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Abstract—In this paper we introduce EST-GAN, an approach
to improve the realism of frames from unsophisticated game
scenes. For this purpose, several Generative Adversarial Net-
works (GANs) structures are applied, which are extended to
handle intermediate game render passes generated by con-
ventional rendering pipelines. We present an image-to-image
translation method that transforms simple low-poly game scenes
into the style of an elaborately produced video game. Through
our experiments, we show that the involvement of G-buffer
information has a significant impact on the results of these
translations and the usage of these leads to a reduction in
artifacts.

Index Terms—Games, Generative Adversarial Network, Style
Transfer, G-Buffer, Texture, Graphics Pipeline

I. INTRODUCTION

Deep learning is a major sub-area of machine learning that
has gained more and more popularity in the last few years.
The ability to process a huge number of attributes has opened
new possibilities. This created many new experiments in the
field of computer graphics and vision that may enable new re-
alistic representations. In comparison, conventional computer
graphics methods require physical principles and accuracy so
that, e.g. the necessary geometry, camera settings, and surface
properties can be qualitatively represented. Nowadays, ray-
tracing or rasterization is mainly used to perform this task
[1]. The creation of realistic scenes is a desirable goal in the
field of computer graphics [2]. Although many approximations
and improvements have been achieved nowadays, some of
which have been integrated into real-time applications, the
computations that need to be performed for these specific
tasks are expensive [3]. To counter this problem, other works
have already applied deep learning to create synthetic data
that looks realistic [1]. However, most of these approaches are
completely disconnected from the original rendering pipeline
which is utilized by game engines. This often results in many
distracting artifacts in the results, causing the quality of the
synthetic data to suffer. But a new proposal of combining the
information generated during game rendering with machine
learning could provide a positive impact on the resulting
output. Richter et al. [2] leveraged the Cityscapes dataset [4]
to achieve a more realistic rendering of the video game Grand
Theft Auto V based on this concept.
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Since we decided to follow the approach of Richter et
al. [2] it is necessary to assemble our own dataset. Our
dataset must correlate in its properties with our game scene,
so we created a synthetic dataset using the game Red Dead
Redemption 2 (RDR2), due to its variety of landscape scenes.
According to the publisher [5], the usage of the game’s
material for non-commercial purposes is permitted. Moreover,
we generate a dataset that not only contains final rendered
frames of the game, but furthermore contains a subset of G-
buffer information consisting of depth, normal, and albedo
maps. In addition, we need to create a pixel-precise semantic
label map for our task.

Regarding neural networks, we decided to utilize Genera-
tive Adversarial Networks (GANs), which find an increased
application, especially in the field of image generation. This
involves the process of creating synthetic images that should
end up being indistinguishable from that of the original dataset
[6]. To use GANs for our purposes, we adopt existing methods
and adapt the architecture so that multiple inputs, consisting
of the final frame and the G-buffer information, can be used
as training data.

In order to perform various experiments, we utilized Unity
[7] to create a simple nature scene that covers objects in the
target domain.

While GANs have been used in several previous works to
enhance rendered scenes, these tend to use existing scenes [2]
rather than self-created scenes or do not include the rendering
pipeline [8], [9] in their methods. This paper presents an
approach that integrates self-created video game scenes and
information from the graphics pipeline to make their simple
rendering appear more realistic.

II. RELATED WORK

A. Image Translation

In the context of machine learning, image translation is the
ability of machines to take an input image and learn a mapping
function so that it is transferred to another domain. Numerous
works showed that this task is applicable in various settings
[2], [8], [10]–[12]. These range from translating semantic label
maps to photorealistic images to simple sketches mapped to
real-looking objects. To learn this translation, a training dataset
is needed upon which this specific mapping is based.



B. Image Segmentation

Semantically labeled data has become an indispensable
aspect in the context of deep learning algorithms, as neural
networks need a lot of data to produce meaningful and
acceptable results. Krähenbühl [13] observes that the gathering
of labeled data is as important as the construction of the
neural network itself. There are numerous researchers who
have addressed this problem and created multiple datasets
that represent different content and provide the most accurate
semantic segmentation possible, such as Cityscapes [4]. The
challenge, however, lies in the resources that must be allocated
to create such a dataset in the first place, as this is a very costly
task to do manually.

C. Synthetic Datasets

An alternative solution to address the problem of costly data
collection is to extract ground truth labels directly from video
games. Consequently, data is collected for semantic labeling
or other applications without having to be manually processed
by humans. An advantage is the wide range of variation that
video games offer, as well as the high quality graphics of
Triple-A titles [13].

Richter et al. [14] explain in their work that modern real-
time rendering architectures mostly use the concept of deferred
shading. This simplifies the process of extracting individual
pieces of information from the rendering pipeline. The ac-
quisition of the desired data is achieved by intercepting the
communication between the game and the graphics hardware.
This results in the advantage that no source code needs to be
provided to extract the video game data, and thus datasets can
be created from commercial games. This approach can reduce
the effort of conventional methods significantly [14].

D. Pix2PixHD

A particular application of a GAN architecture is provided
by Wang et al. [6] who introduced their method Pix2PixHD.
The general goal behind this supervised approach is to gener-
ate photorealistic output by using semantic label maps, thus it
is used for image domain transfer.

Pix2PixHD has the functionality to support high resolutions,
which can scale up to 2048 × 1024 pixels. This technique
is based on the application of training pairs, which can be
notated as (si, xi). Here, si is a semantic label map and xi is
the corresponding image of the target domain. The generator
has been adapted to a coarse-to-fine generator, where first a
smaller network is trained and a lower resolution result is
generated. Once this is finished, the generator is extended by
additional layers at the beginning and at the end to achieve
high resolutions and also to stabilize them. The discriminator
consists of multi-scale discriminators, which evaluate content
on different scales, which also allows individual features and
details to be reviewed. According to the authors, the usage of
those leads to an improved result [6].

E. CycleGAN

In recent work, it has been found that it is advantageous
in domain mapping to use GANs with cycle consistency con-
straints. These seem to give better results when transforming
images from one domain to another. This is even possible
without the use of image pairs, which is of significant value
for many applications since these are not always available or
require a lot of time and effort in their creation [9].

An unordered set of images X should be converted into
the appearance of a collection of images Y . By using this
method, it is intended that this can work both ways and images
of the domain Y can also be translated into those of X [8].
In general, this mapping can be expressed as G : X → Y ,
where it is linked to its inverse mapping F : Y → X .
Therefore, CycleGAN trains these two desired generators G
and F . Their respective discriminators DX and DY evaluate
whether an image generated by G or F is a counterfeit or an
original. During the training of a model, two so-called cycle
consistency losses are used, by which the generated image is
translated back into its original domain in each case. This aims
to produce an input xi to Ŷ by a generator G and to convert
this generated image again to its original domain by generator
F , so that xi ≈ x̂i. This is also equally valid in the other
direction [8].

III. METHOD

In this section we describe the way we generated our source
and target datasets for image-to-image translation. Afterwards
our objective is to find a suitable GAN G which is capable
of translating our input samples X , consisting of custom
created Unity landscape scenes, to the desired output Y ,
reflecting the RDR2 domain. By the end we should obtain
a GAN with the mapping G : X → Y . Furthermore, we
define {xi}Ni=1 where xi ∈ X and {yi}Mi=1 where yi ∈ Y
is a set of training samples. Since both domains are syn-
thetic representations, it is possible to extract the semantic
label maps and G-buffers. Let {xi}Ni=1 and {yi}Mi=1 both
become sets of quintuples containing their corresponding
images {(x, xdepth, xnormals, xalbedo, xlabel)i}Ni=1 ∈ X and
{(y, ydepth, ynormals, yalbedo, ylabel)i}Mi=1 ∈ Y respectively.
xi and yi both remain the final render of their corresponding
domains.

A. Generating the Source Domain Dataset

Our custom created game scene does not visually deviate
too much from our target domain RDR2, but simultane-
ously does not add too much complexity to the scene. For
segmentation and extraction of the G-buffers we used ML-
ImageSynthesis [15] as a starting point. These scripts replace
the fragment shaders with an Uber Replacement Shader at
runtime and render the desired output. Furthermore, we added
an albedo shader which just renders the color value of a given
texture. Additionally, it is essential that the categories (terrain,
vegetation, sky, cloud, building, rock and water) of the objects
must be accommodated as well to match our color scheme.
This is achieved by assigning a specific layer to an Unity



(a) Albedo map (b) Normals map (c) Depth map

(d) Semantic labels (e) Final frame

Fig. 1: Sample of the Unity domain, showing our custom
nature scene and the associated G-buffers.

component. Figure 1 shows one of the sampled frames of
domain X .

B. Generating the Target Domain Dataset

Unfortunately the modification to RenderDoc [16] by
Richter et al. [14] for extracting GTA V frames were not
suitable for our purpose. Instead, we settled with a standard up
to date build of RenderDoc and utilized its Python API [17] to
parse the captured frames. During the segmentation process,
we encountered similar problems as Richter et al. which we
discuss in more detail in the next subsections, however we
solve them differently.

Identifying relevant function calls. There are some ren-
dering patterns that help us to identify the relevant function
calls. RDR2 does deferred shading in one go, which means
that it does not do anything else during that period, thus we
can easily extract the G-buffers. Additionally we can use this
behavior to start segmenting. Objects are drawn one by one
and each of the draw calls contain certain meshes, textures and
shaders. By identifying them we can associate a label to the
drawn region. Once the game is finished with the G-buffers,
it will copy the depth map to another resource. RenderDoc
marks these actions as copy actions and this particular one
also includes the other textures of the G-buffer, therefore we
were able to retrieve the albedo and normals maps as well.
The starting point on the other hand was harder to locate.
We could not detect any patterns related to the starting of the
deferred shading, thus we naively looked for draw calls which
contain fragment shaders that render objects onto the frame.
The sky and water regions are always rendered separately after
deferred shading. Water always gets drawn by a specific set
of fragment shaders. After determining the correct draw call,
we can extract a heatmap of pixels which contain water. The
same procedure applies to the sky. The only difference is that
it consistently uses one particular texture in the draw call,
therefore we do not even have to look for particular fragment
shaders.

Identifying resources. Resources in RenderDoc can rep-
resent anything related to the game engine such as shaders,
textures, and meshes [18]. Since resource identifiers are dif-
ferent in every frame in RDR2 as well, we adapted the idea
to calculate the hash of the memory content.

Semantic labeling. Since we only have 7 different cate-
gories for our segmentation, we manually collected variations
of textures and shaders used to render their corresponding
object belonging to a label category.

(a) Albedo map (b) Normals map (c) Depth map

(d) Semantic labels (e) Final frame

Fig. 2: Sample of a nature scene belonging to the RDR2
domain and its corresponding G-buffers.

Capturing frames. As mentioned before, we could not
use the already existing RenderDoc modification by Richter
et al. [14] for our purposes, so automated capturing was
not possible. We resorted to manually capturing each frame,
resulting in a smaller sample set of M = 2286, which
is only a fraction of the dataset Richter et. al managed to
process. Nonetheless the quality overall is quite acceptable as
demonstrated in Figure 2.

C. Pix2PixHD: Paired Image-to-Image Translation

Training image translations works ideally when paired train-
ing data is used. Since we do not have a direct mapping
from X to Y , we first trained a conditional GAN using
Pix2PixHD [6]. This framework is able to produce a solid
mapping between semantic label maps and the desired target
domain and is of particular interest due to its ability to process
multiple inputs, in addition to the semantic label map. This
gives us a baseline to concatenate the sampled G-buffers of
the Y domain. This method was also used by AlHaija et al.
[19], furthermore evaluated by Richter et al. [2] and apparently
this simple amendment resulted in satisfactory outputs.

Preparing training data of Y . For our purpose the resolu-
tion of the global generator in Pix2PixHD is sufficient, so we
proceed to crop the RDR2 images to 1024×512, however, this
introduces a new problem. After cropping the depth maps their
values are not consistent among the training samples anymore.
To overcome this issue we decided to normalize the depth
maps between 0 and 255 afterwards.

Our trained model pmodel(y) generates images that resemble
the target domain to a large extent. The G-buffers are espe-
cially helpful for the network to, i.e. recreate details in the
textures with the normals map, retaining the colors with the
albedo map and reproduce perceptual focus with the depth
map.

Preparing training data of X . The samples collected from
the Unity engine already match the resolution of the global
generator of Pix2PixHD, therefore no cropping is necessary
here. The depth map itself on the other hand is inverted. We



simply invert and normalize all depth maps in our training
samples.

Plugging in samples from X delivers unsatisfying results.
This can be argued by the fact that the G-buffers of both
domains simply do not have any similarities at all, thus a
translation of the G-buffers of the Y to the X domain must
be found.

D. CycleGAN: Unpaired Image-to-Image Translation

(a) Real albedo (b) Fake albedo (c) Real depth

(d) Fake depth (e) Real normals (f) Fake normals

Fig. 3: Sample of domain translated G-buffers by CycleGAN.

We settled with CycleGAN [8] to find the mapping of
the G-Buffers from domain Y to X . This requires some
modifications, we want to translate all G-buffers at the same
time, hence we set the number of input channels to 7
(Ndepth = 1, Nnormals = 3, Nalbedo = 3) to cover the
entirety of the G-buffers, in consequence the number of output
channels are equally 7. Figure 3 shows a set of G-buffers that
were successfully translated. We define the translated images
as ŷdepth, ŷnormals, ŷalbedo. They seem to match the domain
of X , but on further inspection it is quickly noticeable that
the network hallucinates vegetation must cover a majority of
each frame, even when it is not the case in the original scene.

Semantic loss. In order to improve the translations, we add
semantic loss to the overall loss function, similar to the work
of Cherian et al. [20]. They proposed to train a segmentation
network for the source domain X and the target domain
Y . Using this network we can estimate the accuracy of the
mappings of CycleGAN G : X → Y and F : Y → X in
terms of semantic consistency. Let the segmentation network
of X and Y be SX and SY respectively.

For our purpose, we used a slightly different loss function
which is defined as the following:

Lseg(SX , SY , G,F ) =

Ex∼pdata(x)[∥SX(x)− SY (G(x))∥1+
∥SX(x)− SX(F (G(x)))∥1]λX+

Ey∼pdata(y)[∥SY (y)− SX(F (y))∥1+
∥SY (y)− SY (G(F (y)))∥1]λY

Similar to the cycle loss our Lseg also considers the seg-
mentation of G(F (y)) ≈ y and F (G(x)) ≈ x. Furthermore,
we simply used the L1 loss to compare two segmentations.
This works since we used the DeepLabV3 [21] framework
with ResNet 101 [22] to train both SX and SY with the

(a) Real albedo map (b) Baseline (c) Semantic loss

Fig. 4: Improved domain transfer by CycleGAN using seman-
tic loss.

G-buffers as input and the output of DeepLab tells us the
probability of each pixel belonging to a certain semantic label.
Here, we aim for a matching probability distribution over all
labels and therefore we used the L1 loss. Finally, we add two
weights λX and λY to set the importance of each of these two
losses. Due to time constraints we do not know if this method
produces better results than the findings of Cherian et al., but
nonetheless our extended version of CycleGAN improved the
results significantly as can be seen in Figure 4.

E. Pix2PixHD with Semantic Loss

Since we already added semantic loss to CycleGAN, we
decided to also extend the Pix2PixHD framework and apply
a semantic loss to it. This idea already has been pioneered
by Liu et al. [23]. In order to do so, we train a model S
to segment RDR2 frames and add the same loss function to
Pix2PixHD as Liu et al. did. With the trained segmentation
network for RDR2 frames, we can also simultaneously train
the generator G with Unity inputs. For each iteration we do not
only use (ylabel, ŷdepth, ŷnormals, ŷalbedo, y) as input, but also
(xlabel, xdepth, xnormals, xalbedo) with ŷ being the translations
of CycleGAN. Our semantic loss can be described as:

Lseg = λ ∗ [Ey∼pdata(y)Eŷ∼CycleGANmodel(y)

L(S(G(ylabel, ŷ)), ylabel)+

Ex∼pdata(x)

L(S(G(xlabel, xdepth, xnormals, xalbedo)), xlabel)]

L(P,Q) is the cross entropy loss function and λ is the
existing feature weight of Pix2PixHD. Lseg is then simply
added to the overall loss of the framework.

F. Increase Similarity of G-buffers in Domain Y

Fig. 5: There are sharp edges visible in the normals map of
Unity, due to the low polygon assets.

Although the translations of CycleGAN are providing
promising results, there are still obvious differences observ-
able. Due to the low polygon nature of a few assets in our
Unity scene, normals maps tend to have a higher amount of
sharp edges as demonstrated in Figure 5, this will result in



Fig. 6: Translation of RDR2 with CycleGAN still contains
smoother normals compared to the Unity domain.

Fig. 7: Clustering of translated normals map of RDR2 which
reproduces the desired sharp edges.

unpleasing looking outputs. In order to avoid this issue, we
reduce the amount of values in the normals of the Ŷ domain.
We achieve this by clustering the images by instances and
their regions using the K-Means algorithm. We apply the same
clustering to albedo maps as well, to get rid of some artifacts
caused by CycleGAN. The before and after results of the
clustering of the normals can be observed in Figure 6 and
7 respectively.

The result of the translated depth maps is not usable for
us, because it seems like some details from the normals and
albedo maps were taken into account as well, therefore we
decided to resort to the original ones. Due to the bigger scene
in RDR2 compared to our custom created one, the depth map
values of RDR2 provide a bigger range of distances. By using
gamma color correction it is possible to increase the lower
depth values and decrease the visual differences between the
two domains. Therefore we are moving the background of the
depth nearer to the camera. Figure 8 presents a overview of
all processing steps required to train our modified instance of
Pix2PixHD.

IV. EVALUATION

A. Analysis of the Training Dataset

In order to further elaborate on the synthetic data generated
by EST-GAN in the later evaluation, it is crucial to inspect
the training data that we used. For this reason, we focused
on the composition of our training data in more detail and
analyzed the distribution of its visual classes, as has been done,
for example, with the synthetic GTA V [14] or even the real
Cityscapes dataset [4].

In total, we extracted 2286 frames including the respective
G-buffer information from RDR2. For training, we utilize
2145 frames and for the subsequent validation, we divided
141 frames as a test set. 504 frames were extracted from our
Unity scene to train CycleGAN and Pix2PixHD. Furthermore,
additional 145 were allocated for the testing of both GANs.
Our RDR2 dataset includes a total of 7 individual labels. We
chose these categories due to the fact that they are the most

common objects in RDR2 and are furthermore characteristic
for landscape scenes.

Figure 9 shows the result of our collected data extracted
from RDR2 and used for the training. The categories are
arranged according to the number of pixels they contain. It is
noticeable that the classes sky, terrain and vegetation are most
frequently displayed, while water is by far the smallest fraction
contained in the extracted frames. This can be explained by
the fact that we occasionally received erroneous results when
segmenting water, due to its diverging rendering methods in
the game as described in section III-B.

Within this work, we rather included buildings that were
found in rural parts of the game and completely avoided small
cities, since here again the rendering differs from other areas
and in this case, similarly, segmentations sometimes yielded
erroneous results. Due to the low pixel count of the water
category, we decided to exclude it completely from our Unity
dataset. Figure 10 shows an example of a translation of a
scene containing water. The water is hardly recognizable and
its presence also negatively affects the surrounding objects.

B. Model Variations

We performed a total of 3 different experiments, each of
which either had a modified GAN structure or differed with
respect to the parameters or the input they were provided
with. The goal of these experiments was to achieve a steady
improvement of our results, shown in terms of their visual
quality:

• Final: Our final method with the translated training
samples, clustered normals and albedo maps with K-
Means, corrected depth maps with gamma correction and
semantic losses added to both GAN frameworks.

• Version 1: Same as Final, but without additional clus-
tering of normals and albedo, depth map translated by
CycleGAN instead of manually correcting them and
semantic loss using L1 loss instead of the cross entropy
loss in Pix2PixHD.

• Version 2: Same as Final, but no translated training
samples with CycleGAN, no gamma correction applied to
depth maps and no semantic losses added to Pix2PixHD.
Clustering of albedo and normals still applies.

• Pix2PixHD: Baseline, only utilizes label and instance
maps.

In this section, we will perform a manual visual evaluation
of the results to assess their quality. Moreover, the sample im-
ages that were selected for evaluation were selected randomly
from 145 test results.

Figure 11 shows a total of four versions that were created
during the execution of the implementation and during inter-
mediate evaluations. To illustrate the progress of our work, we
also show a result of the original Pix2PixHD method that we
trained with our own dataset.

The scene shown for this example (Fig. 11) includes terrain,
buildings, sky, clouds, rocks as well as vegetation and thus
represents all classes except water. All variants can achieve
a good result when it comes to sky and clouds. However,



RDR2 (Domain Y ) input
CycleGAN with Semantic Loss

output

K-means

Gamma correction

Translated RDR2 (Domain Ŷ )

output

Training Pix2PixHD
with Semantic Loss

input
Unity (Domain X)

∥G(ŷ)− y∥1 and L(S(G(ŷ)), ylabel)

L(S(G(x)), xlabel)

Fig. 8: Overview of Pix2PixHD’s training pipeline. Our CycleGAN model translates preprocessed training data of the Y domain
to the Ŷ domain which ressembles the look of our Unity scene (X domain). We train Pix2PixHD to perform the mapping of
G : X → Y with both the translated RDR2 inputs and sampled data of Unity as training sets.
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Fig. 9: The total number of annotated pixels per class of the
RDR2 training dataset, using the logarithmic scale.

(a) Translated scene (b) Segmentation (c) Unity frame

Fig. 10: The presence of water has a negative impact on the
whole scene, since the number of pixels corresponding to the
water category is the lowest in our dataset.

clear differences become obvious for the other categories when
being observed individually. Adjustments made to our final
method allows it to achieve visually pleasing results overall, as
well as provide a decent approximation of the RDR2 domain.
However, this version contains some deficiencies, as seen in
Figure 11c. Although buildings are generated in very similar
colors to the RDR2 domain, they lose some details and appear
blurry in some areas. Nonetheless, the final version achieves
the best results when observing the trees more closely. The

(a) Version 1 (b) Version 2 (c) Final method

(d) Pix2PixHD (e) Unity frame

Fig. 11: All variations of our modifications trained (a,b,c),
as well as the standard Pix2PixHD version (d), which have
translated a Unity frame (f) into the RDR2 domain.

colors of the leaves, as well as the wood, are clearly separated
and do not blend. Likewise, this version shows clear details of
the bark on the trees, whereas these are not preserved in such
detail in all other versions. Another problem becomes visible
with Version 1. In this version not only the leaves of the trees
are colored green, but unfortunately also parts of the tree barks
are in the same color. In addition, this version contains some
artifacts when displaying stones and terrain. However, with
Version 2, further deterioration of the terrain becomes visible,
resulting in worse blurred results.

Overall, all our extensions can deliver better results than
the Pix2PixHD baseline, though. The baseline achieves solid
results in the categories sky, cloud and vegetation, but strong
artifacts appear in all other categories, as Figure 11d clearly
demonstrates. E.g., houses contain strong artifacts that make
them almost unrecognizable. Meanwhile, Version 1 (Fig. 11a)
as well as our final method (Fig. 11c) achieve the best results



when manually evaluated, which can approximate the target
domain the most.

C. Quantitative Evaluation

Comparison FID
RDR2 vs. Unity 236.539
Unity vs. Final 214.473

TABLE I: FID (lower is better) between the test set of
RDR2/Unity and between Unity/our final method.

1) Fréchet Inception Distance: The Fréchet Inception Dis-
tance (FID) is used to measure the distance between the
distribution of two image collections. In this case, the real
dataset can be compared with the synthetic images generated
by the GAN [24]. The final score gives information about how
similar two groups of images are statistically [25].

As can be observed in Table II, the variance of the metrics is
notably high. Even the baseline Pix2PixHD framework scores
better than our final method. Although it is apparent that our
results are visually more appealing due to the availability
of the G-buffers. This most likely occurs because of the
structural dissimilarity between the RDR2 and Unity domains.
This assumption is backed up by the results of Table I. The
distance between Unity and the final outputs of our method is
on the smaller side, hence the structural features sampled by
the Inception model might have a more significant weighting.
Another pattern we have noticed is that all the distances
achieve a smaller value in their results than the one between
RDR2 and Unity visible in Table I, thus the style transfer does
seem to be successful disregarding what method was applied.

RDR2 vs. Version FID
Final 176.649
Version 1 165.975
Version 2 172.623
Pix2PixHD 169.271

TABLE II: FID metric (lower is better) of all versions. Version
1 shows better results than our final method.

Regarding Table II, we observe that Version 1 shows
stronger results than our final method by a significant margin.
We assume that due to the use of the depth map translated
by CycleGAN, the buildings in Version 1 are visually more
appealing. This suspicion is backed up by the DRN IoU scores
of each class listed in Table IV. Objects that are further away
from the camera in RDR2 appear blurrier and less detailed.
Since our final method was trained with depth maps that
were gamma corrected, the generator might learn that only
the objects directly in front of the camera should be visually
more detailed and sharp, despite the fact that the background
should be near enough to still be in focus.

2) DRN: Since we have access to the ground truth labels of
each translated scene, we can use a segmentation network to
perform semantic interpretability on our results. Therefore, we
trained a DRN-D-22 model [26] to perform semantic segmen-
tation against our RDR2 training set. Then we compute the
mean average precision (mAP), pixel-wise accuracy (pixAcc)

Version mAP picAcc classAcc
Final 0.605 0.907 0.807
Version 1 0.584 0.889 0.840
Version 2 0.541 0.822 0.737
Pix2PixHD 0.481 0.858 0.704

TABLE III: DRN metrics (higher is better) of all versions.
Our final method seems to perform fairly well and only gets
exceeded by Version 1 in the classAcc metric.

Version mAP Sky Cloud Terrain Rock Building Vegetation
Final 0.605 0.922 0.707 0.857 0.528 0.398 0.823
Version 1 0.584 0.897 0.621 0.829 0.394 0.540 0.811
Version 2 0.541 0.916 0.669 0.680 0.421 0.354 0.749
Pix2PixHD 0.481 0.882 0.514 0.785 0.357 0.041 0.788

TABLE IV: IoU values (higher is better) of each class.

and average class accuracy (classAcc) as used in other works
[27]. Our final method exceeds the baseline Pix2PixHD in the
mAP metric during training as represented in Figure 12. The
only other Version that does keep up and even outperforms this
method in the classAcc and the IoU of the building class metric
is the first one as shown in the tables III and IV. The clustering
of the albedo and normals maps increases the quality of the
outcome noticeably. This procedure removes artifacts created
by the translation of the CycleGAN generator. Furthermore,
the newly formed edges caused by the reduction of vectors
in the normals maps assist the generator of Pix2PixHD to
smooth them out in the final image when Unity samples are
used. Additionally, the usage of the cross entropy loss instead
of the L1 loss contributes to the better scores achieved by our
final method since it doesn’t have to match the probability
distribution anymore.
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Fig. 12: mAP metrics (higher is better) of Final and
Pix2PixHD during training. The semantic loss used in our final
method contributes to the higher score of all three metrics.

V. CONCLUSION

When extracting the data from RDR2, we limited it to a
subset of G-buffer data, since Richter et al. [2] confirmed
in their work that a high level of improvement can already
be achieved even if only a smaller number of G-buffers are
available. This statement proved to be true as shown in our
results. As discussed in section IV, we investigated the utility
of G-buffers of the rendering pipeline in our work. The related
results demonstrated that the overall image quality could be
improved by using these intermediate buffers. Furthermore,
we were able to see improvements by using multiple networks



such as CycleGAN with semantic loss for the Unity G-buffers
to reduce the gap between domains.

We introduced a method, based on existing GANs to trans-
late frames of custom games without the need for expensive
post-processing techniques that require a lot of computing
power and performance. In future works the extraction of
additional G-buffers could improve the overall quality and
even real-time rendering might be considered.
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APPENDIX

(a) Unity (b) Version 1 (c) Version 2 (d) Final (e) Baseline

Fig. 13: Further results of translations (zoom in to view
pictures in full quality). Version 1 (b) results contain few sharp
edges caused by the simplicity of Unity normals maps. Version
2 (c) has the problem that the GAN relies on the original G-
Buffers too much, e.g. mapping the colors of the albedos map
with almost no translations. Our final method (d) occasionally
display visually unpleasant artifacts in form of color banding,
that is most likely due to the Unity depth maps containing the
same banding patterns.


