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Abstract—Wordle has become a very popular online game 

since November 2021. We designed and evaluated several 

strategies for solving Wordle in this paper. Our strategies 

achieved impressive performances in realistic evaluations that 

aimed to guess all of the known answers of the current Wordle. 

On average, we may solve a Wordle game with about 3.67 

guesses, solve a Wordle game with six or fewer guesses higher 

than 98% of the time, and hit the answer with 2 or fewer guesses 

more than 5% of the time. In fact, our strategies are applicable 

to the word guessing games that are more general than the 

current Wordle. More importantly, we present our work in 

ways that our experiences may be used as classroom examples 

for learning to design strategies for computer games. 
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I. INTRODUCTION 

The popularity of the word game Wordle exploded [23], 

and the New York Times purchased the game in 2022 [22].  

Wordle is similar to Mastermind [10][16] and Bulls and Cows 

[4], but is special in that the answers are actual English words.   

The main social impacts of Wordle may be in the direction 

of entertainment, so we found that we may utilize the 

popularity of this game to stimulate students’ interests in 

designing solvers for the game from probabilistic, statistical, 

and information theoretical perspectives in courses like 

Introduction to Artificial Intelligence and Computational 

Strategies for Games.  

The goal of playing Wordle is to find the correct answer 

with the least number of guesses possible. Hence, either for 

entertainment or for education purposes, attempts to find a 

theoretical mean for the minimum is not surprising, e.g., [17]. 

Some researchers are trying to study the computational 

complexity of the solving games like Wordle [14][19]. 

For a fixed set of possible answers and for a specific 

strategy for choosing the guesses, it should be possible to find 

or estimate the distribution of the number of guesses needed 

to hit the answers, at least computationally. In contrast, 

finding the theoretical mean of the minimum appears to be a 

challenging goal when the possible answers are not fixed. The 

number of needed guesses should rely on both the number of 

possible answers and the actual inclusion of the answers. An 

experienced Wordle player will understand that finding the 

correct answer from “creed”, “greed”, “breed”, and “freed” 

may cost more than a couple of attempts. The distribution of 

the number of guesses needed for a game similar to Wordle 

without fixed answers depends on these practical factors, so 

reaching a theoretical conclusion is not easy. 

We may find some unofficial reports about the number of 
guesses that are needed for typical people and for programs to 
find the answers for Wordle. Haripriya reported the statistics 
that were collected on Twitter for 241,489 games on 22 
January 2022 [11]. The median and the average number of 
guesses were 4 and at least 4.46, respectively, where the 
researcher presumed that the human players who failed to 

solve their games within six attempts would need seven 
guesses. 

The author had reported a systematic method for solving 

the Bulls and Cows game in 2001 [13], and the method 

happens to be what we call “the hard mode” for Wordle today 

[15]. Playing in the hard mode sets some constraints on the 

guesses that a player may use, and those constraints are not 

necessarily easy for the human players to comply. Despite this 

obvious drawback, we re-implemented our 2001 algorithm in 

Python and for today’s Wordle game. We randomly choose 

the first and a next guess when there are multiple choices that 

comply the hard-mode rules. The average number of guesses 

used to solve the 2315 problem instances was about 4.11 in a 

sample experiment.  

Building on the concept of “hard mode”, we invented 16 

other strategies that consider probabilistic, statistical, and 

information-theoretical factors in the search for Wordle 

answers. We have found simple methods that can achieve an 

average of 3.85 guesses for Wordle and a relatively more 

computationally intensive method that can achieve an average 

of 3.67. We would publicize our programs for public 

verification along with this paper. 

The most important contribution that we would like to 

make is not really about whether we offer very competitive, if 

not state-of-the-art, computational solutions for Wordle. 

Given the limited scale of Wordle from the perspective of 

computing powers of modern computers, one may even do 

exhaustive search to find a best plan for the current Wordle, 

e.g., [20][21]. That kind of success would not generalize and 

scale if we change the parameters for a Wordle-like game (see 

Section II.A for more details).  

Through the discussion of our experience in designing our 

methods, we hope to offer some hints to students about the 

process of designing and comparing the strategies for solving 

computer games, and hope that the discussion can also serve 

as a model assignment for relevant courses.   

We formulate a class of word games that can cover the 

case of Wordle in Section II, where we also use the hard-mode 

method as the baseline method to solve Wordle. In Sections 

III through V, we take a probabilistic perspective for 

designing strategies for Wordle, and show that a good strategy 

for selecting the first guesses may improve the performance of 

our programs. In Section VI, we adopt the ideas of learning 

decision trees in machine learning to design strategies, and 

achieved good results in the evaluation [1]. We discuss several 

technical issues that we experienced in this study in Section 

VII.   

II. WORDLE AND THE HARD MODE 

In this section, we offer a formal definition of Wordle. Our 

definition is more general than the current Wordle games, and 

can be used to define a family of Wordle games. We then 

explain how we used the “hard mode” principle to solve 

Wordle. 



A. A Formal Definition of the Word Game Wordle 

Let � = ��, �, �, �, 	, 
�  denote a word game, where 

� = ��, �, ⋯ , � , ⋯ , ��, for a positive integer �, is a set of 

basic symbols. � = ���, ��, ⋯ , �� , ⋯ , ��� , for a positive 

integer �, is a set of words, whereas each word �� ∈ � is a 

string of 
 symbols ������ ⋯ ��� ⋯ ��� and each ��� is equal to 

a certain � ∈ �. � is the set of possible answers for the game. 

A symbol may appear more than once in a word, e.g., “error” 

is a possible answer in a Wordle game, where 
 = 5,  �� =
�  ! , for an index #, and ��� = ��$ = ��% =  . The goal of the 

game is to identify the answer of the game, 	 = �& ∈ �, for a 

certain ' that is chosen by a player, via the shortest sequence 

of guesses possible. � = �(�, (�, ⋯ , () , ⋯ , (*�, for a positive 

integer +, is the set of permitted words from which a player 

may use as a guess. To that end, a word in � is a string of 
 

symbols in �, just like a word in �. For a reasonable game, � 

must be a subset of � or is equal to �. 

When playing the word game, a player iteratively offers a 

sequence of guesses. For each guess, the player will receive a 

response that indicates how well the guess matches the answer. 

The player can choose her/his next guess according to the 

information that s/he infers from the previous responses in 

order to find 	 with the fewest number of guesses possible. 

 For the Wordle game, the � of Wordle is the set of small 

letters in the English alphabet, all of the words in � have five 

symbols, and � is a list of 2315 different English words, i.e., 

� = 26, � = 2315 and 
 = 5. � is the set of actual English 

words that have exactly five letters, including some rarely 

used words like “CWCTH” [9], where whether a word is 

“actual” or not may depend on the implementation of the game 

providers. These settings are certainly changeable to define 

new games. 

A game like the Wordle has a set of rules, �, for providing 

feedback information about the degree of correctness of the 

guesses. The current Wordle uses color codes for this purpose. 

Let  	 = 0�0�0$010%  and 2 = 3�3�3$313%  represent the 

answer and a certain guess, respectively, for a Wordle game. 

(Each 0� and 3�, 4 ∈ �1,2,3,4,5�, denote a symbol in �. For the 

Wordle, a symbol is an English letter.) A response 6 =
 � � $ 1 % to a guess consists of five colored squares, that can 

be green, yellow, or gray. A green square  7  indicates that 

37 = 07 , for 8 ∈ �1,2,3,4,5�.  A yellow square  7  indicates 

that 37 = 0:  for a ; ≠ 8 and 8, ; ∈ �1,2,3,4,5�, on the 

condition that a 0: can flag a 37 as yellow only once. A gray 

square  7 indicates that 37 is not equal to any symbol in 	.  

B. The Baseline Strategy: The Hard Mode 

One simple way for computers to solve Wordle is using 

the hard mode strategy. Assume that we have randomly 

chosen a first guess, 2�, and have received the response 6�. 

With this piece of information, we may reduce the size of � 

with the following observation. 

Principle HM: �� ∈  �  cannot be the answer, if we 

temporarily assume ��  to be the answer, use ��  to compare 

with a guess 2�, and get a response that is different from 6�. 

In the following discussion we will use 1, 2, and 0 to 

indicate the green, yellow, and gray square, respectively in our 

statements. Hence, a perfect response will be “11111”. We 

will also use � as �, although that is not necessary.  We will 

discuss this issue in this paper.  

The validness of the Principle HM can be explained with 

a simple example. If “amble” is the answer, and our guess is 

“apple”, then the response is “10011”. When we filter the 

words in � with the Principle HM, we will know that “amuse” 

must not be the answer because, if “amuse” were the answer, 

we would have “10001” as the response. Hence we may 

exclude “amuse” from � for the current game. In contrast, 

both “amble” and “angle” remain to be candidates for the 

answer. 

We provide the algorithm for Strategy Hard-Mode that 

employs the Principle HM for solving Wordle in Fig. 1. The 

implementation is really easy, and the computation is very 

efficient. Tables I and II show the statistics of two runs of 

Strategy Hard-Mode on the 2315 Wordle answers. Since the 

guesses were randomly selected, we could observe different 

outcomes in repeated runs. Since we conduct the experiments 

twice, the total number of games is 4630 in Table II, and we 

solved 1830 games with four guesses. On average, we used 

4.11 guesses to solve the games, and failed to find the answers 

with six or fewer attempts in (60+20+1)=81 games, which is 

equivalent to 1.75% “failure” rate. We considered games in 

which we found the answers with one or two guesses as 

“excellent”. The baseline methods performed excellently in 

4.00% of the games.  

III. COLLOCATION-BASED HEURISTIC 

After using the Principal HM to filter �, we have used up 

the logical information that the responses to the previous 

guesses have offered. All of the words in the reduced � are 

reasonable candidates for the answer. In the Strategy Hard-

Mode, a word in � was chosen as the next guess randomly. 

We wish to invent a heuristic to choose the next guess from 

Strategy Hard-Mode 

Step 1. Randomly choose a �� from the initial � as the first 

guess 2�, and assume that the response is 6�. 
Step 2. 4 = 1 

Step 3. While 6� is not perfect, do the following: 

Step 3.1.    Filter and reduce � with 6� based on the Principle 

HM. 

Step 3.2.    Randomly choose the next guess 2�@� from the 

reduced �, and let the response be 6�@�. 

Step 3.3     4 = 4 + 1 

Step 4. Record 4. If 4 > 6, report failure. 

Fig. 1. The Baseline: Strategy Hard-Mode 

TABLE I. Statistics for two runs of Strategy Hard-Mode 

Strategy min median mean max  

Hard-

Mode 

1 4 4.11 9 

excellent failure   

4.00% 1.75%   

TABLE II. Raw records for two runs of Strategy Hard-Mode 

Number of guesses 1 2 3 4 5 

Number of games 3 182 1099 1830 1154 

Number of guesses 6 7 8 9  

Number of games 281 60 20 1  

 



the reduced � , hoping the heuristic will help us find the 

answers with fewer additional guesses. 

A. Motivation 

Recall the game of aiming to guess a number between 1 

and 10.1 The optimal strategy is using the current guess to split 

the remaining candidates of the answer into two subgroups of 

almost equal sizes each time. By doing so, we minimize the 

depth of the search tree, and minimize the expected number of 

steps needed to find the answer. 

This observation also provides a motivation for 

understanding the design of the binary search tree [6]. We may 

inherit the ideas of binary search trees, and estimate the quality 

of the groupings of the remaining answers in � of Wordle 

based on the unconditional and conditional distributions of the 

symbols. When we choose a guess, either the first guess or the 

next guesses, we hope to minimize the depth of the search tree 

so that we minimize the number of guesses to hit the answer. 

B. Unconditional and Conditional Probability of Symbols 

For any given �  and �  in a game, it is easy for us to 

compute the unconditional and the conditional probabilities of 

inclusion of the symbols in words.  

We define the unconditional probability of a symbol � in 

�  for the �  as the probability of the inclusion of �  in the 

words in �. The unconditional probability of a symbol  � in � 

for the �  is defined analogously. Identity (1) provides an 

operational definition for A B  ���. 

A B��� = �)�CDE FG HFEIJ KL&K ��BM)ID JN �� �
�)�CDE FG HFEIJ �� �        (1) 

Take A B�′8′� for example. If there are 100 words in the 

current 2315 possible Wordle answers that include the letter 

‘x’, then  A B�′8′� = �PP
�$�%. A Wordle player may challenge this 

example for repeated characters in words, e.g., “error”. In (1), 

we count ‘r’ in “error” only once. It is certainly possible to 

change the numerator into “the frequency of � in �” and the 

denominator into “the total number of letters in �”. These are 

design options. 

We define the conditional probability A B�8|�� of seeing 

a symbol 8 given that the symbol � is present in a word in �. 

The conditional probability for �  is defined analogously. 

Identity (2) provides an operational definition for A B�8|�� 

for all symbols 8 in �, where A B�8, �� is the probability that 

8 and � appear in the same word in �. A B��|�� may not be 

zero if there are words in � that include more than one �, e.g., 

“error”.  

A B�8|�� = RES�7,JN�
RES�JN�                              (2) 

Given the conditional probability values for all symbols in 

�, we may compute the entropy for each of these conditional 

distributions TB�4�, using the identity shown in (3). 

TB�4� = U A ��V|4� W!3 1
A ��V|4�

�X�

�X�
 (3) 

                                                           
1 http://www.learningaboutelectronics.com/Articles/Number-

guessing-game-with-PHP.php 

C. Ranking the Candidates Words 

The task of selecting the next word as our guess requires 

us to compute a score for a candidate word in �. Recall that, 

in the process of playing Wordle, the size of � decreases in 

each iteration in the Strategy Hard-Mode, so the computation 

of the unconditional probability, condition probability, and the 

entropy is a dynamic task. In addition, the strategy to choose 

the next guesses certainly can be used to choose the first guess. 

Each word in a word game 2 has 
 symbols. If we naively 

assume that the contributions of each of these 
 symbols to the 

score of a candidate word are independent, we have a simple 

way to estimate the score of the candidate words in 2. This 

idea is expressed in identity (4). 

score^��_ = U �! �^���_
�X�

�X�
 (4) 

D. Maximizing the Entropy when Ranking the Candidates 

From here, we have multiple ways to define �! �^���_. 

Some of which are intuitively favorable, and others appear to 

be less attractive. In a university course, students may be 

encouraged to try and compare their actual effects.  

Based on the nature of the entropy, if we prefer the � ∈ � 

that has a larger TB�4�, we are favoring the � that collocates 

more diversely with the symbols in �. Getting information 

about such an � allows us to collect more information about 

more symbols in � , therefore increasing the possibility of 

leading to a shallower search tree. The score for a candidate 

word can be as simple as identity (5) shows, if we continue to 

choose the next guess from the current reduced �  as we 

explained in Section II.B.   

score^��_ = U �! �^���_
�X�

�X�
= U TB^���_

�X�

�X�
 (5) 

In (5), the contribution of a symbol ��� in �� is the entropy 

of its collocational probability, by setting � = �#V in (2) and 

(3).  

It is intriguing to weigh TB^���_  by the unconditional 

probability of  A B^���_  when calculating �! �^���_ . 

Identity (6) shows the operation for this intuitive exploration. 

score^��_ = U �! �^���_
�X�

�X�
= U A B^���_TB^���_

�! �'W4`� 
�X�

�X�
, (6) 

where �! �'W4`� = ∑ A B^���_�X��X�  

Putting the above reasoning together we would choose the 

��  that has the largest score^��_ for all current candidate words. 

This idea is expressed in the following identity 

nextGuess��� = ��∗ =  ' 3�'8�#∈��! �^�#_      (7) 

Recall that our using argmax in (7) is based on intuitive 

arguments. It is thus educational to switch to using argmin in 

part of our evaluation process. We may examine whether or 



not results of realistic experiments support our intuition. For 

this purpose, one may choose to use the identity in (8).  

nextGuess��� = ��∗ =  ' 3�4��#∈��! �^�#_      (8) 

E. Hard-Mode-Collocation and its Evaluation 

We replace the steps of randomly selecting the next guess 

in Strategy Hard-Mode in Fig. 1 with the steps that aim to 

optimize either (7) or (8), depending on the goals of individual 

experiments. Fig. 2 shows the algorithm for Strategy Hard-

Mode-Collocation.  

Table III shows the summary for the experiments in which 

we may use four possible different ways to choose the next 

guesses. The label un-max (for unweighted-argmax), indicate 

that identities (5) and (7) were used in the experiment,  un-min 

(for unweighted-argmin) indicates that (5) and (8) were used, 

wht-max (for weighted-argmax) indicates that (6) and (7) 

were used, and wht-min (for weighted-argmin) indicates that 

(6) and (8) were used.   

It was quite disappointing that none of these strategies 

outperformed the baseline strategy at this point. We found that 

Strategy Hard-Mode-Collocation tended to choose words with 

repeated characters for the first and may be for the second 

guesses. Words like “fuzzy”, “vivid”, and “knock” were 

common.  

IV. THE POLICTY ON SELECTING THE FIRST GUESSES  

Gradually, we consider more heuristics to improve our 

algorithms. When selecting the next guesses with (7) or (8), 

we do not consider the diversity of the symbols that form the 

words. Hence, it is possible that a symbol might appear more 

than once in competitive candidate words. Having repeated 

symbols in a guess is particularly unattractive, at least 

intuitively, for the very first guess in Wordle. One possible 

and common policy is to select words that do not have 

repeated symbols at least for the first guess. Among the 2315 

possible answers for Wordle, 1655 words do not have repeated 

symbols.  

We added this constraint to the Strategy Hard-Mode-

Collocation, and re-ran our experiments. Table IV shows the 

results. The performances improved across the board when we 

compare the corresponding items in Tables III and IV, except 

that the results of using weighted-argmin improved only 

partially.  

It is worthwhile mentioning that the results shown in the 

un-max column in Table IV are better than their corresponding 

items listed in Table I. The average number of guesses needed 

to find the answers was reduced, the excellent rate was 

increased, and the failure rate was reduced.  

The differences in the performance metrics between 

unweighted-argmax and unweighted-argmin supported our 

reasoning for using identities (5) and (7). The negative 

impacts of replacing (7) with (8) were salient. We tried 

weighted-argmax and weighted-argmin just because of 

curiosity, and their performances were poorer than those of the 

baseline method.  

V. INFORMATION-THEORETIC APPROACHS 

We also tried to apply the concept of the Kullback-Leibler 

divergence between the conditional probability distribution 

A B��|�� and the discrete uniform distribution that assumes 

that all � are equally likely [12].  Therefore, we can carry out 

a simple derivation that is provided in the Appendix A. 

 Preferring an � that has a  larger �! ���� in identity (9) 

is tentative to favoring a conditional probability that is more 

different from a uniform distribution. This �  may offer more 

specific information about the symbols in the answer. 

�! ���� = U A ��V|4� W!3�� A ��V|4��V=�
V=1

 (9) 

This might sound like a reasonable postulation for a good 

guess, but the rationality is not very strong. The discussion are 

analogous to the reasons (or qualitative discussions) in III.D 

for comparing strategies for the selection of the next guesses. 

Despite this vagueness, we replaced identity (3) in Section 

III.B with (9), and named the new strategy  Hard-Mode-

Collocation-KLD. The experimental results, listed in Table V, 

TABLE V. Statistics for the Strategy Hard-Mode-

Collocation-KLD 

Strategy min median mean max  

Hard-Mode-

Collocation-KLD 

1 4 3.851 10 

excellent failure   

5.75% 1.73%   

 

Strategy Hard-Mode-Collocation 

Step 1. Choose the �� from the initial � that optimizes 

score^��_, �� ∈  �, based on the identities (7) or (8), as 

the first guess 2�, and assume that the response is 6�. 
Step 2. 4 = 1 

Step 3. While 6� is not perfect, do the following: 

Step 3.1.    Filter and reduce � with 6� based on the Principle 

HM. 

Step 3.2.    Choose the next guess 2�@� = �#∗ whose score is 

optimal among the candidates in the reduced �, and 

let the response be 6�@�. Again, we may use 

identities (7) or (8) at this step. 

Step 3.3     4 = 4 + 1 

Step 4. Record 4. If 4 > 6, report failure. 

Fig. 2. Strategy Hard-Mode-Collocation 

TABLE IV. Statistics for Strategy Hard-Mode-Collocation 

with constraints on selecting first guesses 

Strategy un-max un-min wht-max wht-min 

min 1 1 1 1 

median 4 5 4 4 

mean 3.906 4.674 4.551 4.245 

max 9 9 11 9 

excellent 5.36% 2.29% 3.54% 3.63% 

failure 2.07% 5.57% 8.16% 1.68% 

 

TABLE III. Statistics for Strategy Hard-Mode-Collocation 

Strategy un-max un-min wht-max wht-min 

min 1 1 1 1 

median 4 5 5 5 

mean 4.326 5.044 4.62 4.525 

max 11 10 10 9 

excellent 2.59% 1.47% 2.42% 2.38% 

failure 4.71% 10.58% 7.65% 3.24% 

 



are close to and better than those listed in the un-max column 

in Table IV. Table VI lists the actual distribution of the 

numbers of guesses that we used to solve the 2315 problems.  

VI. HIGHER-LEVEL SEARCH CONSIDERATIONS 

Assume that we are working on Wordle games whose 

answers are 5-letter words, and that we have chosen a word �� 

in � as a guess. The response must be one of the patterns listed 

in Table VII. Therefore, we many consider that a guess would 

lead us to cluster the words into 20 groups,  and members of 

each of these groups would give our guess the same response 

that is specific for that group. It should be easy to understand 

that if the answers for Wordle have more number of letters, it 

would be time consuming to make a table like Table VII 

manually, but that is doable computationally. From this 

perspective, we may say that a guess will divide the current 

reduced � into sub-sets. 

Due to this observation, we can calculate the percentages 

of the words in the sub-sets, and use the percentages as a 

probability distribution to calculate the resulting entropy when 

we use a guess to divide current �.  Analogous to our trying 

to maximizing the Information Gain when we build decision 

trees in machine learning, we would prefer to minimize the 

resulting entropy when we use a guess to divide the current �. 
Moreover, we may employ the concept of the Kullback-

Leibler divergence to compute the scores of choosing a certain 

candidate word for Wordle. The process is similar to the 

development that we discussed in details in Sections III, IV, 

and V. Although the process is similar, the computation 

procedures are much more time consuming than using the 

collocation-based information.  

More specifically, let Γ = �h�, h�, ⋯ , h&, ⋯ , hC�  denote 

the set of all possible responses for a word game �. Table VII 

shows the Γ for a Wordle game whose answers are words of 

five symbols. We may conceptually divide the current � of � 

into i  groups, with a guess 2  as following: If �� ∈ �  is a 

candidate answer of � and if its response to 2 is h&, then we 

put �� into the group 3�h&�. Therefore, by construction, each 

word in � must belong to a certain group in Γ.  

We can define a probability distribution based on the 

memberships of these groups. Let �h&�  be the number of 

words in 3�h&�. Hence, if there are 8 words in the current �, 

the following identity must hold. 

U �h&�
C

&X�
= 8 (10) 

Therefore, letting (�h&� = J�jk�
7 , we have the following. 

U (�h&�
C

&X�
= 1 (11) 

With these basic setups, we can define the resulting 
entropy and Kullback-Leibler divergence in ways that are very 
similar to what we reported in Section III, IV, and V, when we 
choose a guess, 2, to divide the current �. We can then use the 
entropy and the divergence to compare candidate guesses and 
choose our next guess, to enhance the baseline Strategy Hard-
Mode and establish the Hard-Mode-Search-KLD strategy. 

Tables VIII and IX lists the best results that this relatively 
more complex procedure could achieve.  This Hard-Mode-
Search-KLD strategy led to slightly better performance, i.e., 
the average and maximal numbers of guesses to solve the 
games and the failure rates were improved. The distributions 
recorded in Tables IX and VI are quite different.  

Fig. 3 depict the distributions in percentages for the data 

in Tables II, VI, and IX. Our introducing different methods to 

choose the first guess and the next guesses for a Wordle game 

paid off. Using the Hard-Mode-Collocation-KLD and the 

Hard-Mode-Search-KLD strategies, we were more likely to 

find the answers with three or fewer guesses, while reducing 

the possibility of needing five or more guesses to solve the 

TABLE VIII. Statistics for the Strategy Hard-Mode-Search-

KLD 

Strategy min median mean max 

Hard-Mode-

Search-KLD 

1 4 3.674 8 

excellent failure   

5.75% 0.65%   

TABLE IX. Raw records for the Strategy Hard-Mode-

Search-KLD 

Number of guesses 1 2 3 4 5 

Number of games 1 132 866 1015 241 

Number of guesses 6 7 8   

Number of games 45 12 3   

 

TABLE VII. Possible Responses of Wordle  

(5-letter words) 

ID 
number of 

green squares 

number of 

yellow squares 

number of 

gray squares 

1 5 0 0 

2 4 0 1 

3 3 2 0 

4 3 1 1 

5 3 0 2 

6 2 3 0 

7 2 2 1 

8 2 1 2 

9 2 0 3 

10 1 4 0 

11 1 3 1 

12 1 2 2 

13 1 1 3 

14 1 0 4 

15 0 5 0 

16 0 4 1 

17 0 3 2 

18 0 2 3 

19 0 1 4 

20 0 0 5 

 

TABLE VI. Raw records for the Strategy Hard-Mode-

Collocation-KLD 

Number of guesses 1 2 3 4 5 

Number of games 1 132 1099 910 355 

Number of guesses 6 7 8 9 10 

Number of games 103 29 7 3 1 

 



games. The proportion of excellent games increased, and the 

proportion of failed games decreased.  

VII. DISCUSSION 

We have used the Hard-Mode Strategy as the baseline. The 
strategy performs pretty well in practice, c.f. Tables I and II. 
We have found and Peattle also discussed that this strategy 
may not work well for some special cases [17].  

Assume that the answer is “freed”, that we have guessed 
“creed”, and that we got the response of [gray, green, green, 
green, green]. In this case, if playing in the Hard Mode, we 
may have to try “greed” and “breed” before we can find the 
correct answer. An even more challenging group of words 
include “goner”, “cover”, “wooer”, “homer”, “poker”, and 
“foyer”.  Allowing not to abide by the hard-mode rules 
sometimes will help. Not confining to using � for � might 
help. It may not be easy to find an answer in the group “wight”, 
“fight”, “sight”, “tight”, “right”, “night”, “light”, and “eight” 
with no more than six attempts under the hard-mode rules.  

For simplifying our discussion, we have used � as �. In 
practice, there are a lot more words in � than in �, at least in 
the current Wordle. It is easy to find good resources about 
English words that have five letters online, e.g., [5]. Using � 

as � is not a required trick for our programs. On one hand, 
using words in � as our guesses gave us some chances to 
directly find the answers luckily. On the other hand, we also 
wonder whether using a word in �  will provide more 
information than using any other words in �.  

We have mentioned that we consider that a main 
contribution of this paper is to provide the experience in 
developing strategies for solving a class of word games. The 
word game � as we defined in Section II.A is flexible, and 
one may change the parameters as long as one wish. Changing 
the parameters offers a different direction for changing the 
original Wordle than Dordle [8] and Quordle [18] did.  

For instance, the words for answers may not have to be 
English words, and it is possible for one to define games that 
include more symbols than the English alphabet in � . A 
simple change is to make the answers case sensitive. After that, 
we may enhance � of � to add more color codes to indicate 
that a letter in a guess is almost correct except that it is at a 
wrong position or it is using a different case. In fact, we are 
using these variations in our classes.  

We hope that the examples of our designing and choosing 
the heuristics to guide the selection of next guesses may be 

used as seed examples of designing and comparing strategies 
for computer games.  

Given the basic building blocks that we presented in 
previous sections, we could create and evaluate 16 strategies, 
and compare their performances with the Hard-Mode baseline. 
We summarize the observations in Appendix B.  

We evaluated our methods with a single Wordle so far. 
One may apply our methods to solve Dordle and Quordle in 
which a plyer needs to solve more than one Wordle at a time. 
If each of these Wordle games are independent, then our 
methods should be directly applicable. If individual Wordle 
games are dependent, it should be possible to enhance our 
current design to handle the extra constraints.  

For this conference paper, we did not report the actual 
costs of the computation. It took a much longer time to use the 
KLD to guide the selection of the next guesses. Calculating 
the conditional probability values are easy, and implementing 
the Hard-Mode principle is really easy. 

There are several technical reports about solving Wordle 
on the arXiv. That should not be surprising for Wordle’s 
extreme popularity. Anderson and Meyer [2] and de Silva[7] 
offered ideas of using the symbol probabilities. Bonthron [3] 
consider methods and situations for the needs to rank the 
candidate answers approximately, perhaps when the size of � 
in �  is infinite [10].  We and these authors provide 
information for future students to consider in their attempts to 
solve the Wordle-like games.    

VIII. CONCLUDING REMARKS 

We have proposed a few strategies for solving a special 
class of word games, and used the typical Wordle games as 
the example problems. Our methods can adapt to different 
games. Results of realistic evaluation indicate that we have 
achieved competitive performances for the current Wordle. In 
addition to providing clues for solving Wordle, we are more 
interested in hoping that the process of inventing and 
evaluating candidate strategies could serve as classroom 
examples for courses on learning to design strategies for 
computer games. 
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Fig. 3. Distributions of the percentages of numbers of guesses used to solve the 2315 Wordle games 
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APPENDIX A 

In the following derivation, l denote a uniform distribution that 

we want to compare with the conditional probability distribution 

A B��|��, for a specific �. Since � can be any symbol in �, we 

need a uniform random variable that could take the value of 

any state among |�| states. Since  � = ��, �, ⋯ , � , ⋯ , ��, we 

have |�| = �. 

�! ���� = mnoB�A B��|�� ‖l�

= U A B��|�� W!3 A B��|��
q 1

|�|r

�X�

�X�

= U A B��|�� W!3�� A B��|���
�X�

�X�
 

APPENDIX B 

We have evaluated 17 different strategies to solve the 2315 
Wordle problems. The Hard-Mode strategy is the baseline, 
and there are two families of strategies. The “p” family uses 
strategies that were based on the probabilistic ideas that were 
discussed in Sections III and V. The “i” family uses strategies 
that were mentioned in Section VI. As we have suggested, one 
may derive different strategies based on the fundamental ideas. 
The “i” and “p” families of strategies were denoted by “i” and 
“p” that were followed by a digit, respectively. 

Table B1 lists the statistics of their performances, 
including the minimum, median, average, and the maximum 
of the numbers of guesses. The excellency column shows the 
percentages of a strategy using only one or two guesses to 
solve the 2315 problems. The failure column shows the 
percentages of a strategy using seven or more guesses to solve 
the 2315 problems.  

Figure B1 depicts the distributions of the numbers of 
guesses that were used by different strategies. We show the 
strategies at the bottom. We show the number of needed 
guesses on the horizontal axis, and the frequencies of the 
number of needed guesses on the vertical axis. 

 

Table B1. Basic statistics 

strategy min median mean maximum excellency failure 

hard-mode 1 4 4.078 10 4.67% 1.77% 

i1 1 6 5.651 11 1.47% 28.51% 

i2 1 4 4.117 9 2.59% 1.34% 

i3 1 4 4.475 10 2.59% 5.49% 

i4 1 4 3.674 8 5.75% 0.65% 

i5 1 5 4.926 10 2.29% 11.27% 

i6 1 4 3.750 9 5.75% 0.52% 

i7 1 4 4.205 9 3.20% 2.98% 

i8 1 4 3.674 8 5.75% 0.65% 

p1 1 4 4.263 10 2.72% 2.76% 

p2 1 4 4.301 10 2.72% 3.11% 

p3 1 5 4.525 9 2.38% 3.24% 

p4 1 5 4.583 9 2.38% 3.41% 

p5 1 4 3.851 10 5.75% 1.73% 

p6 1 4 3.848 10 5.75% 1.56% 

p7 1 4 4.245 9 3.63% 1.68% 

p8 1 4 4.236 9 3.63% 1.47% 

 



 

Figure B1. Distributions of the numbers of guesses that were used by different strategies to solve the 2315 problems 


