
GCN-WP – Semi-Supervised Graph Convolutional
Networks for Win Prediction in Esports

Alexander J. Bisberg
Viterbi School of Engineering

University of Southern California
Los Angeles, CA USA

bisberg@usc.edu

Emilio Ferrara
Viterbi School of Engineering, Annenberg School of Communication

University of Southern California
Los Angeles, CA USA

emiliofe@usc.edu

Abstract—Win prediction is crucial to understanding skill
modeling, teamwork and matchmaking in esports. In this paper
we propose GCN-WP, a semi-supervised win prediction model
for esports based on graph convolutional networks. This model
learns the structure of an esports league over the course of
a season (1 year) and makes predictions on another similar
league. This model integrates over 30 features about the match
and players and employs graph convolution to classify games
based on their neighborhood. Our model achieves state-of-the-
art prediction accuracy when compared to machine learning or
skill rating models for LoL. The framework is generalizable so
it can easily be extended to other multiplayer online games.

Index Terms—esports, win prediction, graph neural networks

I. INTRODUCTION

The first skill based matchmaking algorithm was invented in
the 1950s, and eponymous named by, Arpad Elo. His intention
was to produce a ranking for chess players at tournaments
and subsequently predict who would win [1]. This system
uses a single number to represent a player’s or team’s skill.
This algorithm involves two main steps, the score expectation
estimation followed by the score update. The score expectation
is defined as the win probability of a given team. Therefore,
skill rating and win prediction have been intimately tied since
their origins.

The Elo algorithm was designed to be updated after every
game or match. The expectation of a player’s (or team’s) skill
changes based on the result of each game. Although originally
intended for an individual playing chess, many have adapted
the Elo algorithm to other sports and games of full teams of
players [2]–[4]. Some of these models use a single score to
represent a team’s skill, while others attempt to model each
individual player [5], [6].

Win prediction can be used to rank individuals or teams
in seeding for a tournament. In many professional esport and
sport leagues, every team has the opportunity to play every
other team in the league, usually multiple times throughout
the course of a season. Is there a way we can exploit this
graphical structure to improve our understanding of what it
takes to win in an esports league?

Many rating systems make the assumption that an esports
team’s performance is connected to their historical results [1],
[5]. Instead of explicitly modeling their skill over time as

Fig. 1. Summoner’s Rift - the stage where each game of League of Legends
occurs.

current skill models do, we create a graph representation of
the entire network of teams to learn how their past games and
opponents affect their performance. Then, we use the order
of games and connections between teams, along with features
about those games, to predict which team will win. There has
been promise in analyzing professional soccer league rankings
using a networks [7], which enabled comparisons between
the various global professional league rankings. Graphs have
proved useful for analyzing inter-team dynamics in the subject
game – League of Legends (LoL) – [8], but connections
between games have yet to be explored. Some win prediction
models use traditional statistical models to build this graph and
make predictions [5], but we hypothesized a deep embedding
of this graph could yield better win prediction results. There
has been success using deep learning for win prediction [9],
however none have combined graphs with deep learning.

Given our analysis of the win prediction landscape, we
propose using graph neural networks (GNNs) [10] to analyze
these professional league graphs. GNNs were invented to
analyze data poorly suited for Euclidean space. In the same
way traditional deep models learn feature emgeddings, GNNs
learn embeddings of the input graph or graphs. There are
different techniques to learn these embeddings, one of them
involves graph convolutions [11], which we will focus on here.
Given the context above, we have distilled our aims into the

following research questions:
• RQ1: Can GNNs improve the performance of win pre-

diction models for elite teams?
• RQ2: Can a league embedding be trained and perform

well in a win prediction task on a separate league?
To answer these questions we propose GCN-WP:

Semi-Supervised Graph Convolutional Networks for Win
Prediction. This method takes in to account a full seasons
worth of historical data so the modeler will not be forced to
manually weight past results. In addition, graph convolutions
are an efficient and elegant way to observe the effect of
”nearby” games. The key importance of the semi-supervised
approach is that the model can learn from data of the current
game we are predicting without knowing the outcome of that
game. This is also the first algorithm that allows for prediction
across leagues of esports. Without any information about how
the teams in the new league will perform, this algorithm shows
high prediction accuracy.
Contributions

1) We demonstrate the capacity for a GCN model to
represent a league of esports teams, particularly LoL and
it’s ability to capture historical results of those teams and
their contribution to a team’s ability to win in the future.

2) This model is compared to other state-of-the-art models
in the field and shown to perform better for win predic-
tion at this task. This implies that we can learn from the
inherent structure of success in a professional esports
league to make predictions about similar leagues.

II. BACKGROUND AND RELATED WORK

A. Win Prediction in Esports

Rating systems are key to understanding the landscape of
win prediction models. These systems are generally developed
to rank players, but also have a component to predict match
outcomes. Rating systems are useful because they enable
statisticians, tournament directors, and fans to quantify player
skill. In general, a highly skilled individual or player should
win against another player that has lower skill. Therefore,
most skill rating systems have a direct way to predict which
individual or team will win. To explore the background of win
prediction algorithms is to explore the background of rating
systems.

1) Origins: Elo and Gliko: Arpad Elo was an early pioneer
in rating systems. The idea was to have a single number
represent a player’s rating and an equation that could be used
to update that rating after a match completed (preferably by
hand since calculators were not prolific in the 1950s). Thus
was born the Elo algorithm, as described in his book [1].

Many of the parameters of the Elo algorithm were set by eye
without rigorous statistical backing such as cross-validation
or back-testing. He likely didn’t have access to enough data
to perform these analyses; however, the United States Chess
Federation (USCF) continued to use this algorithm. In the
90’s a statistician from Harvard, Mark Glickman, questioned

the assumptions of Elo’s original algorithm. He showed that
one could add in factors to dyamically adjust the ratings of
a population to better fit match outcomes, as well as add a
time decay factors to players who haven’t played recently.
Glickman presented most of his findings in his guide on chess
ratings [12] and improved on win prediction accuracy of Elo’s
original algorithm for Chess ratings.

2) Integrating Players and Teams: As the growth of online
competitive games exploded in the late 2000s, the need for
scalable win prediction and ratings systems grew with them.
Many game companies began developing their own versions of
these ratings systems behind closed doors; however, the teams
at Microsoft Research and Halo 2 collaborated to release a new
rating system called TrueSkill [5]. Pioneered by Christopher
Bishop and Thomas Minka, two pioneers in probabilistic
inference, used Bayes nets to infer player skill as a complex
distribution. They dramatically increased the complexity of the
model wile allowing the developer to add in more modern
assumptions. TrueSkill models not only each individual’s skill
over time, but it’s variance as well. To estimate team skill,
multiple individual skills are summed or averaged to together.
As the Halo games continued to develop, so did TrueSkill. The
creators released an update aptly named TrueSkill2 [6]. This
version of the algorithm introduced the capacity for automated
parameter tuning, integrating other data from players, and
modifications based on players who queue up as a squad.

After TrueSkill came TeamSkill [2], which explicitly at-
tempts to model the skill of a team. They achieve this by
partition each team of n players in to k subgroups ranging
from 0 to n. This process is applied to existing Elo, Gliko
and Trueskill skill ratings and shows some improvements on
model accuracy.

Other research has shown that there are complex and subtle
differences when playing esports with a team of players. For
example, playing with friends may actually benefit low skill
players more than high skill players [13] and their performance
is affected by the number of games they play in a single
session as well [14]. However, these relationships may not
hold true for professional esports teams.

In addition, deep learning approaches have been used re-
cently to quantify skill in teams. NeuralAC and OptMatch [15],
[16] strive to quantify not only interactions between enemy
teams, but interactions between allies and character abilities as
well. [17] uses deep reinforcement learning to create a globally
optimal matchmaking strategy.

3) Applications to Esports: As professional esports orga-
nizations became more normal across esports from LoL to
Call of Duty (CoD) in the mid to late 2010s, the ratings
landscaped changed again. No longer were ad-hoc teams and
tournaments the primary medium for esports to be played.
Leagues much closer to the English Premier League or Major
League Baseball began to form. The distinction between
professional esports ranking and matchmaking is important,
and may change the type of skill model one chooses to use
[3].

Defense of the Ancients 2 (DOTA2) is a game similar

to LoL in many aspects, so we investigated which models
have been used for this game in particular. Much like LoL,
there are 5 characters (heros, as they are called in DOTA2)
on each team battling to destroy each other’s base – more
about game mechanics will be explained below in Section
III-A1. [18]–[20] all use variations on traditional skill-based
models for DOTA2 win prediction or attempt to integrate
novel factors like hero draft. Some other works do use deep
learning for win prediction in LoL ([21]–[23]); however,
they do not make predictions on professional esports matches.
Finally, [24] perform a wide literature review on the win
prediction in esports domain showing applications of graph
based approaches for integrating the characters players are
using in these games.

B. Neural Networks

Deep learning is also a promising technique used for win
prediction. [9] show that player embeddings are successful at
accurately predicting matches. Moreover, an advantage of this
framework is they consider optimizing for other factors such
as player ping or retention. Once again, this algorithm is more
focused on ad-hoc teams.

1) Graph Neural Networks: To the best of our knowledge,
the GNN model has not been used for esports win prediction
tasks before this. In it’s a simplest form, a GNN starts with a
graph: nodes (data points) connected by edges [10]. A GNN
can classify individual nodes in a graph, thereby each node
will ahve a label, whose labels will be learned inductively from
the surrounding nodes. Alternatively, GNNs can be trained on
multiple labeled graphs to classify an entire graph as opposed
to just nodes in the graph.

2) Graph Convolution: [11] proposed the graph convolu-
tional network as a way to embed graph data and learn from
it. Semi-supervised networks are useful when some data are
missing labels. This is similar to the win prediction case when
we have data for both of the team’s previous games, however
we don’t have a label for the game we are predicting.

III. DATASET

A. League of Legends

1) Basic Game Structure: As mentioned earlier, LoL is part
of the sub-genre Multiplayer Online Battle Arena (MOBA).
In this case, the players are divided into two teams of five
players, and in each of these teams the players select roles
and champions. The goal of the games is to destroy the
enemies’ outlying structures called towers, and eventually their
base – the nexus. Each player controls one avatar (champion)
throughout the course of a game – there are around 170 unique
champions to choose from. Each game of LoL is played
on Summoner’s Rift 1. This map has 3 lanes, the top lane
arcs around the top of the map, the middle bisects the map
from corner to corner, and the bottom lane curves around
the bottom and side of the map. Although the point of the
game is to destroy your opponent’s base, most of the strategy
revolves around gold. Gold is earned not only from killing
your opponents structures, but also killing enemy champions

Fig. 2. Number of games per year and per league [25].

and creeps. Creeps are non-player characters that periodically
and symmetrically walk down each lane. Finally, the jungle is
the intermediary area with neutral monsters, shrouded by fog
of war. Players may only see where their allies are on the map,
so the junglers move around mostly hidden trying to influence
the states of top, middle and bottom lane. Eventually in the
later stages of the game teams being to group together and
fight less in the lanes but more in the jungle around baron and
dragon. These large monsters take longer to defeat but offer
the players gold and buffs to increase their champion strength
and allow players to end the game sooner.

2) Professional Play: In 2020 there were six ”major”
regions in LoL, but this could change from year to year as
the strength of a region changes In general these major region
leagues have the most games played over a season, so so
they are the focus of the following analysis. As mentioned
above, this is a critical component to the proposed model. Each
league takes place in a different region of the world, however
the base game version and rules are the same. There may be
regional differences in strategies; for example, in one region
kills may be more important, whereas in another towers are
prioritized. If there are enough similarities between leagues,
our model should be able to predict their game outcomes well.
In addition leagues play over seasons, usually corresponding
to one year (i.e. the 2018 season). In each season, a group of
teams typically plays other teams from their region. There are
typically a mid-season invitational tournament where the best

teams from each league compete in addition to a world cham-
pionship at the end of the season. Because these tournaments
involve mixing leagues with teams that don’t often play each
other, we excluded these tournaments from the dataset.

B. Data Collection

This dataset was aggregated by a reputable blog know as
Oracle’s Elixir managed by Tim Sevenhuysen, a former esports
analyst [25]. During each season, some teams are invited
to international tournaments, usually by how well they do
in the respective regions. At the end of the year, the world
championships are held. For this research, we are restricting
our analysis to regular season games since during that time,
teams are mostly playing other teams from their respective
region. Therefore, we have a larger sample size of a smaller
cohort of teams. In addition, this sets up well for a graph
neural network framing.

The data has been collected since 2014 to present. Figure
2 shows a breakdown of the number of games player per
year and per league. For each game played in the professional
leagues, this dataset contains much more detailed information
than used in traditional win prediction models described in
Section II. The features can be broken up in to categories
including objectives, farm, gold and experience, fighting and
vision.

C. Features

1) Objectives: are critical aspects of LoL. They include
towers, inhibitors, and neutral monsters like dragon and baron.
Destroying towers and inhibitors opens up sections of the
map and empowers individual champions to roam more freely,
eventually closing in on their opponents base to deal the
winning blow.

2) Farm: The term farming refers to a team’s ability to
destroy small neutral monsters on the map, whether they are
in the main lanes of the battlefield (creeps) or in the jungle
(see Fig 1 for reference). Destroying neutral monsters gives
teams more gold.

3) Gold and Experience: Gold is earned for kills, objectives
and farm. With this currency players can buy items to increase
their ability to fight or capture objectives. Experience is earned
separately from gold, but also from fighting opponents, neutral
monsters, and destroying objectives.

4) Fighting: is another critical aspect of the game. By
slaying an opposing champion, they are prohibited from re-
spawning for a certain amount of time that scales with
the length of the game. Slaying opponents rapidly in quick
succession counts as a multi-kill, (double, triple, etc.) These
features could be indicators of a team’s fighting prowess.

5) Vision: is a critical component of LoL, especially in pro
play. Unlike chess, LoL is an imperfect information game. The
battlefield is shrouded in a fog of war, where each team can
only see where their own units or wards are. Wards are static
and illuminate the section of the map they are placed in. This
allows for control of neutral objectives in the fog of war like
dragon or baron.

Algorithm 1 BuildLeagueGraph
1: G← (V,E) ▷ initialize graph
2: for t in teams do:
3: games[t]← sorted(games[t]) ▷ sorted by time
4: for g, i in games do:
5: G(N)← gti ▷ add node for team game
6: G(E)← (gti , g

opp
i) ▷ add edge to opponent

7: G(E)← (gti , g
t
i−1) ▷ add edge to previous game

8: return G

We constructed two datasets with these features, one with
raw feature values for each team (called raw below) and a
second with the difference of the feature values between the
two teams (called delta).

IV. GCN MODEL ARCHITECTURE

A. Building the Graph

To formulate a GCN for the win prediction task, we must
first conceptualize the relationship between sequential games.
We assume that some teams A and B are connected directly to
the opponent of their current game, and themselves from their
previous game. We propose the algorithm to draw the team
graph in Algorithm 1. For each team the games are ordered in
ascending order and a node is added with the features from that
game. A connection is drawn from that node to an opponents
node and to that teams previous node. Here we assume a
homogeneous network: there is no distinction between self
and opponent nodes. We believe this is a fair assumption that
can be justified with feature engineering by using the delta
features. This allows the data representation at each node to be
a difference between the team and their opponent, effectively
homogenizing the network. In addition, the graph convolutions
will allow us to learn the structure of the network regardless
of the node type.

B. Exploiting Graph Structure

The main difference in this model from those mentioned
in Section II, is that we are observing a yearly, scheduled,

Fig. 3. This is an example of how graph convolution affects the labeling of
our features. Given the architecture is symmetrical, convolutions will look at
future nodes and past nodes. The label for the node at time t is the result
of Gc+1 (win = 1, loss = 0) where c is the number of convolutions. This
ensures that data is not leaking out of the model in to the other predictions

professional esports leagues as opposed to ad-hoc matches.
The most similar analog to professional sports is soccer. Many
countries have their own soccer leagues, like Major League
Soccer (MLS) in the United States, and the Premier League in
Britain. Each of these leagues generally play many other teams
in the league (if not all of them) in a given season. Therefore,
we have the most examples of these teams playing each other.
There are also global competitions that pit these teams from
different regions against each other, but these happen much
more infrequently. Our idea is that we can exploit the structure
and history of a team in any given league to learn from
that particular league, then apply that model to other leagues.
Therefore, we are effectively training on data different from
the final network. As far as we know this is the first esports
win prediction task to attempt this type of prediction.

C. Model Assumptions

One assumption that many win prediction models make is
that more recent performance should be weighted more heavily
than earlier performance. This is inherent in the construction
of SCOPE and TrueSkill, each making sequential updates
to a score. In a graphical representation, there would be
connections from a team’s past game nodes to a team’s present
game node. More games are observed as the season progresses.
However, at what point do a team’s previous results negatively
impact predictions? This is an open question and likely varies
for each domain (esport, league, etc.). To represent this data
in a graph, there is a list of N nodes and their features f ,
along with the relationships between these nodes, typically in
the form of an adjacency matrix, A. [11] use convolutions,
or filters, to capture the influence of surrounding nodes on
any given node. Each sequential neural network layer can be
written as a non-linear function [26]:

L(n+1) = f(L(n), A)

Where L is a layer, n is the layer number and A is the node
adjacency matrix. The idea is that each layer should relate to
the original adjacency matrix in some way. More formally,
each layer L should be scaled by the adjacency matrix A and
the learned weights W then processed through some non-linear
activation function σ like ReLU (the Rectified Linear Unit, a
common neural network activation function).

f(L(n), A) = σ
(
AL(n)W (n)

)
There are two main problems with the scaled adjacency-

weight matrix is in this form. First, this matrix product is
the sum of all neighboring nodes without inclusion of the
source node (unless the graph contains self loops), so we
can fix this by adding the identity matrix I . Second, A is
typically un-normalized and multiplication will change the
scale. Therefore, we should row-wise normalize A using
the diagonal node degree matrix, D. [11] proposes using a
symmetric normalization to avoid these problems, reaching
the following:

f(L(n), A) = σ
(
D̂−1/2ÂD̂−1/2L(n)W (n)

)
To ensure that we capture the relation of node’s own

features, A is replaced with Â = A+I , where I is the identity
matrix and D̂ is the diagonal node matrix of Â.

A graph convolution integrates data from the immediate
neighborhood of a node. However, this graph is not encoded to
be directional (the adjacency matrix is symmetrical). There-
fore, in our specific case, if there is more than one graph
convolution, the network would effectively be allowed to look
in to the future. A ”fair” prediction for a one convolution GCN
would actually be predicting two games ahead, and for a one
convolution network three games ahead, etc. Therefore, in our
experiments we were careful to properly attach the label to
each feature set from future game results. Figure 3 explains
how this model architecture impacts label choice.

D. Chebyshev Polynomials

Graph convolutions tend to fall into two categories: spectral
and spatial [27]. Spectral approaches are derived from graph
signal processing [28] and involve manipulating the scaled
adjacency matrix of varying graph neighborhood sizes. At a
high level, Chebyshev polynomials are an alternate way to
perform graph convolutions using a spatial approach instead
of the traditional spectral convolutions [29]. In this analysis we
use a more traditional GCN model using spectral convolutions
(gcn) and a GCN model using Chebyshev polynomial filters
to create convolutions (gcn-cheby)

V. BASELINE EXPERIMENTS

A. Machine Learning - Random Forest

Random forest models are one of the most common and
robust methods for classification in machine learning [30] and
there are many open source implementations of the model
[31]. A random forest model trains n decision trees and uses
all of their classifications to vote on the final class of the
answer, actually returning a class probability as number of
classifiers predicting positive label over the total number of
classifiers. They are more reliant on feature engineering than
deep learning, however; but should still provide an appropriate
baseline for the win prediction task [32].

To be a fair classification challenge, to predict the label (win
= 1, loss = 0) at t0, we use data from the previous game (t−1).
Given that many win prediction models use skill updates based
on past performance, we thought it was a valid assumption
to use data from the last n games a team plays. Therefore
instead of observing only the past game (at t−1) and predicting
the next, the features were collected over the past 1, 3 and 5
games. We set a constant, linear combination of features for
each of the number of past game data used. In table I, we
show the results of the longest lookback, 5 games, on the delta
feature set described above has the highest performance. This
suggests that using past games and a relative team performance
improve model accuracy.

Fig. 4. GCN-WP network structure. The input layer (top) is formed from the
graph produced by Algorithm 1. The convolutions are learned by the graph
(middle), then the final layer is the same dimension as the original graph
(bottom). L1 translates to label 1, etc. These are the predictions made by the
model (win = 1, loss = 0).

Lookback 1 game 3 games 5 games
Raw 0.563± 0.009 0.573± 0.010 0.572± 0.005
Delta 0.560± 0.009 0.569± 0.008 0.578± 0.012

TABLE I
WIN PREDICTION ACCURACY OF RANDOM FOREST MODEL

B. Skill Modeling - SCOPE

SCOPE is a recently developed skill modeling framework
that shows promise for win prediction [3]. The authors show
this method for it’s efficacy on a Call of Duty League dataset,
so we used the procedures they outlined to build a win
prediction model for LoL. Although we have data ranging
from 2014, we decided to use data from the 3 most recent
seasons to emulate the process that they used in [3]. So, the
2018 season was used for initialization of the Elo scores, 2019
was used to find the best parameters for the model (validation)
and the 2020 was the test set. We preformed the analysis on
the regular season games of the LCS and the LPL.

There were some specifications of the model that were
adapted to LoL, in particular Margin of Victory (MoV). In LoL
there is only one game mode played on one map, unlike in the
CDL where teams compete across 3 different game modes in
a best of 5. In each LoL game we used the difference in the
wining team’s kills vs. the losing team’s kills. Another metric
we debated using was the total gold difference between the
teams. Kills is a popular metric used by broadcast analysts so
we decided to use the kill difference as the MoV. Similarly to
their procedure, we fit the MoV range to linear, square root,

Base K 5 10 20 30 40 50
Cutoff 1600 1650 1700 1750
Reduction 0.1 0.2 0.3 0.4 0.5
MoV func none lin exp log
w90 100 200 300 400 500
Regression 0 0.1 0.2 0.3 0.4

League LCS LPL
Regress 0.4 0.4
Base K 40 40
Cutoff 1600 1700

Reduction 0.1 0.5
MoV none lin
w90 100 500

Test Acc 0.591 0.597

TABLE II
ON TOP, VALUES TESTED FOR FOR SCOPE ON LOL, BELOW ARE THE

BEST VALUES FOR RESPECTIVE LEAGUES, THE LCS AND LPL.

log and exponential functions. , the best of which are presented
in For the validation run on the LPL there were 19 teams in
2019, and only 14 teams in 2018. Instead of assuming these
teams were below average skill level, we added them in at
average (1500).

We used cross-validation to test a wide array of values,
similar to process used in [3], the results of which are
presented in Table II. SCOPE selected similar parameters for
both leagues, which is expected. Higher ranked teams in the
LPL were in general more dominating which we can see by
the score cutoff at 1700 and K reduction of 0.5. This means
that teams above 1700 had their K update value cut in half,
which made them much less susceptible to changes in score.
In general the top ranked LPL teams are some of the best in
the world and that league is also the largest of any region in
2020. This is an improvement on the random forest algorithm,
and although does not have as high an accuracy as compared
the original paper, we believe this was an effective application
of the method.

VI. MODEL EVALUATION

A. GCN-WP Training and Testing

The Chinese league, LPL, had double the games compared
to any other league, so this league was fixed as a training
network. The validation network is the LCK in Korea, which
has the second most games. Finally, the test network is the
LCS, or the American league. In order to avoid contaminating
our model by switching the test, validation and training set, we
decided to fix these leagues ahead of time. That way, we would

Hidden Layer 1 32 64 128
Hidden Layer 2 32 64 128
Dropout 0.1 0.25 0.5
Model gcn gcn cheby
Dataset raw delta

TABLE III
CROSS-VALIDATION PARAMETERS FOR THE GCN-WP MODEL

Model Accuracy
GCN-cheby (1 layer) + raw 0.541

GCN (1 layer) + delta 0.551
GCN-cheby (2 layer) + delta 0.568

Random Forest (lookback=5) + delta 0.578
SCOPE (Elo) 0.597

GCN-cheby (1 layer) + delta 0.619

TABLE IV
BEST PARAMETERS FROM ALL MODELS TESTED.

avoid selecting which set would avoid the optimal accuracy
because we likely would not have that choice in practice.

In addition we fixed this dataset to one input year. Although
players and coaches may change slightly within a season,
they could change significantly from season to season. Since
the esports markets change very quickly, some teams are
present one year and gone the next, this would leave sub-
optimal network structure and prevent learning on the graph.
Therefore, we decided to limit the dataset to the final year of
data: 2020.

Using semi-supervised learning is beneficial because we can
still use data at the beginning and end of the window which
don’t have results yet. This is one key facet of the semi-
supervised approach taken here that the other fully supervised
models described above miss out on. As mentioned above,
an assumption of Kipf’s GCN is that the network is homo-
geneous. Given this modeling choice there is no difference
between self past game nodes and opponent nodes.

The code for this model is an open source fork of Thomas
Kipf’s original GCN model [33], available here [34], imple-
mented in python using Tensorflow [35]. Algorithm 1 was
used to construct the adjacency matrix that fed in to a graph
convolutional network. We tested various aspects of the model
using a cross-validation set with 1 and 2 hidden layers. In
addition, we varied the dropout of the network. Dropout is
a reliable way to prevent overfitting in neural networks [36].
Grid search cross-validation were performed to determine the
optimal features and model parameters. The hyperparameters
tested during cross-validation are listed in Table III.

B. Model Results and Comparison

Table IV presents the win prediction accuracy of all of
the models tested. In general SCOPE and Random Forest
performed well, but were outperformed by one construction of
GCN-WP. In the following section we will analyze the various
GCN-WP models and consider why GCN-cheby (1 layer) +
delta performed the best.

Chebyshev polynomials, although increasing compute time,
increased model accuracy. This was an interesting result es-
pecially since in the original GCN paper this method actually
performed slightly worse [11]. Ensuring they were set to 1
degree meant that the network shouldn’t be integrating future
game data since the degree is proportional to the neighborhood
size of the convolution. Given the feature representation of
this data is more continuous, as opposed to word vector
embeddings used in the paper, using these spacial convolutions

likely has a more meaningful impact on the analysis of
a node’s neighbors. For example, the actual distance of a
feature node’s total gold earned and it’s neighbor’s earned gold
may have a direct numerical relationship. The winning team
will likely have a much higher total gold and the spectral
convolution with the Chebyshev polynomial should capture
that.

Using the delta dataset significantly improved model accu-
racy as well. Given that the graph convolutions are homoge-
neous, it is better that the features are relative between the
winning and losing opponent. This is actually very similar
to how the random forest model is encoded. A one layer
GCN model will look at a neighborhood of 1, so the node
immediately before and after the labeled node. This way we
are actually integrating data from 3 games – see the first
row of figure This way, the model can determine the relative
performance of nearby teams in relation to the class of the
node that is being predicted.

More layers reduced prediction accuracy. This is likely due
to the fact that expanding the node neighborhood may not
actually be beneficial in this case. A K = 2 neighborhood
would include teams unrelated to the team that is being
predicted, so this would add noise the predictions for that
particular node. On the bottom row of Figure 3, the graph
convolution shown does not reveal the full neighborhood. It
will also include opponents of opponents. The model then
integrates that data in a convolution. It appears that this data
may be too far away or noisy to correctly influence a prediction
for the particular team-game node being classified.

VII. CONCLUSIONS AND FUTURE WORK

In GCN-WP, a single team is not modeled over time,
but instead this model learns a representation of the league
structure and use that representation to predict success of
teams in other leagues. This is both a novel and effective
technique that allows for the maximum amount of data to
be integrated for a prediction using semi-supervised learning.
This model has comparable, if not better, accuracy to other
state of the art win prediction models. Although this use case
is particularly well suited to LoL, this has applicability to other
esports, like Overwatch, Counter Strike: Global Offensive, or
even sports like Soccer or Basketball which have many leagues
in addtion to the NBA.

In this case we did not assign a particular skill value to
an individual team, like Elo or TrueSkill. This model does
not follow a particular team over time, but future work could
use a calculated skill rating as a feature to boost the model’s
performance, similar to [9]. In addition, we plan to expand
the expressiveness of this model by using a heterogeneous
(and directed) GCN model to represent the data [37]. The
idea is that if each team node and enemy node is represented
differently, the network will be able to differentiate which data
belongs to an enemy and which data belongs to a particular
team. This will enable us to use more convolutional layers
looking backwards without the risk of leakage.

REFERENCES

[1] A. Elo, The Rating of Chessplayers, Past and Present. Ishi Press
International, 1978.

[2] C. DeLong, N. Pathak, K. Erickson, E. Perrino, K. Shim, and J. Sri-
vastava, “TeamSkill: Modeling team chemistry in online multi-player
games,” Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
6635 LNAI, no. PART 2, pp. 519–531, 2011.

[3] A. J. Bisberg and R. E. Cardona-Rivera, “SCOPE: Selective Cross-
Validation over Parameters for Elo,” in Proceedings of the 15th AAAI
Conference on Artificial Intelligence and Interactive Digital Entertain-
ment, 2019.

[4] J. Boice, “How Our MLB Predictions Work,” 08
2018, https://fivethirtyeight.com/methodology/how-our-mlb-predictions-
work/. Last accessed: 2019-03-23. [Online]. Available:
https://fivethirtyeight.com/methodology/how-our-mlb-predictions-work/

[5] R. Herbrich, T. Minka, and T. Graepel, “TrueSkill™: a Bayesian skill
rating system,” in Advances in Neural Information Processing Systems,
2007, pp. 569–576.

[6] T. Minka, R. Cleven, and Y. Zaykov, “Trueskill 2: An improved bayesian
skill rating system,” Microsoft, Tech. Rep. MSR-TR-2018-8, 2018.

[7] R. Criado, E. Garcı́a, F. Pedroche, and M. Romance, “A new method
for comparing rankings through complex networks: Model and analysis
of competitiveness of major european soccer leagues,” Chaos: An
Interdisciplinary Journal of Nonlinear Science, vol. 23, no. 4, p.
043114, 2013. [Online]. Available: https://doi.org/10.1063/1.4826446

[8] M. Mora-Cantallops and M. Ángel Sicilia, “Team efficiency and
network structure: The case of professional league of legends,”
Social Networks, vol. 58, pp. 105–115, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0378873319300693

[9] Delalleau, Contal, Thibodeau-Laufer, Ferrari, Bengio, and Zhang, “Be-
yond skill rating: Advanced matchmaking in ghost recon online,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 4,
no. 3, pp. 167–177, 2012.

[10] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61–80, 2009.

[11] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 5th International Conference on Learning
Representations, ICLR 2017 - Conference Track Proceedings, pp. 1–14,
2017.

[12] M. E. Glickman, “A comprehensive guide to chess ratings,” American
Chess Journal, vol. 3, no. 1, pp. 59–102, 1995.

[13] Y. Zeng, A. Sapienza, and E. Ferrara, “The Influence of Social Ties
on Performance in Team-based Online Games,” IEEE Transactions on
Games, vol. 1502, no. c, 2019.

[14] A. Sapienza, Y. Zeng, A. Bessi, K. Lerman, E. Ferrara, U. S. C.
Information, M. Rey, and E. Ferrara, “Individual performance in team-
based online games,” 2018.

[15] Y. Gu, Q. Liu, K. Zhang, Z. Huang, R. Wu, and J. Tao, “Neuralac: Learn-
ing cooperation and competition effects for match outcome prediction,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
no. 5, 2021, pp. 4072–4080.

[16] L. Gong, X. Feng, D. Ye, H. Li, R. Wu, J. Tao, C. Fan, and P. Cui, “Opt-
match: Optimized matchmaking via modeling the high-order interactions
on the arena,” in Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2020, pp. 2300–
2310.

[17] Q. Deng, H. Li, K. Wang, Z. Hu, R. Wu, L. Gong, J. Tao, C. Fan,
and P. Cui, “Globally optimized matchmaking in online games,” in
Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, 2021, pp. 2753–2763.

[18] A. Semenov, P. Romov, S. Korolev, D. Yashkov, and K. Neklyudov,
“Performance of machine learning algorithms in predicting game out-
come from drafts in dota 2,” in International Conference on Analysis of
Images, Social Networks and Texts. Springer, 2016, pp. 26–37.

[19] K. Wang and W. Shang, “Outcome prediction of dota2 based on naı̈ve
bayes classifier,” in 2017 IEEE/ACIS 16th International Conference on
Computer and Information Science (ICIS). IEEE, 2017, pp. 591–593.

[20] N. Wang, L. Li, L. Xiao, G. Yang, and Y. Zhou, “Outcome prediction
of dota2 using machine learning methods,” in Proceedings of 2018
International Conference on Mathematics and Artificial Intelligence,
2018, pp. 61–67.

[21] Y. J. Kim, D. Engel, A. W. Woolley, J. Y.-T. Lin, N. McArthur, and T. W.
Malone, “What makes a strong team? using collective intelligence to
predict team performance in league of legends,” in Proceedings of the
2017 ACM conference on computer supported cooperative work and
social computing, 2017, pp. 2316–2329.

[22] C. Kim and S. Lee, “Predicting win-loss of league of legends using
bidirectional lstm embedding,” KIPS Transactions on Software and Data
Engineering, vol. 9, no. 2, pp. 61–68, 2020.

[23] J.-A. Hitar-Garcia, L. Moran-Fernandez, and V. Bolon-Canedo, “Ma-
chine learning methods for predicting league of legends game outcome,”
IEEE Transactions on Games, 2022.

[24] V. Hodge, S. Devlin, N. Sephton, F. Block, P. Cowling, and A. Drachen,
“Win prediction in multi-player esports: Live professional match predic-
tion,” IEEE Transactions on Games, 2019.

[25] Tim Sevenhuysen , Oracle’s Elixir. Tim Sevenhuysen , 2020. [Online].
Available: https://oracleselixir.com/tools/downloads

[26] T. Kipf, “Graph convolutional networks,” 2016,
http://tkipf.github.io/graph-convolutional-networks/.

[27] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
Comprehensive Survey on Graph Neural Networks,” IEEE Transactions
on Neural Networks and Learning Systems, vol. XX, no. Xx, pp. 1–21,
2020.

[28] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83–98,
2013.

[29] P. Veličković, A. Casanova, P. Liò, G. Cucurull, A. Romero, and
Y. Bengio, “Graph attention networks,” 6th International Conference on
Learning Representations, ICLR 2018 - Conference Track Proceedings,
pp. 1–12, 2018.

[30] A. Liaw, M. Wiener et al., “Classification and regression by randomfor-
est,” R news, vol. 2, no. 3, pp. 18–22, 2002.

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of machine learning
research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[32] J. Heaton, “An empirical analysis of feature engineering for predictive
modeling,” in SoutheastCon 2016, 2016, pp. 1–6.

[33] T. Kipf, “Graph convolutional networks,” https://github.com/tkipf/gcn,
2018.

[34] A. Bisberg and T. Kipf, “Graph convolutional networks,”
https://github.com/ajbisberg/gcn, 2022.

[35] M. Abadi et al., “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: https://www.tensorflow.org/

[36] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The journal of machine learning research, vol. 15, no. 1, pp.
1929–1958, 2014.

[37] Y. Yang, Z. Guan, J. Li, W. Zhao, J. Cui, and Q. Wang, “Interpretable
and Efficient Heterogeneous Graph Convolutional Network,” pp. 1–14,
2020.

