Executor is
started, it will generate a representation F of sensor readings
expressed in terms of logical assertions (set of input facts)
and it will invoke the ASP solver. The ASP solver is fed
in input with F and with an ASP specification S encoding
the AI of the current brain. As soon as the solver provides
decisions encoded in the form of an answer set, depending on
the type of the Executor, two things can happen. A Reactive
Executor populates the actuators associated with the corre-
sponding brain; in this case, the Actuators Manager monitors
actuators values and updates accordingly the properties of the
GO associated with each actuator. The process activated by
a Planning Executor involves a Brains Coordinator and a
Scheduler and it is described in detail in Subsection II-D.

C. ThinkEngine and Unity at design-time.

At design-time, Unity allows to work on GOs using the
above described property-based philosophy, whereas the game
logic can be defined by attaching scripted code to specific
game events.

In this context, one can use our ThinkEngine at design-
time by adding, wiring and programming Brains. Configuring
a brain consists in 1) selecting which sensors are visible as
inputs to a given brain; 2) deciding which event triggers a
brain reasoning task; 3) crafting a declarative specification
S modelling the brain’s desired decision-making strategy;
4) for Reactive Brains, selecting the actuators and wiring
them to the brain at hand; 5) for Planning Brains, selecting
and programming set of actions to be performed during the
execution of plans. The above bindings will be then used by
brains at run-time. Brains can be attached to template objects
(called prefabs in the Unity terminology). Instances of prefabs
can have of course their Brain customized at will.

As brains rely on ASP solvers, inputs and outputs need to
be bidirectionally converted to the ASP-Core2 format [28].
We thus defined a proper mapping discipline between the
game world data and ASP logic assertions. Our mapping rules
support basic data types, such as numbers, strings and boolean
values. When a game data property p is selected as a sensor
value, one can choose a particular aggregation function which
summarizes consecutive temporal readings of the value of p.
For instance, when p is of numeric type, one can choose
between maximum, minimum, average, oldest or newest value.

In the current ThinkEngine version, we support the con-
version of arbitrary depth property trees, possibly includ-
ing lists, mono and bi-dimensional arrays, which are im-

portant especially in games based on grids. The statement
playerSensor(plr, objIndex(60), plrs(prevDir(left))) can
represent, e.g., the value left of the prevDir property that
can be found in the component plrs of the GO named plr,
uniquely identified by the ThinkEngine using the objIndex 60.
Note that it is possible to add support for PDDL [29] by
just implementing appropriate format mappings, as our solver
bridge library EMBASP is already PDDL-aware.

D. Planning Brains

Besides reactive reasoning tasks, the ThinkEngine makes
possible to declaratively program more complex, deliberative-
like, reasoning tasks able to synthetise plans. A plan P is a
list of actions [a1 . . . , an] which are supposed to be executed
in the given sequence. In turn each action ai(1 ≤ i ≤ n) is
equipped with a precondition function PCi(). The outcome of
PCi() can be one of {ready, skip, wait, abort}, determining,
respectively, whether ai is ready to be executed or it must be
skipped, waited on or aborted, in this latter case causing to
abort the whole plan. At a given iteration in the game loop,
P is executable if there is a minimum j for which PCj() is
either ready or wait, and there is no k < j for which PCk() =
abort. The desired outcome of an action ai on the game scene
is obtained implementing the Doi() function, whereas the
function Donei() is used to define when ai is completed. One
or more planning brains, each of which capable of generating
a plan, can be associated to a given GO. Plans are associated to
a priority value and, once generated by planning brains, they
are submitted for execution to a scheduler. A designer can
decide how and when a planning brain re-runs its reasoning
task. Due to game state changes, re-runs can produce new
plans which replace older plan versions.

Planning brains are grouped by GO. Each group has its
own planning scheduler. A planning scheduler PS has a
current plan R and manages a queue of available plans
Q = [P1, . . . , Pm], where subscripts denote priority (lower
subscript values denote higher priority). PS can be in the run-
ning state with a selected plan R, or in idle state (R = null). R
is set according the SCHEDULE coroutine (Algorithm 1). Plans
are repeatedly removed from Q (line 5) and either executed or
discarded (line 6) according to the following execution policy:
- if PS is idle and there exists a minimum j, with 1 ≤ j ≤ m
such that Pj is executable, then all plans Pz with z ≤ j are
removed from Q and PS goes in the running state. R is set
to Pj and it is started.
- If PS is running and R = Pk for some k (1 ≤ k ≤ m),
if there exists a minimum j for which Pj is executable with
j ≤ k, we remove all plans Pz with z ≤ j and additionally Pk

is aborted and removed from Q. R is set to Pj and is started.
The running plan R is executed according to the coroutine

EXECUTEPLAN (Algorithm 2). Let us assume that R =
Pj = [a1, . . . , an]. EXECUTEPLAN evaluates each precondi-
tion PCi() for 1 ≤ i ≤ n. Four possible scenarios may hap-
pen: i) if PCi() = wait the scheduler will pause the current
plan until PCi() changes its outcome; ii) if PCi() = ready
then the function Doi() is executed and no further steps are



performed until Donei() = True; iii) if PCi() = abort, R is
set to null, thus putting PS in the idle state; iv) (implicit) if
PCi() = skip then i is just incremented by one and the next
action is taken in consideration. Note that, if a new executable
version P ′

j of Pj is available, then Pj is aborted and replaced
by P ′

j . Recall that the yield statement suspends the execution
of a coroutine until its next call in the game loop. All the
instances of the SCHEDULE and the EXECUTEPLAN coroutines
run in the main game loop.

1: coroutine SCHEDULE
2: while True do
3: while Q is not empty and
4: (R is null or Q.first().priority ≤ R.priority) do
5: P = Q.take()
6: if P is executable then
7: if R is not null then
8: stopCoroutine(executePlan)
9: end if

10: R = P
11: startCoroutine(executePlan)
12: break
13: end if
14: end while
15: yield
16: end while
17: end coroutine

Algorithm 1: The SCHEDULE coroutine

1: coroutine EXECUTEPLAN
2: i = 1
3: while i < |R| do
4: while PCi() = wait do
5: yield
6: end while
7: if PCi() = ready then
8: Doi()
9: while not Donei() do

10: yield
11: end while
12: else if PCi() = abort then
13: break
14: end if
15: i = i+ 1
16: end while
17: R = null
18: end coroutine

Algorithm 2: The EXECUTEPLAN coroutine

III. PROOF-OF-CONCEPT GAME

In order to give an idea of how AI declarative modules can
be integrated within applications developed in Unity we herein
report about an extended version of the classic game Space
Invaders, in which we added a sample automated player whose
artificial intelligence is managed via some planning brains.

More sample games, including a Tower Defence, Pacman,
Frogger, and a Traffic Simulator are available on Github2.

In the historical Space Invaders game, a human player
moves a laser cannon horizontally across the bottom of the
screen and fires at aliens overhead. The aliens begin in an
arrangement of five rows of eleven opponents moving left and
right as a group, and shifting downward each time they reach
a screen edge. The goal is to eliminate all of the aliens by
shooting at them. Although the player has three lives, the
game ends immediately if the invaders reach the bottom of
the screen. The aliens attempt to destroy the player’s cannon
by firing projectiles. The laser cannon is partially protected
by static defense bunkers which are gradually destroyed from
the top by the aliens or, if the player fires when beneath one,
from the bottom.

We were interested in real-time gameplay where quickly
generating relatively short plans might make sense: in this
respect, Space Invaders is an ideal simple, yet dynamic,
controlled environment for experimenting with multiple com-
peting strategies. Indeed, on the one hand, the player can be
programmed with a long term strategy aimed at firing aliens
per column, thus reducing the number of bounces on screen
borders. This strategy can be overridden by higher priority
ones, e.g., when an alien is too close to the screen’s bottom,
or a projectile is close and in sight of the player’s cannon, an
emergency plan could take priority. We briefly describe next
how our framework has been set up, configured and integrated
in the Unity game scene.

When the developer wants to attach a sensor to a given
GO g, it is enough to add a SensorConfigurator component
instance. As shown in Figure 3, when configuring a new
sensor, it is possible to browse g’s objects and select which
properties are mapped on the reasoning side. In our case we
selected the x and y properties. In a similar way, one can
configure actuators and brains with specific behaviour for each
component.

A. Declarative ASP specification

In this section we briefly describe the strategy we designed
by means of ASP. For space reasons we omit the full programs
and we focus on those parts having a major impact on the game
strategy. The main idea is to generate multiple competing plans
that the player will apply; the actions that can be combined in
a plan are MoveAction and FireAction used to let the player
move and fire in the game scene, respectively.

Our game strategy combines three Planning Brains of
different priorities: The first one is called the Emergency
Planner; this brain is at the highest priority and it is triggered
when a missile is in the same horizontal range of the player.
The second and third brain, called the Strategic Planner, and
Offensive Planner, are triggered respectively when the number
of invaders on screen is more or less than an half of the

2https://github.com/DeMaCS-UNICAL/
ThinkEngine-Showcase



Fig. 3: Sensor configuration at design-time

initial total amount. All the planners define a sequence of ten
consecutive actions and use the expected consequences on the
environment to make decisions (e.g., the future position of the
player, of the invaders and, in general of all the GOs in the
scene). The Emergency Planner is defined by choosing the
“escape” direction via the following ASP rules:
1. direction(left) :- player(X,_,_), missile(X_Left,X_Right

,_,_,_), L=X-X_Left, R=X_Right-X, L<R.
2. direction(right) :- not direction(left).

Intuitively, rule 1 selects left when the missile object is on
the player right side; similarly, rule 2 chooses right if the
missile is coming from the left. The operator :− stands for
logical implication, i.e., direction(X) is true whenever all
the premises on the right of the operator are true. This plan
generates ten consecutive moves in the direction of choice, but
it is aborted if the missile disappears from the scene.

The Strategic Planner and the Offensive Planner, depending
on the distance between the player and the invaders, choose to
kill enemies by columns or by rows. On the one hand, when
the invaders are far away, the player fires by columns: this
allows to slow down the speed at which enemies are moving
downward, since, with lesser columns, invaders need more
steps to reach the edges of the game board. On the other hand,
when the enemies are closer and the risk that the player is hurt
is higher, a row by row modality is applied and the nearest
enemies are killed first by row.

The Strategic Planner and the Offensive Planner differ on
the firing policy; in the Strategic planner, the player avoids to
fire when it is under a bunker and it prefers to fire only if it
is aligned with its current target (i.e., a column or a row of
invaders); with the Offensive Planner, the presence of bunkers
is ignored and while the player moves towards the targets, it
fires also other enemies having high probability to be hit.

The Strategic Planner is modeled with ASP statements like:

% Choose a possible action to be applied at a time T
3. 1<={applyAction(T,A) : action(A)}<=1 :- step(T).
4. 1<={actionArgument(T,move,A) : move(A)}<=1 :- step(T),

applyAction(T,"MoveAction").

% Do not choose to fire at time T_Next if there is already
an active fire at previous time

5. :- applyAction(T_Next,"FireAction"), laser(_,_,_,T),
T_Next=T+1, T_Next<=T_Max, maxTime(T_Max).

% Defines the distance between the player and the most left
column of invaders

6. distance_left_column(X,T) :- not invaders_near_player(T)
, player(X1,_,T), most_left_invader(X2,T), X = X1-X2,
X1 >= X2.

7. distance_left_column(X,T) :- not invaders_near_player(T)
, player(X1,_,T), most_left_invader(X2,T), X = X2-X1,
X1 < X2.

8. :∼ distance_left_column(X,T). [X@4,X,T]

% Defines the X position of the invaders nearest to the
player w.r.t. Y coord

9. distance_player_invader(X,T) :- invaders_near_player(T),
player(X1,_,T), nearest_y_invader(X2,_,T), X = X1-X2,
X1 >= X2.

10. distance_player_invader(X,T) :- invaders_near_player(T)
, player(X1,_,T), nearest_y_invader(X2,_,T), X = X2-X1,
X1 < X2.

11. :∼ distance_player_invader(X,T). [X@4,X,T]

% Estimates if the player is under a bunker
12. player_under_bunker(T) :- player(X,Y,T), bunker(X_Left,

X_Right), X >= X_Left, X <= X_Right.
13. :∼ applyAction(T_Next,"FireAction"), player(X,_,T), not

invaders_near_player(T_Next), bunker(X_Left,X_Right),
X >= X_Left, X <= X_Right, T_Next = T+1. [1@5,X,T,
X_Left,X_Right,T_Next]

14. :∼ applyAction(T,"FireAction"), player(X,_,T), not
invaders_near_player(T), bunker(X_Left,X_Right), X >=
X_Left, X <= X_Right. [1@5,X,T,X_Left,X_Right]

Rule 3 is a choice rule stating that at each step T the
solver has to choose exactly one action to perform (among
the set of possible action(A) values). Then, rule 4 selects the
direction that can be left or right when the chosen action is a
MoveAction. This information is used to estimate the player’s
future position in the game scene; similarly, also the enemies’
position for each time T are computed and used in order to
take decisions. Moreover, the ASP encoding takes in consid-
eration the constraints of the classical Space Invaders game;
for example, the hard constraint 5 is used to avoid generating
plans containing two consecutive FireAction since multiple
fires are prohibited by the game itself. Rules 6 and 7 define the
logical assertion distance left column(X,T ), which holds
if at a future time step T , the distance between the current
position of the player and the leftmost column in which there
is an invader will be X , and there will be no invaders near
the player, i.e., it holds invaders near player(T ). Rule 8 is
a soft constraint, which adds a cost X to possible plans in
which the statement distance player invader(X,T ) holds.
Note that the ASP solver looks for minimum cost answer
sets encoding plans. Similarly, when invaders are very close
to the player w.r.t. its Y coordinate, rules 9 and 10 define
the distance X from the nearest invader at future step T .
The soft constraint 11 adds a cost X to this distance, thus
suggesting the ASP solver to find plans in which this distance
is minimized. In other words, the group of rules 6 − 8 and
the group 9 − 11 respectively instruct the player to select
and minimize different distances depending on whether it is



#Sensors Avg. Frames
100 1.5

2000 7.70
3000 9.30
10000 37.34
20000 69.75

TABLE I: Average number of frames for a sensors update cycle.

#Actions Avg. Time (ms)
10 68.38
50 74.35

100 81.5
250 153.67
500 574.75

1000 3710

TABLE II: Average time generation for one plan with different sizes.

preferable to target invaders on edges or the lowermost ones.
Rule 12 is used to estimate in which step T the player will be
under a bunker; then, rules 13 and 14 use this information in
order to add an higher priority cost to actions which fire and
destroy some bunker. Soft constraints indeed allow to express
preferences among answer sets in term of costs, but also in
terms of priority levels. The higher is the priority level, the
more important is the cost associated to the constraint. In our
case, rules 13 and 14 has priority 5 whereas in rules 8 and 11
priority is 4; hence, solutions where the player does not fire to
a bunker are preferable, no matter of the costs at priority 4. The
Offensive Planner strategy similar to the Strategic Planner, but
with differently tuned soft constraints.

IV. PERFORMANCE

In order to assess the practical usability of ThinkEngine,
we were interested in measuring: i) the frame rate, the
most common metric in the videogame field, representing the
number of screen updates per second that can be achieved
given the computational burden of the game implementation at
hand; ii) the required number of frames to achieve a complete
sensors update cycle; this depends on the number of sensors in
the scene; iii) the required time to compute a new plan; this
affects the delay between the event triggering the generation
of a plan and the execution of the first action.

Tests were performed on a desktop machine equipped with
an Intel CPU i7-4700MQ with 16GB of RAM. Using the
Space Invaders example, we compared the frame rate of the
game when played by a human agent and the frame rate
obtained using the ThinkEngine asset. As we were interested
in assessing the viability of the ThinkEngine approach we were
not interested in comparing the score of the AI with respect to
human players. Concerning frame rate, we measured 58FPS,
in contrast with 60FPS for human playing. This was expected
since the CPU-consuming tasks are executed either in external
threads (Executor) or in coroutines (like the sensors update
cycle) thus, the frame rate of the game is almost the same in
both configurations.

Additionally, we measured the time required to compute
a new plan, measured from the moment a reasoning job is
triggered. The three Planner reasoning jobs took on the average
83.5ms (Emergency planner), 189.25ms (Strategic planner),
and 203ms (Offensive planner). As expected the Emergency
Planner was faster than the others as its set of statements was
purposely kept as simple as possible in order to achieve a
better reaction time. We observed some oscillation in times
depending on the number of invaders still on the screen. It is
worth noting that to fill the time gap between two different plan
execution, we configured both the Strategic and the Offensive
Planners to early trigger new plan generations when it is being
applied the third-to-last action of the current plan.

Since the sensor update cycle can add some delay on
triggering reasoning jobs we tested its impact by artificially
generating additional sensors. The performance of this cycle
can have also some impact on the coherence of sensors data
as they can be updated many frames apart. As we can see
from Table I, the higher the number of sensors in the scene
the more frames the update cycle coroutine is spread on.

As a last performance measure we were interested in
assessing the duration of reasoning jobs with varying plan
lengths. We experimented in a scenario with a single Planning
Brain producing plans of variable length. The generation time
increased as reported in Table II. As expected, the frame
rate was not affected by the plan length. Although there is
room for improvement, performance is fairly satisfactory if
one considers real settings where game characters are expected
to follow plans of no more than a few dozen of actions.

V. COMPARISON WITH RELATED WORK

Our proposal compares on the one hand with similar re-
search aimed to show the general potential of declarative
methods in videogames; and, on the other hand, there are
specific points of contact with planning techniques adapted to
the videogame realm, commonly named Goal-Oriented Action
Planning. Concerning the introduction of declarative methods
in the broadest sense, the best known example is the General
Game Playing Description Language (GDL) [30], based on
logic programming, whose original purpose is providing a
descriptive standard for games. In turn, the Video Game
Description Language [31] shares with GDL the descriptive
purposes, although VGDL is not strictly logic-based nor
fully declarative, but aims at describing playable real-time
videogames. We also recall the experience of the Ludocore
engine [10], where event calculus was the basis of a game
engine in which almost any feature could be described using
logic statements. The availability of logic-based definitions
allowed to state clear descriptions of game features, and also
enabled the possibility of analysing and querying consistent
logical traces of gameplays. The usage of declarative planning
techniques in videogames stems from the usage of STRIPS [3]
in the F.E.A.R. videogame [2], which inspired a generation of
further work. The usage of the modern Planning Domain Def-
inition Language (PDDL) [29] in the context of videogames
has been proposed in [6], where the possibility of achieving



real-time planning of player’s actions was first shown in the
context of the Iceblox and Video Battle Arena 2 games. The
focus of the General Mediation Engine of [8] is instead the
usage of PDDL for describing gameplay narratives which can
be (re)-generated on-the-fly, while PDDL descriptions are part
of a procedural content generation pipeline in [32]. It must be
noted that ASP can be seen as a general purpose declarative
language which is not strictly tailored to just the goal-oriented
planning paradigm. For instance, the Angry Birds artificial
player of [15] makes usage of ASP for expressing quantitative
physics statements which drive the artificial player choices.
In [14], ASP has been proposed as an alternative for specifying
general game playing, leveraging declarative features of ASP
such as the possibility of expressing temporal statements,
defining arbitrary search spaces, and expressing soft and hard
constraints on the game. ASP is the declarative core for
expressing preferences used for procedural content generation
in [33], [34] and [12]. Other examples are modelling resource
production in real-time strategy games [17], expressing re-
quirements for auto-generated architectural buildings [13] or
for the placement thereof [36].

VI. CONCLUSIONS

To the best of our knowledge, our contribution is the first
attempt at introducing declarative methods in the general set-
ting of commercial game engines. Since its first prototype [35],
as a distinctive feature, the ThinkEngine proposes an hybrid
architecture in which procedural and declarative parts coexists,
and where integration and computational offload issues are
explicitly addressed. In future work we aim to improve the
integration level of ThinkEngine by cutting down the need for
manually writing glue code and to reduce the general design
effort. Using declarative paradigms like ASP can be not so
natural for game developers: overcoming this obstacle deserves
further research. Concerning performance, we aim to: reduce
the cost of the sensor update cycle, add other incremental
reasoning job evaluation features, and experiment in more
resource-demanding videogames. Our ThinkEngine is publicly
available3.
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