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Abstract—Action-Adventure games have several challenges to
overcome, where the most common are enemies. The enemies’
goal is to hinder the players’ progression by taking life points,
and the way they hinder this progress is distinct for different
kinds of enemies. In this context, this paper introduces an
extended version of an evolutionary approach for procedurally
generating enemies that target the enemy’s difficulty as the
goal. Our approach advances the enemy generation research
by incorporating a MAP-Elites population to generate diverse
enemies without losing quality. The computational experiment
showed the method converged most enemies in the MAP-Elites
in less than a second for most cases. Besides, we experimented
with players who played an Action-Adventure game prototype
with enemies we generated. This experiment showed that the
players enjoyed most levels they played, and we successfully
created enemies perceived as easy, medium, or hard to face.

Index Terms—enemy generation, procedural content genera-
tion, video game, evolutionary algorithm, map-elites

I. INTRODUCTION

Enemies are crucial features of several game genres, such as
Action-Adventure games. They offer challenges to the player
since their goal is to hinder the player’s progression and may
require specific strategies to be defeated [1]. The enemies may
provide different gameplay experiences, which is a relevant
aspect for PCG methods [2]. However, PCG methods usually
approach enemies by spreading them through a level map [3]–
[5], instead of concerning more about how to create themselves
[6], [7]. The generation of enemies in terms of attributes and
visuals design appeared in some games such as Spore [8], No
Man’s Sky [9], and Creatures [10].

We present in this paper an extension of the enemy
generation algorithm introduced by Pereira et al. [7]. They
introduced a Parallel Evolutionary Algorithm (PAE) to evolve
enemies represented by common features of Action-Adventure
games [7]. Our approach advances the evolutionary strategy by
applying MAP-Elites population to illuminate enemies’ space,
and we did not evolve the enemies through parallel evolution.
Our MAP-Elites approach discretizes the enemy search space
into a two-dimensional matrix mapped in terms of movement
and weapon types.

The computational experiment showed that our approach
converged most enemies in the MAP-Elites population with

a generation process that took less than a second for all
cases. We report results with players who enjoyed most of
the gameplay, where enemies are successfully created based
on easy, medium, or hard-to-face difficulty levels.

This paper is structured as follows. Section II presents
the related works, and we highlighted our contributions. Sec-
tion III describes the representation of our enemies and our
evolutionary enemy generation approach. Section IV presents
and discusses the results of our experiments. Finally, Section V
presents the conclusions and future works.

II. RELATED WORKS

The research on procedural enemy generation is a recent
research area, [7] and this section describes enemy generation
methods from research works and industry games regarding
any stage of their generative processes and gameplay progress.
Table I summarizes our related work findings with the present
paper contributions. In this table, placement refers to the works
that perform enemy placement. The amount refers to those
works that control the number of enemies to place, while status
relates to papers that generated the enemies’ attributes. Visuals
refer to those developing visual components of enemies, and
adaptive refers to works applying adaptive generated for such
contents. Finally, MAP-Elites refers to those using such a
technique to create enemies.

Balwin et al. [3] developed the Evolutionary Dungeon
Designer (EDD) to assist game designers in their creative
process. The EDD generates dungeon levels with enemies
and rewards through an evolutionary approach. The levels
match micro-patterns regarding levels’ structure defined by
users as input. The same authors later extended their approach
to evolve meso-patterns that consider enemies and rewards
besides the level structure [4]. However, both algorithms only
place enemies in their levels.

Liapis [5] introduced an evolutionary approach that works
on two steps. First, the method evolves level sketches com-
posed of walls and different rooms types to place them
strategically. Rooms are classified discretely with pre-defined
numbers of rewards and enemies, and they may connect with
other rooms in one, two, three, or eight directions. After
dispersing rooms, the second stage evolves each room in a
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TABLE I
ENEMY GENERATION LITERATURE SUMMARIZING AND COMPARISON WITH THIS WORK. ‘P’ DEFINES THE PARTIALLY GENERATED ENEMY FEATURES.

Work Placement Amount Status Visuals Adaptive MAP-Elites

Baldwin et al. [3] ✓ ✓ - - - -
Baldwin et al. [4] ✓ ✓ - - - -
Liapis [5] ✓ - - - - -
Khalifa et al. [6] ✓ ✓ P P - ✓
Pereira et al. [7] ✓ ✓ ✓ P - -

Spore [8] - - P P - -
No Man’s Sky [9] - - P P - -
Creatures [10] - - ✓ P ✓ -
Diablo 3 [11] - - P - - -
Middle Earth: Shadow of Mordor [12] - - P - - -
Left 4 Dead 2 [13] ✓ ✓ - - ✓ -
State of Decay 2 [14] ✓ ✓ - - ✓ -

This work ✓ - ✓ P - ✓

cavern-fashion way by placing walls and enemies strategically
around rewards and protecting them from the player. Again,
this work only puts enemies at their levels.

So far, the papers described only the placement of enemies
instead of generating the enemies that players would face
in their games. Khalifa et al. [6] were pioneers in such an
area by introducing an evolutionary approach to evolve Bullet
Hell games’ levels. These games consist of bullets (enemies)
with different damage values, speed, and movement patterns.
To create the levels, they evolved Talakat scripts, a language
proposed to describe their levels, through Constrained MAP-
Elites (CME). These scripts have sections for spawners and
the boss. The former section defines spawn points to spawn
bullets or create new spawners, while the latter describes the
boss’s health, position, and behavior. The spawners have sets
of parameters to determine the bullet it spawns, i.e., its speed,
angle, size, and the angle rotation and speed of spawners.

Therefore, they generate enemies that players face besides
placing them in their levels. In a single execution, the authors
developed a variety of levels without losing quality by using a
Quality Diversity approach. This class of algorithms is exciting
for PCG purposes [15]. More specifically, Khalifa et al. [6]
applied an extension of the MAP-Elites, an Illumination Algo-
rithm that returns a set of the best-found solutions discretized
in a map regarding their features [16]. The original MAP-Elites
is the one we applied in our work.

Pereira et al. [7] presented a Parallel Evolutionary Algo-
rithm (PEA) that generates enemies for an Action-Adventure
game. The authors extracted the most common variables from
enemies in different Action-Adventure games to build the
enemy’s genotype. Their PEA evolves enemies matching their
difficulty degrees with the difficulty goal given as input. Their
method inspires our approach, but the main differences are the
MAP-Elites and the new difficulty function introduced here.

Regarding the industry games, the creation of Non-Playable
Characters (NPCs) is present in Spore [8] and No Man’s
Sky [9]. These NPCs may be confronted by players, just
like enemies. The creatures of these games are created by
randomly assigning different body parts. Their algorithms have

some constraints for body parts, and they do not put together
parts that cannot match another already selected. This strategy
ensures the feasibility of procedural animations of the NPCs.

An older game series used an extended version of this
concept, Creatures [10] generated NPCs by evolving them
physically and making them learn. These NPCs could learn
about the environment, and the player’s actions via a neural
network that receives simulated senses using semi-symbolic
approximation techniques as input [17].

Regarding the generation of actual enemies, i.e., NPCs that
actively look for fighting players, Diablo 3 [11] and Shadow of
Mordor [12] generated their enemies by changing some prede-
fined characteristics. This behavior change approach allowed
these games to make more diverse and unique challenges. In
Left 4 Dead 2 [13] and State of Decay 2 [14], the enemies
can adapt to the players. However, instead of changing their
features, like in the previous two games, Left 4 Dead 2 [13]
and State of Decay 2 [14] decide how many and where to
place enemies. They make such decisions accordingly to the
players’ performance. If the player is doing well, new enemies
are spawned, else the games spawn fewer enemies1 2.

III. METHODOLOGY

This section describes our enemy representation and how
we evolve them through our MAP-Elites approach.

A. Representation

As mentioned, we propose an evolutionary approach that
advances from the method introduced in [7], where our enemy
genotypes come from the one presented in the previous work.
Such representation extracts common attributes of enemies
in Action-Adventure games to build the enemy’s genotype.
These attributes are the following: health, damage, attack
speed, movement speed, active time, rest time, movement type,

1The AI Systems of Left 4 Dead (https://steamcdn-a.akamaihd.net/apps/
valve/2009/ai_systems_of_l4d_mike_booth.pdf).

2Procedurally generating enemies, places, and loot in State of Decay
2 (https://www.gamedeveloper.com/design/procedurally-generating-enemies-
places-and-loot-in-i-state-of-decay-2-i-).

https://steamcdn-a.akamaihd.net/apps/valve/2009/ai_systems_of_l4d_mike_booth.pdf
https://steamcdn-a.akamaihd.net/apps/valve/2009/ai_systems_of_l4d_mike_booth.pdf
https://www.gamedeveloper.com/design/procedurally-generating-enemies-places-and-loot-in-i-state-of-decay-2-i-
https://www.gamedeveloper.com/design/procedurally-generating-enemies-places-and-loot-in-i-state-of-decay-2-i-


TABLE II
LIST OF ATTRIBUTES OF THE ENEMY’S GENOTYPE. THE LINE BETWEEN ATTRIBUTES REPRESENTS THE CROSSOVER POINT. ADAPTED FROM [7].

Attribute Type Range Details (the attribute defines...)

Health Integer 1-5 How many hits an enemy endures.
Damage Integer 1-4 How many life points an enemy takes from the player.
Attack Speed Float 0.75-4.0 How frequent an enemy shoots a projectile (1/Attack Speed).
Movement Type Nominal - How the enemy moves during gameplay.
Movement Speed Float 0.8-2.8 How faster the enemy moves.
Active Time Float 1.5-10.0 The time in seconds that the enemy moves before resting.
Rest Time Float 0.3-1.5 The time in seconds that the enemy rests before moving.

Weapon Type Nominal - The weapon gameplay properties.
Projectile Speed Float 1.0-4.0 How faster the projectile moves towards the player.

weapon type, and projectile speed. Table II describes these
attributes and shows their respective ranges of values. Our
only change in the numerical values was the max movement
speed value; we decreased it slightly because the max value
was too fast.

Again in Table II, movement type and weapon type are
nominal attributes representing more complex behaviors and
objects that enemies may have. Following, we list the types
of movements:

• None the enemy stays still.
• Random the enemy’s movement is defined by a random

direction 2D vector.
• Random 1D the enemy’s movement is determined by a

random direction 1D vector (i.e., horizontal or vertical).
• Flee the enemy’s movement is calculated by the opposite

of the player’s direction vector.
• Flee 1D the enemy’s movement is calculated by the

opposite of a single axe of the player’s direction vector
(i.e., horizontal or vertical).

• Follow the enemy’s movement is determined by the
direction vector that points towards the player.

• Follow 1D the enemy’s movement is defined by a single
axe of the direction vector that points towards the player
(i.e., horizontal or vertical).

All these movements occur during the active time. Regarding
weapon types, we list their types and describe how they work:

• Barehand (None) deals damage on contact.
• Sword deals damage on contact with a higher reach

regarding the barehand.
• Bow shoots bullets towards the player, and they deal

damage when hit the player.
• Bomb-Thrower shoots a bomb towards the player; they

explode in 2 seconds and deal damage in a limited area.
• Shield protects the enemy from frontal attacks.
• Cure Spell cures one health point of all enemies in a

circular area.
We add the cure spell to generate healer enemies, and our

melee enemies use the following weapons: barehand, sword,
and shield. Furthermore, our ranged enemies use a bow and
bomb-thrower. We discarded the weights of the movement
and weapon types and dealt with these attributes in dedicated
equations to calculate the enemies’ difficulty.
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Fig. 1. The map of MAP-Elites population. The red cell represents a melee
enemy that follows the player to hit with a sword. The blue cell represents a
ranged enemy that flees from the player while throwing bombs towards them.

B. Generation Process

The input for the generation process is only the goal diffi-
culty of enemies. The fitness function measures the distance
between aimed difficulty and the difficulty encoded in the
enemy stated as an individual (representation of solution) of
the evolutionary algorithm. Therefore, our approach minimizes
such fitness. We designed a MAP-Elites approach to preserve
diversity while optimizing the quality of enemies. We dis-
cretized our map regarding movement and weapon types; thus,
we have nominal values as feature descriptors (dimensions).
Since we do not need to calculate numerical equations, our
mapping functions are straightforward:

Dmovement = emovement_type (1)

Dweapon = eweapon_type (2)

where, e is the enemy. Fig. 1 presents our approach’s map. The
cell highlighted in red represents an enemy that follows the
player to hit with a sword, while in blue represents an enemy
that flees from the player while throwing bombs towards them.

The proposed MAP-Elites approach maps 42 enemies in
terms of the defined dimensions. When the population receives
a new individual, we calculate its feature descriptors to place
it in the correct map entry. If a new enemy hits a filled cell,



we apply elitism, i.e., the best enemy fills the cell, discarding
the other one.

The evolutionary process starts by generating the initial pop-
ulation thought filling the attributes of n enemies randomly.
Since the initialized enemies may hit the same map entry,
the initial population generation may take a while. Besides,
since we discretized the population in a map, its size does not
change. Thus, the best individual is always kept.

Next, we evolve the population using the generation-limit
stopping criterion. The authors in [7] replace all the population
in each generation by the intermediate population generated.
We also have an intermediate population; however, we try to
add its individuals in the MAP-Elites population. The repro-
duction operators create new individuals from two parents,
chosen using tournament selection with two competitors.

We first perform a crossover with a 100% rate to generate
two new individuals when reproducing enemies. Our crossover
is a combination of a fixed-single-point crossover and a BLX-
α crossover [18]. We first cross the parents in the fixed
point as shown in Table II. We designed the crossover to fill
our map faster once new individuals may hit new cells. For
instance, if the elites Bow-Flee and Sword-Follow cross, we
generate two individuals mapped in Bow-Follow and Sword-
Flee cells. After this, we perform the BLX-α crossover for
each numerical attribute [18].

After the crossover, we have a chance to mutate both
resulting enemies and, when a mutation happens, we apply
a multi-gene mutation [19]. To do so, we calculate the chance
of mutating each gene. This mutation means that our mutation
operator can change all the enemy’s attributes. We set a new
random value for each gene that mutates, respecting the limited
range and the list of nominal values of the attributes.

Our difficulty function has four factors: health, movement,
strength, and gameplay. The enemies’ life points determine
how many hits they endure.

dhealth = 2× ehealth (3)

Regarding the movement factor, we consider three attributes
of our individuals: movement speed, active time, and rest time.

dmovement = emv_spd + eact_tm/3 + 1/erst_tm (4)

where, mv_spd is the movement speed, act_tm is the active
time, and rst_tm is the rest time. The faster the enemy, the
more difficult it will be for the player to defend the enemy’s
tackles. The more time active moving, the more difficult the
enemy is. We weighed this term with 1/3 to balance its
influence in this equation. Finally, the more time resting, the
more easily it will be to defeat; thus, we calculate its inverse.

The strength factor is more complex than the previous
difficulty factors; it depends on the types of enemies and,
therefore, we multiply three different equations.

dstrength = ds1 × ds2 × ds3 (5)

For melee enemies, we multiply damage by movement speed.

ds1 =

{
edmg × emv_spd , ISMELEE(e)

1, otherwise
(6)

where, dmg is the damage. We multiply attack speed by
projectile speed for ranged enemies and weigh the result by
three.

ds2 =

{
3× (eatk_spd × eprjct_spd), ISRANGED(e)

1, otherwise
(7)

where, atk_spd is the attack speed, and prjct_spd is the
projectile speed. We consider only the attack speed for healer
enemies since they always heal a single life point of all
enemies in their heal area range.

ds3 =

{
2× eatk_spd , ISHEALER(e)

1, otherwise
(8)

We also calculate the gameplay factor considering the
enemies’ weapons and our game prototype, where we experi-
mented with the generated enemies. Here we also increase the
difficulty of incoherent enemies; thus, discarding them based
on a threshold defined by the user.

dgameplay = dg1 × dg2 × dg3 × dg4 × dg5 (9)

Melee enemies that follow the player are more dangerous,
thus, more challenging to defeat. Moreover, melee enemies
that flee from the player or stay still are less risky and easier
to defeat. Therefore, we weigh the difficulty as follows.

dg1 =


1.25, ISMELEE(e) and ISFOLLOW(e)

0.5, ISMELEE(e) and
(ISANYFLEE(e) or HASNOMOVE(e))

1, otherwise

(10)

Since ranged enemies perform distance attacks, those that
flee from the player present more risk. When ranged enemies
stay still, players can defeat them easier since they are static
targets. Ranged enemies that follow the player may have the
projectile speed faster than their movement speed, or else they
will not behave as rangers since their projectiles will be slower
than they own. This behavior did not occur in enemies with
the movement Follow1D. Thus, we weigh the difficulty as
follows.

dg2 =


1.25, ISRANGED(e) and ISFLEE(e)

1.15, ISRANGED(e) and ISFLEE1D(e)

0.5, ISRANGED(e) and HASNOMOVE(e)

1, otherwise

(11)

dg3 =


0.5/(2× emv_spd), ISRANGED(e) and

ISFOLLOW(e)

1, otherwise
(12)

Healers must protect themselves while keeping healing other
enemies. Thus, they should not follow players but avoid them.
Besides, healers that move faster are more difficult to defeat;



thus, we also weighed this factor by their movement speed.
Therefore, we weigh the enemy’s difficulty as follows.

dg4 =


1, ISHEALER(e) and

(ISANYRANDOM(e) or
ISANYFLEE(e))

0.5, otherwise

(13)

dg5 =

{
1.15× emv_spd, ISHEALER(e)

1, otherwise
(14)

All the numeric weights in the equations were chosen
empirically through gameplay experiments. Finally, we defined
the final difficulty equation as follows.

d = dgameplay × (dhealth + dmovement + dstrength) (15)

IV. RESULTS

In this section, we present how our approach performed
computationally and the feedback of human players after
playing with our enemies.

A. Performance Results

We defined the parameters of our approach empirically
after comparing some range of values. The results comparing
different sets of evolutionary parameters are available in a
Google Sheets spreadsheet3. After this comparison, we set the
following parameters: 500 generations as stop-criterion, 35 in-
dividuals for initial population, 100 individuals for intermedi-
ate population, 20% for mutation rate, 30% for gene mutation
rate, 2-size for tournament selection. Next, we collected data
from 100 executions of our method for three different difficulty
goals to evaluate its performance. In such an experiment, each
player could play three different levels with easy, medium, and
hard enemies, respectively. We opt for this to provide short
gameplay sections. Table III shows the average and standard
deviation of the fitness for each Elite (entry) of our MAP-
Elites population, where most solutions converged to zero, the
best value when using a distance measure for fitness.

We expect values close to zero for lower difficulty values
because these are easier to reach. Still, in Table III, Bow
and Bomb Thrower enemies with movements of Flee and
Follow presented higher values. We expect such values for
ranged enemies with Flee movement, once this movement
makes enemies more dangerous. Elite gets closer to zero in
the remaining tables, meaning the respective Elite is reaching
the aimed difficulty. On the other hand, regarding the ranged
enemies with the movement Follow, their distance is a little
high due to a lack of balance between projectile and movement
speed attributes. This result is similar in the remaining cases.

In tables IIId and IIIe, we observe that new Elites in both
tables have significantly higher distance values than the others.
These Elites are the enemies with the Barehand, Sword, and
Shield as weapons and None, Flee, and Flee1D as movements.

3Link to the spreadsheet https://docs.google.com/spreadsheets/d/19SMHZ
YT_pfniZDuNS0BOYMt1kWyBOlvqFq_Y7vBNrS4.

Fig. 2. Game prototype screenshot.

(a) Slime (no weapon). (b) Swordsman. (c) Bower mage.

(d) Bomber mage. (e) Shieldsman. (f) Healer (Cure Spell).

Fig. 3. List of enemies of our game prototype. Slimes have no weapon.
Swordsmans use swords. Bower mages shoot arrows. Bomber mages throw
bombs. Shieldsmans hold shields. Healers use cure spell to heal other enemies.

We expected such results because these values are the ones we
set with lesser values for their weights in the gameplay factor
of our difficulty function. Besides, we also observe a difficulty
limit in these enemies for both tables. These values vary
between 15 and 16 since the distance between them and the
difficulties 17 and 19 are, respectively, 2 and 4 approximately.

Regarding the execution time, Table IV presents the average,
minimum, maximum, and standard deviation values for dura-
tion time (seconds) for the 100 executions. The experiments
regarding performance were carried out in a PC with the
following setup: Intel Core i7-7700HQ 2.80GHz Processor (8
cores), 16 GB DDR4 RAM, 236GB SSD memory, NVIDIA
GeForce GTX 1050 Ti 4GB graphics card. The results show
that different values of difficulty goals do not impact the
execution time of our approach. Therefore, our approach can
generate enemies of any difficulty without performance loss.

The Parallel Evolutionary Algorithm presented by Pereira et
al. [7] can generate a huge number of enemies in a single ex-
ecution. Although our approach generates significantly fewer
enemies, it ensures diversity. Our method was slightly faster
regarding average execution time, since their loweest average
time was 0.168 seconds.

B. Gameplay Feedback

We experimented with anonymous volunteers who evaluated
the quality of enemies through an in-game, optional, ques-
tionnaire. We shared the game, hosted in a server, via social
media and mailing lists. Sets of enemies were generated with

https://docs.google.com/spreadsheets/d/19SMHZYT_pfniZDuNS0BOYMt1kWyBOlvqFq_Y7vBNrS4
https://docs.google.com/spreadsheets/d/19SMHZYT_pfniZDuNS0BOYMt1kWyBOlvqFq_Y7vBNrS4


TABLE III
RESULTS OF FITNESS OBTAINED AFTER 100 EXECUTIONS OF OUR APPROACH. EACH FITNESS VALUE CORRESPONDS TO THE DISTANCE BETWEEN THE

INPUT DIFFICULTY AND THE DIFFICULTY OF THE FOUND ENEMY – THE CLOSER TO ZERO, THE BETTER.

(a)VERY EASY DIFFICULTY = 11.

Barehand Sword Bow Bomb Thrower Shield Cure Spell

None 0.00± 0.00 0.00± 0.00 0.01± 0.01 0.01± 0.01 0.00± 0.00 0.01± 0.01
Random 0.00± 0.00 0.00± 0.00 0.01± 0.01 0.01± 0.01 0.00± 0.00 0.01± 0.01
Random1D 0.00± 0.00 0.00± 0.00 0.01± 0.01 0.01± 0.01 0.00± 0.00 0.01± 0.01
Flee 0.00± 0.00 0.00± 0.00 0.16± 0.23 0.21± 0.38 0.00± 0.00 0.03± 0.03
Flee1D 0.00± 0.00 0.00± 0.00 0.06± 0.10 0.07± 0.12 0.00± 0.00 0.03± 0.04
Follow 0.01± 0.01 0.01± 0.01 0.43± 0.58 0.43± 0.53 0.01± 0.02 0.02± 0.02
Follow1D 0.00± 0.00 0.00± 0.00 0.01± 0.01 0.01± 0.01 0.00± 0.00 0.01± 0.01

(b)EASY DIFFICULTY = 13.

Barehand Sword Bow Bomb Thrower Shield Cure Spell

None 0.00± 0.01 0.00± 0.00 0.01± 0.02 0.01± 0.02 0.00± 0.00 0.01± 0.01
Random 0.00± 0.00 0.00± 0.00 0.01± 0.01 0.01± 0.03 0.00± 0.00 0.01± 0.01
Random1D 0.00± 0.00 0.00± 0.00 0.01± 0.01 0.01± 0.01 0.00± 0.00 0.01± 0.01
Flee 0.00± 0.02 0.00± 0.01 0.12± 0.22 0.09± 0.20 0.00± 0.01 0.03± 0.03
Flee1D 0.00± 0.01 0.00± 0.01 0.04± 0.05 0.04± 0.05 0.00± 0.01 0.03± 0.03
Follow 0.01± 0.01 0.01± 0.01 1.07± 1.12 1.06± 0.97 0.01± 0.01 0.02± 0.02
Follow1D 0.00± 0.00 0.00± 0.00 0.01± 0.01 0.01± 0.01 0.00± 0.00 0.01± 0.01

(c)MEDIUM DIFFICULTY = 15.

Barehand Sword Bow Bomb Thrower Shield Cure Spell

None 0.07± 0.14 0.06± 0.14 0.02± 0.03 0.02± 0.03 0.08± 0.18 0.02± 0.02
Random 0.00± 0.00 0.00± 0.00 0.00± 0.01 0.00± 0.01 0.00± 0.00 0.01± 0.01
Random1D 0.00± 0.00 0.00± 0.00 0.00± 0.01 0.00± 0.01 0.00± 0.00 0.01± 0.02
Flee 0.07± 0.14 0.08± 0.23 0.03± 0.04 0.03± 0.04 0.08± 0.22 0.03± 0.03
Flee1D 0.05± 0.11 0.06± 0.13 0.02± 0.02 0.02± 0.03 0.07± 0.14 0.02± 0.03
Follow 0.01± 0.01 0.01± 0.01 1.70± 1.47 2.15± 1.82 0.01± 0.01 0.02± 0.02
Follow1D 0.00± 0.00 0.00± 0.00 0.00± 0.01 0.00± 0.00 0.00± 0.00 0.01± 0.01

(d)HARD DIFFICULTY = 17.

Barehand Sword Bow Bomb Thrower Shield Cure Spell

None 1.91± 0.25 1.90± 0.20 0.03± 0.03 0.03± 0.03 1.91± 0.21 0.02± 0.02
Random 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.01± 0.01
Random1D 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.01± 0.01
Flee 1.96± 0.27 1.94± 0.27 0.02± 0.03 0.02± 0.01 1.96± 0.27 0.02± 0.02
Flee1D 1.98± 0.27 1.94± 0.24 0.01± 0.01 0.01± 0.01 1.95± 0.26 0.02± 0.02
Follow 0.01± 0.01 0.01± 0.01 2.32± 2.07 2.29± 2.16 0.01± 0.01 0.01± 0.01
Follow1D 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.01± 0.01

(e)VERY HARD DIFFICULTY = 19.

Barehand Sword Bow Bomb Thrower Shield Cure Spell

None 3.91± 0.23 3.93± 0.24 0.04± 0.04 0.03± 0.04 3.93± 0.27 0.02± 0.02
Random 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.01± 0.01
Random1D 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.01± 0.01
Flee 3.95± 0.27 3.99± 0.32 0.02± 0.02 0.01± 0.02 3.94± 0.29 0.02± 0.02
Flee1D 3.90± 0.18 3.89± 0.17 0.01± 0.01 0.01± 0.01 3.91± 0.18 0.02± 0.02
Follow 0.01± 0.01 0.01± 0.01 3.14± 2.39 3.35± 2.63 0.01± 0.01 0.01± 0.01
Follow1D 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.01± 0.01

TABLE IV
RESULTS OF TIME IN SECONDS OBTAINED AFTER 100 EXECUTIONS OF

OUR APPROACH.

Difficulty Average Minimum Maximum Standard Deviation

11 0.1608 0.1510 0.2345 0.0126
13 0.1609 0.1521 0.2255 0.0115
15 0.1597 0.1508 0.2474 0.0145
17 0.1621 0.1509 0.2000 0.0106
19 0.1581 0.1512 0.1970 0.0072

different difficulty levels and included in our game prototype,

which is an adapted version of the game applied in [7].
Therefore, the players must solve locked-door puzzles, defeat
enemies and reach the level goal. The players can use blocks
within some rooms to protect themselves from enemies, which
are positioned in rooms like in [7]. Fig. 2 shows a screenshot
of such game prototype. In our game, players should defeat
the six enemies listed in Fig. 3.

A total of 96 players faced our enemies in the game, and
75 answered all the questions. They played 124 levels with
enemies randomly placed in rooms. Regarding difficulty, they
played 31 levels with easy enemies, 35 with medium enemies,
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Fig. 4. Bar charts of answers of the 75 players after playing 124 levels.
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Fig. 5. Bar charts of answers for question Q1 (“The level was fun to play”).
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Fig. 6. Bar charts of answers for question Q2 (“The enemies of this level were difficult to defeat”).
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Fig. 7. Bar charts of answers for question Q3 (“The challenge was just right (balance)”).
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Fig. 8. Bar charts of answers for question Q3 (“The challenge was just right”) of 43 players for 74 levels. These players answered they enjoy battles.
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Fig. 9. Bar charts of answers for question Q4 (“The enemies I faced were created by humans”).

and 58 with hard enemies. After playing the levels, the players
answered how much agree or disagree, on a five-point Likert
scale, with the following statements:

Q1 The level was fun to play;

Q2 The enemies of this level were difficult to defeat;
Q3 The challenge was just right (balance);
Q4 The enemies I faced were created by humans.

In our experiments, we had 51 out of 75 players declaring to



have considerable experience with games in general and 53 out
of 75 with Action-Adventure games. Fig. 4 shows the overall
results of players’ feedback for each question of our question-
naire. The players enjoyed most the levels played (Fig. 4a),
and Fig. 4b shows the players had no difficulty defeating the
enemies in 80 levels. About the challenge suitability (Fig. 4c),
they answered that the challenge was just right in half of the
levels (62 out of 124) and neutral for 25 of the levels. Finally,
in Fig. 4d, we observe that the players sustained that humans
created our enemies in 58 of the levels.

Fig. 5 shows results of question Q1 for each difficulty range.
The players enjoyed most levels regardless of the difficulty
of the enemies. However, they preferred medium and hard
levels since the negative answers decreased while positive ones
increased.

Fig. 6 shows results of question Q2 for each difficulty. In
Fig. 6a, the players felt that the enemies in 20 out of 31 easy
levels were not challenging to defeat, and there were only four
levels with enemies perceived as harder to overcome. For the
medium levels, the players reported easy enemies to defeat
in 15, hard in 11, and neutral in 9 levels (Fig. 6b). Finally,
from 58 hard levels, Fig. 6c shows enemies hard to defeat in
29 levels based on players’ feedback. They perceived enemies
as easy to defeat in only 10 levels and neutral in 18 levels.
Thus, the results about the difficulty range of our enemies
corroborate our settings for difficulty values.

Fig. 7 shows results of question Q3 for each difficulty.
Figures 7a and 7b illustrate that approximately half of the
players agree and half disagree that easy and medium levels
challenges were just right. In contrast, Fig. 7c shows that the
players perceived the challenge as adequate in most hard levels
(39 out of 58).

Besides the questionnaire to evaluate levels, we also asked
the players if they enjoyed battling during their gameplay.
Fig. 8 shows the feedback of the players who confirmed such
question. The answers are analogous to Fig. 7, and these
players also preferred the levels with harder enemies, as shown
in Fig. 8c. Considering such results, we believe our levels
probably could present better challenges if we mix up some
enemies with different difficulty degrees.

Fig. 9 shows results of question Q4 for each difficulty. The
results indicate that players notice enemies as human-made
in most levels regarding the difficulty degree of the enemies.
Besides, this perception is more visible for medium and hard
enemies than easy ones. These results mean that if the enemy
is harder to overcome, the players perceive them as more
carefully designed.

V. CONCLUSION

In this paper, we introduced an illumination approach that
extended the enemy generation presented by Pereira et al.
[7]. We advanced the previous method by illuminating the
enemies through the MAP-Elites approach. Our experiments
showed that the players had fun while playing the levels
with the enemies generated regardless of the difficulty. The
results corroborated the difficulty values we set to create easy,

medium, and hard enemies. Furthermore, our enemies were
carefully designed in enough way to be perceived as human-
made enemies. As future works, we intend to extend our
work with the Constrained MAP-Elites approach [15]. With
this approach, we can generate multiple enemies and avoid
incoherent enemies.
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