
Using Wordle for Learning to Design and Compare Strategies
Chao-Lin Liu

National Chengchi University, Taiwan
chaolin@g.nccu.edu.tw

Abstract—Wordle has become a very popular online game

since November 2021. We designed and evaluated several

strategies for solving Wordle in this paper. Our strategies

achieved impressive performances in realistic evaluations that

aimed to guess all of the known answers of the current Wordle.

On average, we may solve a Wordle game with about 3.67

guesses, solve a Wordle game with six or fewer guesses higher

than 98% of the time, and hit the answer with 2 or fewer guesses

more than 5% of the time. In fact, our strategies are applicable

to the word guessing games that are more general than the

current Wordle. More importantly, we present our work in

ways that our experiences may be used as classroom examples

for learning to design strategies for computer games.

Keywords—Wordle, Dordle, Quordle, heuristic search,

probabilistic reasoning, entropy, Kullback-Leibler divergence,

artificial intelligence

I. INTRODUCTION

The popularity of the word game Wordle exploded [23],

and the New York Times purchased the game in 2022 [22].

Wordle is similar to Mastermind [10][16] and Bulls and Cows

[4], but is special in that the answers are actual English words.

The main social impacts of Wordle may be in the direction

of entertainment, so we found that we may utilize the

popularity of this game to stimulate students’ interests in

designing solvers for the game from probabilistic, statistical,

and information theoretical perspectives in courses like

Introduction to Artificial Intelligence and Computational

Strategies for Games.

The goal of playing Wordle is to find the correct answer

with the least number of guesses possible. Hence, either for

entertainment or for education purposes, attempts to find a

theoretical mean for the minimum is not surprising, e.g., [17].

Some researchers are trying to study the computational

complexity of the solving games like Wordle [14][19].

For a fixed set of possible answers and for a specific

strategy for choosing the guesses, it should be possible to find

or estimate the distribution of the number of guesses needed

to hit the answers, at least computationally. In contrast,

finding the theoretical mean of the minimum appears to be a

challenging goal when the possible answers are not fixed. The

number of needed guesses should rely on both the number of

possible answers and the actual inclusion of the answers. An

experienced Wordle player will understand that finding the

correct answer from “creed”, “greed”, “breed”, and “freed”

may cost more than a couple of attempts. The distribution of

the number of guesses needed for a game similar to Wordle

without fixed answers depends on these practical factors, so

reaching a theoretical conclusion is not easy.

We may find some unofficial reports about the number of
guesses that are needed for typical people and for programs to
find the answers for Wordle. Haripriya reported the statistics
that were collected on Twitter for 241,489 games on 22
January 2022 [11]. The median and the average number of
guesses were 4 and at least 4.46, respectively, where the
researcher presumed that the human players who failed to

solve their games within six attempts would need seven
guesses.

The author had reported a systematic method for solving

the Bulls and Cows game in 2001 [13], and the method

happens to be what we call “the hard mode” for Wordle today

[15]. Playing in the hard mode sets some constraints on the

guesses that a player may use, and those constraints are not

necessarily easy for the human players to comply. Despite this

obvious drawback, we re-implemented our 2001 algorithm in

Python and for today’s Wordle game. We randomly choose

the first and a next guess when there are multiple choices that

comply the hard-mode rules. The average number of guesses

used to solve the 2315 problem instances was about 4.11 in a

sample experiment.

Building on the concept of “hard mode”, we invented 16

other strategies that consider probabilistic, statistical, and

information-theoretical factors in the search for Wordle

answers. We have found simple methods that can achieve an

average of 3.85 guesses for Wordle and a relatively more

computationally intensive method that can achieve an average

of 3.67. We would publicize our programs for public

verification along with this paper.

The most important contribution that we would like to

make is not really about whether we offer very competitive, if

not state-of-the-art, computational solutions for Wordle.

Given the limited scale of Wordle from the perspective of

computing powers of modern computers, one may even do

exhaustive search to find a best plan for the current Wordle,

e.g., [20][21]. That kind of success would not generalize and

scale if we change the parameters for a Wordle-like game (see

Section II.A for more details).

Through the discussion of our experience in designing our

methods, we hope to offer some hints to students about the

process of designing and comparing the strategies for solving

computer games, and hope that the discussion can also serve

as a model assignment for relevant courses.

We formulate a class of word games that can cover the

case of Wordle in Section II, where we also use the hard-mode

method as the baseline method to solve Wordle. In Sections

III through V, we take a probabilistic perspective for

designing strategies for Wordle, and show that a good strategy

for selecting the first guesses may improve the performance of

our programs. In Section VI, we adopt the ideas of learning

decision trees in machine learning to design strategies, and

achieved good results in the evaluation [1]. We discuss several

technical issues that we experienced in this study in Section

VII.

II. WORDLE AND THE HARD MODE

In this section, we offer a formal definition of Wordle. Our

definition is more general than the current Wordle games, and

can be used to define a family of Wordle games. We then

explain how we used the “hard mode” principle to solve

Wordle.

A. A Formal Definition of the Word Game Wordle

Let � = ��, �, �, �, 	,
� denote a word game, where

� = ��, �, ⋯ , � , ⋯ , ��, for a positive integer �, is a set of

basic symbols. � = ���, ��, ⋯ , �� , ⋯ , ��� , for a positive

integer �, is a set of words, whereas each word �� ∈ � is a

string of
 symbols ������ ⋯ ��� ⋯ ��� and each ��� is equal to

a certain � ∈ �. � is the set of possible answers for the game.

A symbol may appear more than once in a word, e.g., “error”

is a possible answer in a Wordle game, where
 = 5, �� =
� ! , for an index #, and ��� = ��$ = ��% = . The goal of the

game is to identify the answer of the game, 	 = �& ∈ �, for a

certain ' that is chosen by a player, via the shortest sequence

of guesses possible. � = �(�, (�, ⋯ , () , ⋯ , (*�, for a positive

integer +, is the set of permitted words from which a player

may use as a guess. To that end, a word in � is a string of

symbols in �, just like a word in �. For a reasonable game, �

must be a subset of � or is equal to �.

When playing the word game, a player iteratively offers a

sequence of guesses. For each guess, the player will receive a

response that indicates how well the guess matches the answer.

The player can choose her/his next guess according to the

information that s/he infers from the previous responses in

order to find 	 with the fewest number of guesses possible.

 For the Wordle game, the � of Wordle is the set of small

letters in the English alphabet, all of the words in � have five

symbols, and � is a list of 2315 different English words, i.e.,

� = 26, � = 2315 and
 = 5. � is the set of actual English

words that have exactly five letters, including some rarely

used words like “CWCTH” [9], where whether a word is

“actual” or not may depend on the implementation of the game

providers. These settings are certainly changeable to define

new games.

A game like the Wordle has a set of rules, �, for providing

feedback information about the degree of correctness of the

guesses. The current Wordle uses color codes for this purpose.

Let 	 = 0�0�0$010% and 2 = 3�3�3$313% represent the

answer and a certain guess, respectively, for a Wordle game.

(Each 0� and 3�, 4 ∈ �1,2,3,4,5�, denote a symbol in �. For the

Wordle, a symbol is an English letter.) A response 6 =
 � � $ 1 % to a guess consists of five colored squares, that can

be green, yellow, or gray. A green square 7 indicates that

37 = 07 , for 8 ∈ �1,2,3,4,5�. A yellow square 7 indicates

that 37 = 0: for a ; ≠ 8 and 8, ; ∈ �1,2,3,4,5�, on the

condition that a 0: can flag a 37 as yellow only once. A gray

square 7 indicates that 37 is not equal to any symbol in 	.

B. The Baseline Strategy: The Hard Mode

One simple way for computers to solve Wordle is using

the hard mode strategy. Assume that we have randomly

chosen a first guess, 2�, and have received the response 6�.

With this piece of information, we may reduce the size of �

with the following observation.

Principle HM: �� ∈ � cannot be the answer, if we

temporarily assume �� to be the answer, use �� to compare

with a guess 2�, and get a response that is different from 6�.

In the following discussion we will use 1, 2, and 0 to

indicate the green, yellow, and gray square, respectively in our

statements. Hence, a perfect response will be “11111”. We

will also use � as �, although that is not necessary. We will

discuss this issue in this paper.

The validness of the Principle HM can be explained with

a simple example. If “amble” is the answer, and our guess is

“apple”, then the response is “10011”. When we filter the

words in � with the Principle HM, we will know that “amuse”

must not be the answer because, if “amuse” were the answer,

we would have “10001” as the response. Hence we may

exclude “amuse” from � for the current game. In contrast,

both “amble” and “angle” remain to be candidates for the

answer.

We provide the algorithm for Strategy Hard-Mode that

employs the Principle HM for solving Wordle in Fig. 1. The

implementation is really easy, and the computation is very

efficient. Tables I and II show the statistics of two runs of

Strategy Hard-Mode on the 2315 Wordle answers. Since the

guesses were randomly selected, we could observe different

outcomes in repeated runs. Since we conduct the experiments

twice, the total number of games is 4630 in Table II, and we

solved 1830 games with four guesses. On average, we used

4.11 guesses to solve the games, and failed to find the answers

with six or fewer attempts in (60+20+1)=81 games, which is

equivalent to 1.75% “failure” rate. We considered games in

which we found the answers with one or two guesses as

“excellent”. The baseline methods performed excellently in

4.00% of the games.

III. COLLOCATION-BASED HEURISTIC

After using the Principal HM to filter �, we have used up

the logical information that the responses to the previous

guesses have offered. All of the words in the reduced � are

reasonable candidates for the answer. In the Strategy Hard-

Mode, a word in � was chosen as the next guess randomly.

We wish to invent a heuristic to choose the next guess from

Strategy Hard-Mode

Step 1. Randomly choose a �� from the initial � as the first

guess 2�, and assume that the response is 6�.
Step 2. 4 = 1

Step 3. While 6� is not perfect, do the following:

Step 3.1. Filter and reduce � with 6� based on the Principle

HM.

Step 3.2. Randomly choose the next guess 2�@� from the

reduced �, and let the response be 6�@�.

Step 3.3 4 = 4 + 1

Step 4. Record 4. If 4 > 6, report failure.

Fig. 1. The Baseline: Strategy Hard-Mode

TABLE I. Statistics for two runs of Strategy Hard-Mode

Strategy min median mean max

Hard-

Mode

1 4 4.11 9

excellent failure

4.00% 1.75%

TABLE II. Raw records for two runs of Strategy Hard-Mode

Number of guesses 1 2 3 4 5

Number of games 3 182 1099 1830 1154

Number of guesses 6 7 8 9

Number of games 281 60 20 1

the reduced � , hoping the heuristic will help us find the

answers with fewer additional guesses.

A. Motivation

Recall the game of aiming to guess a number between 1

and 10.1 The optimal strategy is using the current guess to split

the remaining candidates of the answer into two subgroups of

almost equal sizes each time. By doing so, we minimize the

depth of the search tree, and minimize the expected number of

steps needed to find the answer.

This observation also provides a motivation for

understanding the design of the binary search tree [6]. We may

inherit the ideas of binary search trees, and estimate the quality

of the groupings of the remaining answers in � of Wordle

based on the unconditional and conditional distributions of the

symbols. When we choose a guess, either the first guess or the

next guesses, we hope to minimize the depth of the search tree

so that we minimize the number of guesses to hit the answer.

B. Unconditional and Conditional Probability of Symbols

For any given � and � in a game, it is easy for us to

compute the unconditional and the conditional probabilities of

inclusion of the symbols in words.

We define the unconditional probability of a symbol � in

� for the � as the probability of the inclusion of � in the

words in �. The unconditional probability of a symbol � in �

for the � is defined analogously. Identity (1) provides an

operational definition for A B ���.

A B��� = �)�CDE FG HFEIJ KL&K ��BM)ID JN �� �
�)�CDE FG HFEIJ �� � (1)

Take A B�′8′� for example. If there are 100 words in the

current 2315 possible Wordle answers that include the letter

‘x’, then A B�′8′� = �PP
�$�%. A Wordle player may challenge this

example for repeated characters in words, e.g., “error”. In (1),

we count ‘r’ in “error” only once. It is certainly possible to

change the numerator into “the frequency of � in �” and the

denominator into “the total number of letters in �”. These are

design options.

We define the conditional probability A B�8|�� of seeing

a symbol 8 given that the symbol � is present in a word in �.

The conditional probability for � is defined analogously.

Identity (2) provides an operational definition for A B�8|��

for all symbols 8 in �, where A B�8, �� is the probability that

8 and � appear in the same word in �. A B��|�� may not be

zero if there are words in � that include more than one �, e.g.,

“error”.

A B�8|�� = RES�7,JN�
RES�JN� (2)

Given the conditional probability values for all symbols in

�, we may compute the entropy for each of these conditional

distributions TB�4�, using the identity shown in (3).

TB�4� = U A ��V|4� W!3 1
A ��V|4�

�X�

�X�
 (3)

1 http://www.learningaboutelectronics.com/Articles/Number-

guessing-game-with-PHP.php

C. Ranking the Candidates Words

The task of selecting the next word as our guess requires

us to compute a score for a candidate word in �. Recall that,

in the process of playing Wordle, the size of � decreases in

each iteration in the Strategy Hard-Mode, so the computation

of the unconditional probability, condition probability, and the

entropy is a dynamic task. In addition, the strategy to choose

the next guesses certainly can be used to choose the first guess.

Each word in a word game 2 has
 symbols. If we naively

assume that the contributions of each of these
 symbols to the

score of a candidate word are independent, we have a simple

way to estimate the score of the candidate words in 2. This

idea is expressed in identity (4).

score^��_ = U �! �^���_
�X�

�X�
 (4)

D. Maximizing the Entropy when Ranking the Candidates

From here, we have multiple ways to define �! �^���_.

Some of which are intuitively favorable, and others appear to

be less attractive. In a university course, students may be

encouraged to try and compare their actual effects.

Based on the nature of the entropy, if we prefer the � ∈ �

that has a larger TB�4�, we are favoring the � that collocates

more diversely with the symbols in �. Getting information

about such an � allows us to collect more information about

more symbols in � , therefore increasing the possibility of

leading to a shallower search tree. The score for a candidate

word can be as simple as identity (5) shows, if we continue to

choose the next guess from the current reduced � as we

explained in Section II.B.

score^��_ = U �! �^���_
�X�

�X�
= U TB^���_

�X�

�X�
 (5)

In (5), the contribution of a symbol ��� in �� is the entropy

of its collocational probability, by setting � = �#V in (2) and

(3).

It is intriguing to weigh TB^���_ by the unconditional

probability of A B^���_ when calculating �! �^���_ .

Identity (6) shows the operation for this intuitive exploration.

score^��_ = U �! �^���_
�X�

�X�
= U A B^���_TB^���_

�! �'W4`�
�X�

�X�
, (6)

where �! �'W4`� = ∑ A B^���_�X��X�

Putting the above reasoning together we would choose the

�� that has the largest score^��_ for all current candidate words.

This idea is expressed in the following identity

nextGuess��� = ��∗ = ' 3�'8�#∈��! �^�#_ (7)

Recall that our using argmax in (7) is based on intuitive

arguments. It is thus educational to switch to using argmin in

part of our evaluation process. We may examine whether or

not results of realistic experiments support our intuition. For

this purpose, one may choose to use the identity in (8).

nextGuess��� = ��∗ = ' 3�4��#∈��! �^�#_ (8)

E. Hard-Mode-Collocation and its Evaluation

We replace the steps of randomly selecting the next guess

in Strategy Hard-Mode in Fig. 1 with the steps that aim to

optimize either (7) or (8), depending on the goals of individual

experiments. Fig. 2 shows the algorithm for Strategy Hard-

Mode-Collocation.

Table III shows the summary for the experiments in which

we may use four possible different ways to choose the next

guesses. The label un-max (for unweighted-argmax), indicate

that identities (5) and (7) were used in the experiment, un-min

(for unweighted-argmin) indicates that (5) and (8) were used,

wht-max (for weighted-argmax) indicates that (6) and (7)

were used, and wht-min (for weighted-argmin) indicates that

(6) and (8) were used.

It was quite disappointing that none of these strategies

outperformed the baseline strategy at this point. We found that

Strategy Hard-Mode-Collocation tended to choose words with

repeated characters for the first and may be for the second

guesses. Words like “fuzzy”, “vivid”, and “knock” were

common.

IV. THE POLICTY ON SELECTING THE FIRST GUESSES

Gradually, we consider more heuristics to improve our

algorithms. When selecting the next guesses with (7) or (8),

we do not consider the diversity of the symbols that form the

words. Hence, it is possible that a symbol might appear more

than once in competitive candidate words. Having repeated

symbols in a guess is particularly unattractive, at least

intuitively, for the very first guess in Wordle. One possible

and common policy is to select words that do not have

repeated symbols at least for the first guess. Among the 2315

possible answers for Wordle, 1655 words do not have repeated

symbols.

We added this constraint to the Strategy Hard-Mode-

Collocation, and re-ran our experiments. Table IV shows the

results. The performances improved across the board when we

compare the corresponding items in Tables III and IV, except

that the results of using weighted-argmin improved only

partially.

It is worthwhile mentioning that the results shown in the

un-max column in Table IV are better than their corresponding

items listed in Table I. The average number of guesses needed

to find the answers was reduced, the excellent rate was

increased, and the failure rate was reduced.

The differences in the performance metrics between

unweighted-argmax and unweighted-argmin supported our

reasoning for using identities (5) and (7). The negative

impacts of replacing (7) with (8) were salient. We tried

weighted-argmax and weighted-argmin just because of

curiosity, and their performances were poorer than those of the

baseline method.

V. INFORMATION-THEORETIC APPROACHS

We also tried to apply the concept of the Kullback-Leibler

divergence between the conditional probability distribution

A B��|�� and the discrete uniform distribution that assumes

that all � are equally likely [12]. Therefore, we can carry out

a simple derivation that is provided in the Appendix A.

 Preferring an � that has a larger �! ���� in identity (9)

is tentative to favoring a conditional probability that is more

different from a uniform distribution. This � may offer more

specific information about the symbols in the answer.

�! ���� = U A ��V|4� W!3�� A ��V|4��V=�
V=1

 (9)

This might sound like a reasonable postulation for a good

guess, but the rationality is not very strong. The discussion are

analogous to the reasons (or qualitative discussions) in III.D

for comparing strategies for the selection of the next guesses.

Despite this vagueness, we replaced identity (3) in Section

III.B with (9), and named the new strategy Hard-Mode-

Collocation-KLD. The experimental results, listed in Table V,

TABLE V. Statistics for the Strategy Hard-Mode-

Collocation-KLD

Strategy min median mean max

Hard-Mode-

Collocation-KLD

1 4 3.851 10

excellent failure

5.75% 1.73%

Strategy Hard-Mode-Collocation

Step 1. Choose the �� from the initial � that optimizes

score^��_, �� ∈ �, based on the identities (7) or (8), as

the first guess 2�, and assume that the response is 6�.
Step 2. 4 = 1

Step 3. While 6� is not perfect, do the following:

Step 3.1. Filter and reduce � with 6� based on the Principle

HM.

Step 3.2. Choose the next guess 2�@� = �#∗ whose score is

optimal among the candidates in the reduced �, and

let the response be 6�@�. Again, we may use

identities (7) or (8) at this step.

Step 3.3 4 = 4 + 1

Step 4. Record 4. If 4 > 6, report failure.

Fig. 2. Strategy Hard-Mode-Collocation

TABLE IV. Statistics for Strategy Hard-Mode-Collocation

with constraints on selecting first guesses

Strategy un-max un-min wht-max wht-min

min 1 1 1 1

median 4 5 4 4

mean 3.906 4.674 4.551 4.245

max 9 9 11 9

excellent 5.36% 2.29% 3.54% 3.63%

failure 2.07% 5.57% 8.16% 1.68%

TABLE III. Statistics for Strategy Hard-Mode-Collocation

Strategy un-max un-min wht-max wht-min

min 1 1 1 1

median 4 5 5 5

mean 4.326 5.044 4.62 4.525

max 11 10 10 9

excellent 2.59% 1.47% 2.42% 2.38%

failure 4.71% 10.58% 7.65% 3.24%

are close to and better than those listed in the un-max column

in Table IV. Table VI lists the actual distribution of the

numbers of guesses that we used to solve the 2315 problems.

VI. HIGHER-LEVEL SEARCH CONSIDERATIONS

Assume that we are working on Wordle games whose

answers are 5-letter words, and that we have chosen a word ��

in � as a guess. The response must be one of the patterns listed

in Table VII. Therefore, we many consider that a guess would

lead us to cluster the words into 20 groups, and members of

each of these groups would give our guess the same response

that is specific for that group. It should be easy to understand

that if the answers for Wordle have more number of letters, it

would be time consuming to make a table like Table VII

manually, but that is doable computationally. From this

perspective, we may say that a guess will divide the current

reduced � into sub-sets.

Due to this observation, we can calculate the percentages

of the words in the sub-sets, and use the percentages as a

probability distribution to calculate the resulting entropy when

we use a guess to divide current �. Analogous to our trying

to maximizing the Information Gain when we build decision

trees in machine learning, we would prefer to minimize the

resulting entropy when we use a guess to divide the current �.
Moreover, we may employ the concept of the Kullback-

Leibler divergence to compute the scores of choosing a certain

candidate word for Wordle. The process is similar to the

development that we discussed in details in Sections III, IV,

and V. Although the process is similar, the computation

procedures are much more time consuming than using the

collocation-based information.

More specifically, let Γ = �h�, h�, ⋯ , h&, ⋯ , hC� denote

the set of all possible responses for a word game �. Table VII

shows the Γ for a Wordle game whose answers are words of

five symbols. We may conceptually divide the current � of �

into i groups, with a guess 2 as following: If �� ∈ � is a

candidate answer of � and if its response to 2 is h&, then we

put �� into the group 3�h&�. Therefore, by construction, each

word in � must belong to a certain group in Γ.

We can define a probability distribution based on the

memberships of these groups. Let �h&� be the number of

words in 3�h&�. Hence, if there are 8 words in the current �,

the following identity must hold.

U �h&�
C

&X�
= 8 (10)

Therefore, letting (�h&� = J�jk�
7 , we have the following.

U (�h&�
C

&X�
= 1 (11)

With these basic setups, we can define the resulting
entropy and Kullback-Leibler divergence in ways that are very
similar to what we reported in Section III, IV, and V, when we
choose a guess, 2, to divide the current �. We can then use the
entropy and the divergence to compare candidate guesses and
choose our next guess, to enhance the baseline Strategy Hard-
Mode and establish the Hard-Mode-Search-KLD strategy.

Tables VIII and IX lists the best results that this relatively
more complex procedure could achieve. This Hard-Mode-
Search-KLD strategy led to slightly better performance, i.e.,
the average and maximal numbers of guesses to solve the
games and the failure rates were improved. The distributions
recorded in Tables IX and VI are quite different.

Fig. 3 depict the distributions in percentages for the data

in Tables II, VI, and IX. Our introducing different methods to

choose the first guess and the next guesses for a Wordle game

paid off. Using the Hard-Mode-Collocation-KLD and the

Hard-Mode-Search-KLD strategies, we were more likely to

find the answers with three or fewer guesses, while reducing

the possibility of needing five or more guesses to solve the

TABLE VIII. Statistics for the Strategy Hard-Mode-Search-

KLD

Strategy min median mean max

Hard-Mode-

Search-KLD

1 4 3.674 8

excellent failure

5.75% 0.65%

TABLE IX. Raw records for the Strategy Hard-Mode-

Search-KLD

Number of guesses 1 2 3 4 5

Number of games 1 132 866 1015 241

Number of guesses 6 7 8

Number of games 45 12 3

TABLE VII. Possible Responses of Wordle

(5-letter words)

ID
number of

green squares

number of

yellow squares

number of

gray squares

1 5 0 0

2 4 0 1

3 3 2 0

4 3 1 1

5 3 0 2

6 2 3 0

7 2 2 1

8 2 1 2

9 2 0 3

10 1 4 0

11 1 3 1

12 1 2 2

13 1 1 3

14 1 0 4

15 0 5 0

16 0 4 1

17 0 3 2

18 0 2 3

19 0 1 4

20 0 0 5

TABLE VI. Raw records for the Strategy Hard-Mode-

Collocation-KLD

Number of guesses 1 2 3 4 5

Number of games 1 132 1099 910 355

Number of guesses 6 7 8 9 10

Number of games 103 29 7 3 1

games. The proportion of excellent games increased, and the

proportion of failed games decreased.

VII. DISCUSSION

We have used the Hard-Mode Strategy as the baseline. The
strategy performs pretty well in practice, c.f. Tables I and II.
We have found and Peattle also discussed that this strategy
may not work well for some special cases [17].

Assume that the answer is “freed”, that we have guessed
“creed”, and that we got the response of [gray, green, green,
green, green]. In this case, if playing in the Hard Mode, we
may have to try “greed” and “breed” before we can find the
correct answer. An even more challenging group of words
include “goner”, “cover”, “wooer”, “homer”, “poker”, and
“foyer”. Allowing not to abide by the hard-mode rules
sometimes will help. Not confining to using � for � might
help. It may not be easy to find an answer in the group “wight”,
“fight”, “sight”, “tight”, “right”, “night”, “light”, and “eight”
with no more than six attempts under the hard-mode rules.

For simplifying our discussion, we have used � as �. In
practice, there are a lot more words in � than in �, at least in
the current Wordle. It is easy to find good resources about
English words that have five letters online, e.g., [5]. Using �

as � is not a required trick for our programs. On one hand,
using words in � as our guesses gave us some chances to
directly find the answers luckily. On the other hand, we also
wonder whether using a word in � will provide more
information than using any other words in �.

We have mentioned that we consider that a main
contribution of this paper is to provide the experience in
developing strategies for solving a class of word games. The
word game � as we defined in Section II.A is flexible, and
one may change the parameters as long as one wish. Changing
the parameters offers a different direction for changing the
original Wordle than Dordle [8] and Quordle [18] did.

For instance, the words for answers may not have to be
English words, and it is possible for one to define games that
include more symbols than the English alphabet in � . A
simple change is to make the answers case sensitive. After that,
we may enhance � of � to add more color codes to indicate
that a letter in a guess is almost correct except that it is at a
wrong position or it is using a different case. In fact, we are
using these variations in our classes.

We hope that the examples of our designing and choosing
the heuristics to guide the selection of next guesses may be

used as seed examples of designing and comparing strategies
for computer games.

Given the basic building blocks that we presented in
previous sections, we could create and evaluate 16 strategies,
and compare their performances with the Hard-Mode baseline.
We summarize the observations in Appendix B.

We evaluated our methods with a single Wordle so far.
One may apply our methods to solve Dordle and Quordle in
which a plyer needs to solve more than one Wordle at a time.
If each of these Wordle games are independent, then our
methods should be directly applicable. If individual Wordle
games are dependent, it should be possible to enhance our
current design to handle the extra constraints.

For this conference paper, we did not report the actual
costs of the computation. It took a much longer time to use the
KLD to guide the selection of the next guesses. Calculating
the conditional probability values are easy, and implementing
the Hard-Mode principle is really easy.

There are several technical reports about solving Wordle
on the arXiv. That should not be surprising for Wordle’s
extreme popularity. Anderson and Meyer [2] and de Silva[7]
offered ideas of using the symbol probabilities. Bonthron [3]
consider methods and situations for the needs to rank the
candidate answers approximately, perhaps when the size of �
in � is infinite [10]. We and these authors provide
information for future students to consider in their attempts to
solve the Wordle-like games.

VIII. CONCLUDING REMARKS

We have proposed a few strategies for solving a special
class of word games, and used the typical Wordle games as
the example problems. Our methods can adapt to different
games. Results of realistic evaluation indicate that we have
achieved competitive performances for the current Wordle. In
addition to providing clues for solving Wordle, we are more
interested in hoping that the process of inventing and
evaluating candidate strategies could serve as classroom
examples for courses on learning to design strategies for
computer games.

ACKNOWLEDGMENT

This work was funded in part by the MOST-110-2221-E-
004-008-MY3 project of the Ministry of Science and
Technology of Taiwan and in part by the 111H124D-13
project of the National Chengchi University in Taiwan.

Fig. 3. Distributions of the percentages of numbers of guesses used to solve the 2315 Wordle games

REFERENCES

[1] E. Alpaydin, Introduction to Machine Learning, fourth edition, MIT
Press, 2020.

[2] B. J. Anderson and J. G. Meyer, “Finding the optimal human strategy
for Wordle using maximum correct letter probability and reinforcement
learning,” arXiv:2202.00557, 2022.

[3] M. Bonthron, “Rank one approximation as a strategy for Wordle,”
arXiv: 2204.06324, 2022.

[4] Bulls and Cows: https://en.wikipedia.org/wiki/Bulls_and_Cows

[5] CMUDict: https://pypi.org/project/cmudict/

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, chapter 12, the third edition, MIT Press, 2009.

[7] N. de Silva, “Selecting seed words for wordle using character statistics,”
arXiv:2202.03457, 2022.

[8] Dordle: https://zaratustra.itch.io/dordle

[9] GAMERANT, https://gamerant.com/wordle-words-with-no-vowels/

[10] J. D. Hamkins, “Infinite Wordle and the Mastermind numbers,”
arXiv:2203.06804, 2022.

[11] Haripriya, “What are the average number of guesses in Wordle?,”
https://nerdschalk.com/what-are-the-average-number-of-guesses-in-
wordle/

[12] S. Kullback and R.A. Leibler, “On information and sufficiency,”
Annals of Mathematical Statistics, 22 (1): 79–86, 1951.

[13] C.-L. Liu. “Mathematics, computer science, and number games” (數
學、資訊科學與數字遊戲), Science Monthly (科學月刊) 32(3), 250‒
255, 2001. (in Chinese)

[14] D. Lokshtanov and B. Subercaseaux, “Wordle is NP-HARD,” arXiv:
2203.16173, 2022.

[15] L. Loofbourow and M. Martinelli, “Should you be playing Wordle on
“Hard Mode”?,” SLATE, https://slate.com/culture/2022/02/wordle-
game-nyt-original-vs-hard-mode.html

[16] Mastermind: https://en.wikipedia.org/wiki/Mastermind_(board_game)

[17] A. Peattle, “Establishing the minimum number of guesses needed to
(always) win Wordle,” personal blog,
https://alexpeattie.com/blog/establishing-minimum-guesses-wordle/

[18] Quordle: https://www.quordle.com/#/

[19] W. Rosenbaum, “Finding a winning strategy for Wordle is NP-
complete,” arXiv:2204.04104, 2022.

[20] A. Selby, “The best strategies for Wordle,”

http://sonorouschocolate.com/notes/index.php?title=The_best_strategi

es_for_Wordle

[21] M. B. Short, “Winning Wordle wisely or how to ruin a fun little

Internate game with math,” arXiv:2202.02148, 2022.

[22] M. Tracy, “The New York Times buys Wordle,” New York Times, 31
Jan 2022, https://www.nytimes.com/2022/01/31/business/media/new-
york-times-wordle.html

[23] Wordle: https://en.wikipedia.org/wiki/Wordle

APPENDIX A

In the following derivation, l denote a uniform distribution that

we want to compare with the conditional probability distribution

A B��|��, for a specific �. Since � can be any symbol in �, we

need a uniform random variable that could take the value of

any state among |�| states. Since � = ��, �, ⋯ , � , ⋯ , ��, we

have |�| = �.

�! ���� = mnoB�A B��|�� ‖l�

= U A B��|�� W!3 A B��|��
q 1

|�|r

�X�

�X�

= U A B��|�� W!3�� A B��|���
�X�

�X�

APPENDIX B

We have evaluated 17 different strategies to solve the 2315
Wordle problems. The Hard-Mode strategy is the baseline,
and there are two families of strategies. The “p” family uses
strategies that were based on the probabilistic ideas that were
discussed in Sections III and V. The “i” family uses strategies
that were mentioned in Section VI. As we have suggested, one
may derive different strategies based on the fundamental ideas.
The “i” and “p” families of strategies were denoted by “i” and
“p” that were followed by a digit, respectively.

Table B1 lists the statistics of their performances,
including the minimum, median, average, and the maximum
of the numbers of guesses. The excellency column shows the
percentages of a strategy using only one or two guesses to
solve the 2315 problems. The failure column shows the
percentages of a strategy using seven or more guesses to solve
the 2315 problems.

Figure B1 depicts the distributions of the numbers of
guesses that were used by different strategies. We show the
strategies at the bottom. We show the number of needed
guesses on the horizontal axis, and the frequencies of the
number of needed guesses on the vertical axis.

Table B1. Basic statistics

strategy min median mean maximum excellency failure

hard-mode 1 4 4.078 10 4.67% 1.77%

i1 1 6 5.651 11 1.47% 28.51%

i2 1 4 4.117 9 2.59% 1.34%

i3 1 4 4.475 10 2.59% 5.49%

i4 1 4 3.674 8 5.75% 0.65%

i5 1 5 4.926 10 2.29% 11.27%

i6 1 4 3.750 9 5.75% 0.52%

i7 1 4 4.205 9 3.20% 2.98%

i8 1 4 3.674 8 5.75% 0.65%

p1 1 4 4.263 10 2.72% 2.76%

p2 1 4 4.301 10 2.72% 3.11%

p3 1 5 4.525 9 2.38% 3.24%

p4 1 5 4.583 9 2.38% 3.41%

p5 1 4 3.851 10 5.75% 1.73%

p6 1 4 3.848 10 5.75% 1.56%

p7 1 4 4.245 9 3.63% 1.68%

p8 1 4 4.236 9 3.63% 1.47%

Figure B1. Distributions of the numbers of guesses that were used by different strategies to solve the 2315 problems

