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Abstract—Counterfactual Regret Minimization (CFR) variants
have mastered many Poker games by effectively handling a large
number of opportunities in private information within relatively
short playing histories of the game. However, for imperfect
information board games with infrequent chance events but long
histories or even loops, the effectiveness of CFR is often limited
in practice as the computational complexity grows exponentially
with the game length. In this paper, we propose Belief States
with Approximation by Dirichlet Distributions and Depth-limited
External Sampling for Board Games that enables an effective
abstraction even with existence of loops. Experiments show
that our proposed methods have the ability to learn reasonable
strategies.

Index Terms—CFR, Belief, Depth-limited, Regret Minimiza-
tion, Imperfect Information, Board Games

I. INTRODUCTION

Counterfactual regret minimization (CFR) is an effective
method for obtaining near optimal strategies in imperfect
information games [1]. In real-world tasks such as negotia-
tions, auctions, and cybersecurity interactions, an agent needs
to make a decision with limited information. Conducting
research on imperfect information games is supposed to give
us inspiration for resolving these decision-making problems,
therefore it is meaningful for us to do these researches. While
CFR worked dramatically well in Texas Hold’em, there is a
severe limitation with game length in practice. It is because
the computational cost depends on the number of information
sets, each of which is a situation distinguishable for agents,
and it usually grows exponentially with the game length.
To have a near optimal strategy for each information set,
CFR repeatedly visits every information set and stores and
updates data in tables. The problem still exists for recent
studies that incorporated neural networks to extend tabular
representation [2]–[4] because the training time increases in
general as the number of information sets does.

Geister [5] is a board game with imperfect information.
We propose Belief States with Approximation by Dirichlet
Distributions and Depth-limited External Sampling for Board
Games to abstract the game and deal with loops in board

games. We train agents with these methods and evaluate the
agents by playing against a random and a heuristic player in
a small variant of Geister. The results show that our proposed
methods have the ability to learn reasonable strategies.

II. BACKGROUND

A. Extensive Games

We follow the standard notation of extensive games. See
the study [1] for the details. In a finite extensive game with
imperfect information, N is a finite set of players, and c stands
for a chance player. For player i, −i stands for all other
players. In two-player games including Geister, N = {1, 2}
and player −1 (−2) represents player 2 (1). H is a finite set
of possible histories h including the sequence of the players’
actions, and Z ⊆ H is a finite set of all terminal histories. A
prefix h′ of history h means that h begins with h′. Because a
history typically contains private information, a player cannot
distinguish one another among a set of histories. Ii is a finite
set of information sets I for player i where each information
set is the set of histories that player i cannot distinguish
one from another. The player to act and the legal actions at
non-terminal history h or information set I are denoted by
P (h) and A(h) or P (I) and A(I). Intuitively, an information
set corresponds to a position or board state in many perfect
information games in the sense that an optimal move to play
depends on it. σ is a strategy profile consisting of a strategy
σi for each player i. Σi is all strategies for player i. σI→a

represents a strategy profile identical to σ except that action
a is always chosen at information set I . In reinforcement
learning, a strategy is called policy. ui(z) is player i’s utility
on terminal history z ∈ Z (i.e., win or loss). πσ(h) stands for
the probability of reaching history h if players act according
to σ, and πσ

i (h) is player i’s contribution.

B. The Game of Geister

1) Full Geister: Geister is a two-player board game on a
6×6 game board. Initially, each player has four blue ghosts
and four red ghosts on the board. The position of each ghost



Fig. 1: The Sample Board Observation of Geister (left) and
Mini Geister (right). The player can see the positions but not
the color of the opponent ghosts.

is public, but its color is not visible to the opponent. Players
can arrange their ghosts before the first turn. In each turn,
a player moves one of ally ghosts one step vertically or
horizontally inside the board without overlapping with ally
ghosts. A ghost is captured, and its color is revealed to the
public if the opponent’s ghost enters its square. A blue ghost
can escape from the designated corners in addition to ordinary
moves. A player wins by one of the three conditions [5]: (1)
capturing all the opponent’s blue ghosts, (2) making all of
ally red ghosts captured by the opponent, or (3) making one
of ally blue ghosts escape. The left board in Fig. 1 shows a
sample position. A player sees the placement of all ghosts and
the colors of ally ghosts but does not those of the opponent’s
(shown in white). The designated corners to escape are at the
opposite side of a player’s initial position.

2) Mini Geister: As the full game of Geister has up to 1018

possible ghost positions, here we introduce a simplified version
with a tractable size, yet it is still strategically challenging.
Mini Geister is a game identical to the full game, except that it
takes place on a 4×4 board and that each player has one blue
ghost and one red ghost. Note that in this simplified game,
a single capture by either player will decide the winner, so
distinguishing the opponent’s ghost color becomes extremely
important. The right board of Fig. 1 shows a sample position
of Mini Geister.

III. RELATED RESEARCH

A. Counterfactual Regret Minimization

Counterfactual Regret Minimization (CFR) was developed
by Zinkevich et al. to compute approximate Nash equilibrium
in imperfect information extensive games [1]. CFR is an iter-
ative method that repeatedly updates estimates in a game tree.
The algorithm keeps track of the cumulative counterfactual
regret for each action a at each information set I and calculates
the average strategy over all iterations. Counterfactual value

vi(σ, I) presents a weighted average utility reachable from
information set I:

vi(σ, I) =
∑
z∈ZI

ui(z)π
σ
−i(z[I])π

σ(z[I], z), (1)

where ZI is the set of terminal histories reachable from I and
z[I] is such a history that is a prefix of z and contained in I .
The counterfactual regret rti (cumulative counterfactual regret
RT

i ) presents a relative preference of action a on iteration t
(up to iteration T ), given strategy profile σt of iteration t as:

rti(I, a) =vi(σ
t
I→a, I)− vi(σ

t, I), (2)

RT
i =

T∑
t=1

rti(I, a). (3)

By the regret matching algorithm, the strategy of the next
iteration is defined so that the probability of playing a at I is
proportional to the positive cumulative regret:

σT+1
i (I, a) =

{
RT,+

i (I, a)/Z if Z > 0

1/|A(I)| otherwise,
(4)

where RT,+
i (I, a) = max(RT

i (I, a), 0) and Z is normal-
izing term

∑
a∈A(I) R

T,+
i (I, a). Then, the average strategy

σ̄ weighted by the reach probability πi approaches ϵ-Nash
Equilibrium as the number of iterations T increases:

σ̄T
i (I, a) =

∑T
t=1 π

σt

i (I)σt(I, a)∑T
t=1 π

σt

i (I)
. (5)

B. Monte Carlo CFR

Monte Carlo Counterfactual Regret Minimization (MCCFR)
improves the efficiency of each iteration and empirically
converges faster than CFR [6]. While the original CFR visits
all information sets (the entire game tree) on each iteration,
only a part of the tree is sampled in MCCFR. In outcome-
sampling (OSCFR), a single terminal history is sampled,
and the estimates in information sets along this history are
appropriately updated so that counterfactual values have the
same value as those in the original CFR in expectation.
Exploration strategy and importance sampling are introduced
for a traverser, a player to learn, which typically alters on each
iteration. In external-sampling (ESCFR), a traverser samples
all actions of its own, but a single action is sampled for other
players. We incorporate ESCFR with our method to balance
computational cost and sample efficiency.

C. Deep CFR

Deep Counterfactual Regret Minimization (Deep CFR) in-
corporated deep neural networks to replace tabular represen-
tation in the original CFR. The policy and value networks
approximate the strategy and advantage (proportional to re-
gret), respectively, for a given information set. To improve
training efficiency, Deep CFR also incorporates ESCFR and
linear weighting of the advantage and policy on iteration t
by t [7]. Without relying on advanced domain knowledge,
Deep CFR shows strong performance in large poker games



relative to domain-specific abstraction techniques [2]. Our
method also incorporates policy and value networks but the
learning scheme is entirely different for handling games with
long histories.

D. DREAM

Deep Regret minimization with Advantage baselines and
Model-free learning (DREAM) is designed to learn from the
self-play as in model-free reinforcement learning. To that end,
OSCFR is introduced with baseline networks to reduce the
variance in sampling. DREAM samples only one action at each
decision point, yet achieved the state-of-the-art performance
among model-free methods in popular benchmark games and
is even competitive with non-model-free algorithms [3]. Our
method also incorporated baseline networks, however, the
purpose is not only to reduce the variance but to truncate a
self-play with a fixed number of steps.

E. ReBeL

ReBeL is a generalization of reinforcement learning to
imperfect information games, where the strategy of an agent
is improved by experiences in self-play [4]. Specifically,
ReBeL repeatedly runs a depth-limited version of CFR in
a sampled sub-tree experienced in self-play and trains its
neural networks. The soundness of ReBeL is explained by
the fact that an imperfect information game has an equivalent
perfect information game with public belief states. We also
incorporated belief states but in a different way.

IV. PROPOSED METHODS

To learn a decent strategy in imperfect information games
with long histories or loops, such as Geister, we propose a
new method on top of CFR and its state-of-the-art extensions.
Our method is composed for alleviating problems caused by
histories with loops by using Belief States with Approxima-
tion by Dirichlet Distributions and Depth-limited External
Sampling for Board Games, where the former is inspired
by public belief states in ReBeL [4], and the latter is inspired
by both the baseline networks in DREAM [3] and the depth-
limited search in ReBel [4].

A. Belief States with Approximation by Dirichlet Distributions

Belief States with Approximation by Dirichlet Distributions
is designed to abstract the information sets in a way that keeps
an essential part of the history information. In many perfect
information board games, computational costs are dramati-
cally reduced by caching values of a board in transposition
tables through ignoring past histories. In imperfect information
games, it is not safe to ignore the entire history as the values
are highly dependent on histories, but we can still incorporate
abstraction. In Geister, the arrangement of the red and blue
ghosts of the opponent is hidden from a player, while the
locations of ghosts are public. Let denote true state be the
board position including hidden information (i.e., ghosts with
color), and a board observation be a player’s view of it (i.e.,
without color of the opponent’s ghosts). We define a belief as

Fig. 2: Board observation of player i at the beginning (BOi),
its compatible true states (A and B), and their corresponding
board observations from the opponent (A−i and B−i)

Fig. 3: Overview of belief states. The mixtures of blue and
red illustrate the likelihood of the ghost being blue or red.

the probability distribution over true states that are compatible
with the board observation of an agent. We define a belief state
of a player as a pair of the board observation and the belief.
Fig. 2 illustrates a board observation and true states on Mini
Geister. Suppose the left (right) ghost of player i is red (blue).
Because the color of the opponent’s ghost is not visible, there
are two possible true states; the blue ghost on the left (case
A) or the red ghost is (case B). Note that the color of the
right ghost is immediately determined by that of the left ghost
in Mini Geister. A belief state of player i is such a set of
histories that shares board observation and belief over the true
states. Fig. 3 illustrates belief states in Mini Geister. While
there are many histories compatible with a board observation
(top), some share the same probability in belief (center). So,
we group histories as group states by their belief (bottom).
Our important assumption is that the strategies are equivalent
or at least similar among the information sets included in each
belief state near Nash equilibrium.

Belief is refined along with the game progress, as a player
observes more moves by the opponent. The belief after
a move is updated as the posterior distribution following
Bayes’ rule, given a strategy profile. To effectively present the



prior and posterior distribution of a belief, we approximate
a belief by Dirichlet (or Beta if the number of true states
is two) distributions keeping the expected value unchanged.
Suppose an agent is player 1 for simplicity (the other case
is straightforward by symmetry). Let α1 and β1 be the
hyper parameters of the Beta distribution to approximate the
belief of player 1. At the beginning of a game, they are
initialized appropriately. Then, the belief is presented as the
expected probabilities of the Beta distribution to represent
the corresponding belief state BS1(BO1, α1, β1), such that
Pr(A|BS1) = α1/(α1 + β1),Pr(B|BS1) = 1− Pr(A|BS1).
After the opponent makes a move m2, we update the belief
according to Bayes rule as Eq. (6). For this update, we need
the opponent’s policies Pr(m2|BS2(· · · )). We assume that
the opponent uses the same policy and the same way to
update beliefs as our agents. This assumption does not hold
in general but is still reasonable when both players are near
Nash equilibrium. Therefore, we maintain two belief states
BS1, BS2, symmetrically. The latter consists of Beta(α2, β2)
from the viewpoint of the opponent that is updated when our
agent makes a move. Let Pr(A|α1, β1) be the prior prob-
ability governed by the beta distribution Beta(α1, β1), and
Pr(B|α1, β1) = 1− Pr(A|α1, β1). Denote A2 and B2 as the
board observation of the opponent whose private information
is the same as that in A and B, respectively, as shown in Fig. 2.
Let Pr(m2|BS2(A2, α2, β2)) and Pr(m2|BS2(B2, α2, β2))
represent the probability of playing move m2 if our agent
were the opponent, i.e., the probability of playing m2 if our
agent is in the belief state BS2 where the board observation is
A2 or B2 with the belief Beta(α2, β2). Pr(m2|BS1, α2, β2)
means the likelihood of playing the move under the current
belief state with belief Beta(α2, β2). Pr(A|m2, α1, β1) and
Pr(B|m2, α1, β1) are the posterior probabilities after observ-
ing the move, whose distribution is defined by integration.

Pr(m2|BSi, α2, β2)= Pr(A|α1, β1) Pr(m2|BS2(A2, α2, β2))
+ Pr(B|αi, βi) Pr(m2|BS2(B2, α2, β2))

Pr(A|m2, α1, β1)∝ Pr(A|α1, β1) Pr(m2|BS1, α2, β2)
Pr(B|m2, α1, β1)∝ Pr(B|α1, β1) Pr(m2|BS1, α2, β2)

(6)
Although the resulting posterior distribution no longer follows
a Beta distribution, we approximate it by a Beta distribution
and define the hyper parameters using Eq. (7) to keep the
expected value unchanged from that of the true posterior
distribution. This approximation enables simple and unified
updates in each move, while the naive procedure becomes
much more complicated as the number of moves increases.

α′
1 =α1 +

A′

A′ +B′ , and β′
1 = β1 +

B′

A′ +B′ (7)

where A′ = α1 · Pr(m2|BS2(A2, α2, β2))

B′ = β1 · Pr(m2|BS2(B2, α2, β2))

The initial values can be chosen by the model of the opponent
if available or initialized equally as α1 = β1 otherwise. As the
most natural choice we believe, we initialize α = β = 0.5 and
keep the sum of them to the move number (starting from one),

by increasing the sum by 1.0 after each move. The magnitude
of initial values affects the stability of updated values. Note
that the hyper parameters for a Dirichlet distribution are
updated similarly for beliefs where the number of the true
states per each observation is greater than two. We used Beta
distribution in this example for simplicity where the true states
for a given observation is always two. The main target of our
methods is Geister, but we suppose that it is also effective
in many other imperfect information board games with long
or infinite histories but with a limited number of hidden
arrangements.

B. Depth-limited External Sampling for Board Games

While the memory consumption is reduced with the pro-
posed belief states, it is still needed to handle computational
costs caused by long histories. A straightforward approach
would be to track a single path with outcome sampling
methods and to forcibly terminate the game after reaching a
threshold of the game length. Unfortunately, it was known that
the learned strategies by such an approach are not sufficient in
that agents were weaker than heuristic players though better
than random players [8]–[10]. We also show our comparative
experiments in Sect. V-B4.

Here we propose Depth-limited External Sampling for
Board Games, to effectively integrate our belief states and
the state-of-the-art techniques. To handle games with long
histories, our method expands a partial game tree with a
limited depth where the root of trees is sampled from self-
play as in reinforcement learning. To improve the learning
efficiency, each node in our partial game tree represents a
belief state instead of an information set. We perform external
sampling on our partial game trees consisting of belief states.
To approximate the expected utilities in leaf states that are
not the terminal state of a game, we introduce a function
approximator called baseline networks, typically implemented
with neural networks. Similarly, we introduced value and
policy networks to approximate regrets and average strategies
for scalability. In short, we sample a given belief state and
conduct external sampling on a partial game tree with a preset
depth limitation to collect training data for our networks. Fig. 4
sketches an overview of our method, and the pseudo-code of
the algorithm is shown in Algorithms 1, 2, and 3. In Algo-
rithm 1, we first initialize the buffers for data storage and the
networks for training and predicting. Each iteration t contains
a several number of traversals Ntraversals to sample extra data
for training. Iteration number t is used in linear weighting
as in study [7]. A typical iteration (Algorithm 2) consists
of self-play (left in Fig. 4) and learning (right), similarly to
AlphaZero. Belief states are sampled among game records
yielded by self-play with the current accumulative strategies
(approximated by regret matching with policy networks). In
the learning, for each sampled belief state, a subtree rooted
at the state is examined by a depth limited variant of ESCFR
(Algorithm 3), which is conducted to improve the baseline,
value, and policy networks: At each time a leaf is visited
(L. 4), the utility is approximated by the baseline networks



Algorithm 1 Depth-limited External Sampling for Board
Games
Function TRAIN(Niter, Ntraversals)

Initialize value buffer Bv = ∅ and policy buffer Bp = ∅.
Initialize baseline buffer Bb[i] = ∅, i = 1, 2.
Initialize value network Vv , policy network Vp and baseline net-
works Vb[i], i = 1, 2 randomly.
for t = 1, 2, . . . , Niter do

for k = 1, 2, . . . , Ntraversals do
ITERATION(t)

return Vp

Algorithm 2 Iteration
Function ITERATION(t)

Self-play using strategies provided by Vp with ϵ on-policy to collect
N belief states
for R = BS1, BS2, . . . , BSN do

for p = 1, 2 do
TRAVERSE(R, p, 0, t)

Train all the networks using the corresponding buffers.

Vb[p](BS). Leaf values are used to calculate regret values for
their parent or ancestor states through recursion (L. 12). The
expected values of non-leaf states, regret values, and strategies
are stored in Bb, Bv , and Bp to train the baseline, value, and
policy networks, respectively. We chose three as the depth limit
in our partial game trees for efficiency, which is also justified
by the fact that a loop in board games typically needs the
length of four.

V. EXPERIMENTS

To clearly evaluate the performance, we implemented our
proposed methods on Mini Geister using tabular representa-
tion. In our Mini Geister, the initial arrangements of the ghosts
are generated randomly without the players’ actions. Note
that our methods are also capable if the players can arrange
their ghosts by themselves. For tabular representation, all the
networks are replaced by key-value tables. The belief states
contain real number probabilities which are hard to handle by
tables, so they are quantized to one-fourths and then converted
to strings as the keys for tables. The regret and policy tables
store accumulated regret and policy values for each quantized
belief state, respectively.

A. Evaluation

In our evaluation environment, the initial arrangements
of the ghosts are also randomly generated. All the players,
including the random one, adopted an enhancement that they
always play an escape move to win the game if they can.
The game will be terminated with a draw if the game length
reaches the preset limitation. In Mini Geister experiments, the
limitation is 30 moves if not further mentioned. Our trained
agents are evaluated by playing against the random and a
heuristic player. We count the win rate and the winning moves
to analyze our agents’ performance. The winning moves can be
classified into the following categories according to the game
rule: loss by taken blue, loss by take red, loss by escape, draw,

Algorithm 3 Traverse
Function TRAVERSE(BS, p, d, t)

if BS ∈ Z then ▷ is terminal
return up(BS) ▷ player p’s utility of terminal BS

if d ≥ dLimit then
return Vb[p](BS) ▷ predicted baseline value of BS

σ(BS)← REGRETMATCHING(Vv(BS))
if P (BS) = p then

for a ∈ A(BS) do ▷ for each legal action in BS
v(a)← 0 ▷ utility for each action
R(a)← 0 ▷ regret for each action

v̄ ← 0
for a ∈ A(BS) do

v(a)← TRAVERSE(BS · a, p, d+ 1, t)
v̄ ← v̄ + σ(BS, a) · v(a)

for a ∈ A(BS) do
R(a)← v(a)− v̄

Add (BS,R, t) to value buffer Bv .
Add (BS, v̄) to baseline buffer Bb[p].
return v̄

else
Sample a ∼ σ(BS)
Add (BS, σ(BS), t) to policy buffer Bp.
return TRAVERSE(BS · a, p, d+ 1, t)

win by taken red, win by take blue, and win by escape. The
ratio of each category shows us the preference of the agents’
strategies.

The heuristic player acts based on simple evaluation func-
tions without search, whose features are; (1) Attack: encour-
aging the agent to move ally blue ghosts towards opponent
corners, (2) Avoid: discouraging the agent from taking un-
known opponent ghosts and encouraging the agent to reduce
the number of neighboring opponent ghosts of ally blue ghosts,
and (3) Defense: encouraging the agent to move ally ghosts
towards ally corners. Empirically, the heuristic player is good
at escaping and can win the random player at a win rate of
about 70% in Mini Geister (30 moves limit) and over 80% in
the full game of Geister (300 moves limit). Fig. 5 shows the
details.

We observe that the sampled belief states are often poorly
distributed even with ϵ on-policy. To increase sampling ef-
ficiency, we also introduce a new hyperparameter ϵbelief to
regenerate the parameters of the belief with probability ϵbelief.
When the belief is regenerated, the true state of the belief
state is sampled according to the new belief; otherwise, the
true state in the belief state is retained. In our experiments,
ϵ = 0.25 and ϵbelief = 0.125. For experiments without the
belief state, ϵbelief is not used. The utilities for terminal histories
are +1, 0, and −1 for win, draw, and loss, respectively. Under
other situations, the utilities are considered zero if needed. In
our preliminary experiments, the learning of baseline values
for non-traversal players was not stable. Therefore, we only
learned baseline values for a traverser and kept those baseline
values all zeros for a non traverser. The baseline tables update
the values by exponential moving average (α = 0.5), which
does the update as bk = (1 − α)bk−1 + αb∗ , where the k-



Fig. 4: Overview of Depth-limited External Sampling for Board Games. Circles colored in blue and red represent belief states.
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Fig. 5: Self-play results between Heuristic Player v.s. Random
Player. Ratio is measured over 10 000 games and shown in
percentage rounded to integer.

th update of value b is b∗ and b0 = 0. Our experiments are
run on single-chip computers without clustering, each with an
AMD® Ryzen 9 or Threadripper CPU. All the source code is
written in Python 3, and self-play and Traverse run in parallel
with the standard multiprocessing library.

B. Results and Analysis

1) Agents with Belief States: We execute our algorithm
for 3 000 iterations t with two traversals k per iteration. The
results of our trained agents playing against the random and
the heuristic player are shown in Fig 6a and 6b. Data show
the average of four independent training from scratch.

We can observe from Fig. 6a that our agents learned
reasonable strategies for the game. The winning ratio steadily
increases as the area of the blue region does along with
iterations. Although our belief in the opponent’s ghost colors
does not make sense when playing against a random opponent,
our agents show good performance without exerting the full
strength of belief states. During the training, our agents grad-
ually grasp a way to escape from the corners while protecting
the ally blue ghost from being captured. Although the total win
rate grows slower after 1 500 iterations, the increasing ratio of
winning by escape and decreasing ratio of capturing enemy
ghosts indicate that the learning is still progressing. We notice
that our agents often capture enemy red ghosts by mistake due
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Fig. 6: Learning curves of the proposed agents (Tabular),
evaluated by winning ratio every 100 iterations.

to the randomness of the opponent which confuses our belief.
However, our agents gradually acquires the skill to win by
escaping or letting ally red be captured to decrease uncertain
capturing. Finally, our agents obtained a win rate of nearly
75% against the random player.

The learning curves in Fig. 6b clearly show the rapid learn-
ing progress of our agents. The increasing ratio of capturing
enemy blue and decreasing ratio of capturing enemy red by
mistake show that our agents quickly master how to identify
enemy blue ghosts and capture them to win the game. The
heuristic player is good at making their blue ghosts escape,
whose movement is caught by our agents using our belief
states. It can be inferred that our agents gain an understanding
of the strategy that the heuristic player uses as our agents
predict the heuristic player’s moves with high accuracy. Our
agents are also getting better at preventing enemy escapes,
obtaining a decreasing ratio of losses by escape. Similar to
the results of playing against random players, our agents also
learn to protect ally blue ghosts from being captured and let
ally red ghosts be captured. As the heuristic player is designed
to be discouraged from uncertain captures, we think our agents
also learn how to deceive the opponent by moving a red
ghost towards enemy corners. We also observe that the training
progress decelerates after about 2 000 iterations. We find that
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Fig. 7: Ablation: Without belief states, evaluated by winning
ratio every 100 iterations.

the ratio of draw is relatively high during the whole training,
indicating both players avoid immediate loss and reach the
limitation. If we lengthen the game length limitation during
the evaluation, we expect our agents to win most of the draw
games. Finally, our agents earned a win rate of over 55%
against the heuristic player. After training for 3 000 iterations,
although the growing speed drops significantly, there is still an
increasing trend in win rate. We believe our agent will achieve
even better performance if we continue training.

Note that our agent is not specialized for a single opponent
but uses the same strategy against random or heuristic players.
From the results of playing against these different players,
we argue that our agents have acquired decent skills to play
Mini Geister using tabular representation approaching Nash
equilibrium.

2) Ablation study 1: Agents Without Belief States: To eval-
uate the effectiveness of our belief states, we also implemented
our method without Belief States, where each information set
consists of a current board observation ignoring any history. It
means that the same strategy is used for each board observation
without inspecting the arrangement of the opponent’s ghosts.
We trained the agents under the same conditions as those with
belief states, and show the results in Fig 7a and 7b. The curves
here and in the following experiments are the average of three
independent training from scratch.

The ablated agent played similarly against the random
player but poorly against the heuristic player. Fig. 7a shows
that the agent reached a win rate of about 70% against the
random player, but with a very different strategy. As the
ablated agents have no information about the enemy ghost
colors, they focus on how to escape while reducing capturing.
However, the agents fail to protect ally the blue ghosts from
being captured. Fig. 7b shows that although the training
gradually proceeds, the ablated agents fail to compete with
the heuristic player, with a win rate of only about 35%. It
is natural that the belief state is more effective against the
heuristic player than against the random one because moves
by the heuristic player are more meaningful and tend to contain
information about the arrangement of ghost colors.

3) Ablation study 2: Agents without Baseline: To evaluate
the effectiveness of the baseline network, we also trained
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Fig. 8: Ablation without baseline, evaluated by winning ratio
every 100 iterations.
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Fig. 9: Learning curves of DREAM agents, evaluated by
winning ratio every 5 000 iterations.

agents without the baseline network by setting its output to
zero. The results are shown in Fig 8a and 8b. We can observe
from the figures that our agents are able to learn to identify
enemy piece colors, but the resulting strategies are relatively
weak, with a win rate of only about 20% against the heuristic
player.

4) DREAM and OSCFR: To demonstrate the effectiveness
of our proposed depth-limited methods, we implemented other
CFR variants with and without belief states and compared the
performance of the trained agents. We implemented DREAM
and outcome-sampling MCCFR (OSCFR) in Geister following
the previous studies [8]–[10], but in a tabular form. For
DREAM, we used accumulative strategies instead of sampling
from value networks as we are able to store the exact values
using the tabular representation. The results are shown in
Figs 9a, 9b, 10a, 10b, 11a, 11b, 12a and 12b. These figures
clearly show that all of these agents learn extremely slowly
and make little progress in learning. The learning efficiency is
so limited that applying belief states does not show apparent
improvement in performance. In contrast, the agents without
belief states appear to have a superficial understanding of
escaping. The resulting agents are barely superior to the
random player, with a win rate of only about 10% against
the heuristic player. Therefore, the depth-limited method is
crucial in learning.

In addition to comparison of win rates against random or
heuristic players, we also conducted a direct match between
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Fig. 10: Learning curves of DREAM agent without belief
states, evaluated by winning ratio every 5 000 iterations.
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Fig. 11: Learning curves of OSCFR agents, evaluated by
winning ratio every 5 000 iterations.

the agents with and without belief states. We choose the
execution of the highest win rate against the heuristic player
for agents without belief states and the lowest for the agent
with belief states. The result of 10 000 games is shown in
Fig 13. The result shows that our agents with belief states
have the ability to recognize enemy’s blue ghosts with high
accuracy and protect ally blue ghosts from being captured.
Although the skill to escape from the corners is inferior to
that of the agent without belief states, they have a significantly
better performance in identifying blue ghosts. As the two types
of agents are trained in similar settings, we propose that the
application of belief states will enable the agents to acquire
more knowledge in playing the game.

VI. CONCLUSIONS AND FUTURE WORKS

In this study, we proposed Belief States with Approxi-
mation by Dirichlet Distributions and Depth-limited External
Sampling for Board Games to abstract the game and deal
with loops in board games. Our careful combination of the
methods and ideas has enabled CFR variants to be applied
to board games with long histories and/or loops. We applied
our methods to the game Mini Geister to train agents and
evaluated them by playing against the random player and the
heuristic player. Although the tabular representation we use
has a limited precision in data processing, the experimental
results showed that our proposed method learned important
strategies in this game, including escaping from the corners,
identifying enemy blue ghosts, and avoiding ally blue ghosts
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Fig. 12: Learning curves of OSCFR agents, without belief
states, evaluated by winning ratio every 5 000 iterations.
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Fig. 13: Self-play results between proposed agent (Belief
States, worst agent out of four executions) v.s. ablated agent
(Without Belief States, best one out of three executions). Ratio
is measured over 10 000 games and shown in percentage,
rounded to integer.

being captured. Our proposed method showed a significantly
better performance than the baseline and therefore showed the
ability to learn reasonable strategies with tabular representa-
tion. We are working on the neural networks representation to
extend our methods to show the scalability in larger games.
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