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Abstract—Training a game-playing reinforcement learning
agent requires multiple interactions with the environment. Ig-
norant random exploration may cause a waste of time and
resources. It’s essential to alleviate such waste. As discussed
in this paper, under the settings of the off-policy actor critic
algorithms, we demonstrate that the critic can bring more
expected discounted rewards than or at least equal to the actor.
Thus, the Q value predicted by the critic is a better signal
to redistribute the action originally sampled from the policy
distribution predicted by the actor. This paper introduces the
novel Critic Guided Action Redistribution (CGAR) algorithm
and tests it on the OpenAI MuJoCo tasks. The experimental
results demonstrate that our method improves the sample effi-
ciency and achieves state-of-the-art performance. Our code can
be found at https://github.com/tairanhuang/CGAR.

Index Terms—Reinforcement Learning, Soft actor-critic, Mu-
JoCo tasks

I. INTRODUCTION

In recent years, reinforcement learning has been widely used
in games and has made excellent progress in Atari, StarCraft,
Dota2, Honor of Kings, and other games [1], [2]. However,
training a reinforcement learning model is time-consuming
due to the massive interactions between the learning and the
environment [3]–[5]. Also, interactions with naive exploration
strategies slow down the model’s learning speed and waste
resources during model training [6], [7]. These deficiencies
restrict the applications of reinforcement learning in games.

Off-policy algorithms store the experience in the buffer and
reuse them to reduce interaction costs. Actor critic algorithms
use an actor to select actions and use a critic to estimate the
value function to reduce the variance of policy gradient and
accelerate the convergence. Deep deterministic policy gradient
(DDPG) [8] and Soft Actor-Critic (SAC) algorithm [9] com-
bine the advantages of off-policy algorithms and actor critic
algorithms. DDPG learns a critic and an actor at the same time.
It uses the Bellman function to optimize the critic and uses the
critic to optimize the actor. SAC [9] maximizes both expected

return and entropy [10], [11] to balance exploration and
exploitation. The actor of SAC predicts the action distribution
and then samples action in the training stage and uses the
mean value of the distribution as the action in the evaluation
stage. It further improves the sample efficiency and stability
of reinforcement learning.

Following the same purpose, we propose a novel Critic
Guided Action Redistribution (CGAR) mechanism and show
that SAC with CGAR achieves state-of-the-art performance.
In this paper, we first give a theoretical analysis of actor
critic algorithms and demonstrate that the critic can bring
more expected discounted rewards than or at least equal to
the actor in off-policy actor critic algorithms. To utilize such
advancement of critic, we redistribute the action distribution
predicted by the actor through the Q value predicted by the
critic.

In the proposed CGAR model, after getting an action
distribution predicted by the actor, we sample K actions from
that action distribution. Then, the critic model predicts the
Q values for these K actions conditioned on the state. We
reset the selection probability of these actions based on their
corresponding Q values. Since the critic model is optimized
to predict the expected return, with the distribution positively
correlated to the Q value, the algorithm tends to select the
action with a higher expected return. We deploy our method
on SAC and conduct experiments on the OpenAI MuJoCo
tasks [12]. The experimental results demonstrate that our ap-
proach is effective and achieves state-of-the-art performance.
Here we summarize our main contributions:

• We demonstrate that the critic can bring more expected
discounted rewards than or at least equal to the actor in
the off-policy actor critic algorithm.

• We propose a novel Critic Guided Action Redistribution
(CGAR), which uses the Q value predicted by the critic
to resample action from the action distribution predicted
by the actor.
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Fig. 1. CGAR: Critic Guided Action Redistribution in Reinforcement Leaning

• We apply our method to SAC and achieve state-of-the-art
performance on OpenAI MuJoCo tasks.

II. ALGORITHM

A. Motivation

Under the classic setting of the off-policy actor critic
learning procedure, at each interaction with the environment
(environment step), the agent collects data from the environ-
ment under the policy network with the action distribution
of πϕa(s). Then, given the updated data buffer D, the critic
is optimized to estimate the future reward. Then, the actor
is updated to maximize the estimated expected future reward
given the currently learned critic. The procedure forms a
dependency circle and loops at each environment step during
training.

At a certain environment step, suppose that the critic Qϕc

is optimized to Qϕi
c

after i gradient step under the currently
collected data D. The loss function to optimize actor is
generally written as,

Jπ(ϕa) = Est∼DEat∼πϕa (at|st)(−Qϕi
c
(st, at)). (1)

When the loss function is minimized, the action with the
highest probability predicted by the actor is the same as the
action leading to the highest Qϕi

c
predicted by the critic.

Then the performance of the actor and the critic is the same.
However, most of the time, the actor is less optimized to the
optimal distribution of action given the current critic, which
leads to poor performance compared with the current critic.

This learning procedure is similar to the knowledge distil-
lation or teacher-student method [13]. In our situation, we use
the Q value output by the critic to calculate the loss function to
train the actor. Hence, critic and actor correspond to teacher
and student, respectively. The performance gap between the
student and teacher has been demonstrated in many previous
works, and the gap exists even though the student network
has the same size as the teacher network [14]–[16]. In
Section II-B, we also give an empirical demonstration of the
motivation. As the performance of the critic is better than
or at least equal to the actor in each environment step, we
can expect that the critic can bring more expected discounted
rewards than or at least equal to the actor during the RL
training procedure. This paper proposes a CGAR algorithm to
ameliorate the performance gap between the actor and critic.

B. Empirical Demonstration of the Motivation

We conduct experiments under supervised learning settings
to empirically demonstrate the above motivation. In detail, We
use MNIST [17] as a dataset and maintain two identical multi-
layer perceptron models, M1 and M2. We let M1 fit the dataset
and let M2 fit M1. Given input x and its label y, the loss
function of M1 is: L1 = CrossEntropy(M1(x), y), and the
loss function of M2 is: L2 = CrossEntropy(M2(x),M1(x)).
Under this setting, M1 is the signal provided to M2, and y is
the signal provided to M1. Besides, M1 and M2 are updated
one after another iteratively. This setting is quite similar to
the off-policy actor critic algorithm in Section II-A, where
the reward is provided to calculate the critic’s target, and the
Q is the signal provided to the actor. To simulate the loss
function of critic, we further design another loss function,
L1 = MSE(M1(x), ȳ), where ȳ is the one-hot representation
of y, and L2 remains unchanged. We test the evaluation
accuracy of M1 and M2 every epoch over five seeds and
report the results in Fig. 2. We can see that under both loss
functions, M2 learns more slowly than M1, demonstrating our
motivation’s correctness.
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Fig. 2. Comparison results of M1 and M2.

C. Critic Guided Action Redistribution

We propose our Critic Guided Action Redistribution
(CGAR) based on the above motivation and empirical demon-
stration. In actor critic algorithms, given state st at environ-
ment step t, the actor πϕa

predicts the action distribution Pt.
After that, it samples action at from Pt to interact with the
environment.

at ∼ Pt = πϕa(st). (2)



In our algorithm, we first sample K actions {a0t , a1t , ..., aK−1
t }

from Pt. These actions construct the actions set Lt
a.

Lt
a := {ait ∼ Pt|i ∈ [0,K − 1]}. (3)

Then we use the critic to predict the Q value for every action
in Lt

a. The Q value Qi
t is calculated on every action ait in Lt

a

conditioned with state st. These Q values {Q0
t , Q

1
t , ..., Q

K−1
t }

construct the Q value set Lt
Q.

Lt
Q := {Qi

t = Qϕc
(st, a

i
t)|i ∈ [0,K − 1]}. (4)

We use the Q value Qi
t to calculate the probability pit of ait.

The probability set results from the Q value set calculated by
the Softmax function. In this way, we could get the action
probability distribution P ′

t.

P ′
t = Softmax(Lt

Q)

= { eQ
i
t∑K−1

j=0 eQ
j
t

|i ∈ [0,K − 1]}.
(5)

We use the Softmax function to make actions with large Q
values more likely to be sampled while maintaining a certain
degree of exploration. Finally, we select the action at from
the new distribution. Fig. 1 is our model’s diagram.

at ∼ P ′
t. (6)

D. Implementation

We apply CGAR to SAC. SAC is an off-policy algorithm
based on the Maximum Entropy Principle. Its optimization
goal is simultaneously maximizing both the expected return
and the entropy. It learns a policy πϕa

, a Q value function
Qϕc

, and a temperature coefficient α, with parameters ϕa,
ϕc = (ϕ1

c , ϕ
2
c), and α separately. The loss functions of SAC

are defined below, which are introduced in the SAC paper.

JQ(ϕc) =Est,at∼D
1

2
(Qϕc(st, at)

−(rt + γEst+1∼p(Vϕ̄c
(st+1))))

2,
(7)

Vϕ̄c
(st) =Eat∼πϕa (at|st)Qϕ̄c

(st, at)

−α log πϕa(at|st),
(8)

Jπ(ϕa) =Est∼DEat∼πϕa (at|st)

(α log πϕa
(at|st)−Qϕc

(st, at)).
(9)

Jα(α) = Eat∼πϕa (at|st) − α log πϕa
(at|st)− αH, (10)

Note that different from Eq. (1), there’s an entropy term in
Eq. (9), which doesn’t affect the demonstration in Section II-A.
Our complete algorithm is shown in Algorithm 1. Our unique
operations are marked with red. And the deleted operations in
SAC are marked with blue and strikethrough.

Algorithm 1 CGAR applied to SAC
1: Input: ENV
2: Output: ϕc, ϕa and α
3: Initialize parameters ϕc, ϕa and α
4: Set ϕ̄c = ϕc, D = ∅
5: for k = 1, . . . , Ninit do
6: Sample random action: at ∼ πrandom(st)
7: Execute action: st+1, rt+1,done ∼ ENV(at)
8: Collect data: D ← D ∪ {st, at, st+1, rt+1}
9: end for

10: for k = 1, . . . , Ntrain do
11: Predict action distribution: Pt = π(st)
12: Sample action: at ∼ Pt

13: Sample K actions from Pt:
Lt
a = {ait ∼ Pt|i ∈ [0,K − 1]}

14: Calculate the Q value set:
Lt
Q = {Qi

t = Qϕc(st, a
i
t)|i ∈ [0,K − 1]}

15: Get the new distribution: P ′
t = Softmax(Lt

Q)
16: Sample action: at ∼ P ′

t

17: Execute action: st+1, rt+1,done ∼ ENV(at)
18: Collect data: D ← D ∪ {st, at, st+1, rt+1}
19: Train critic: ϕc ← ϕc − λQ∇ϕc

JQ(ϕc)
20: Train actor: ϕa ← ϕa − λπ∇ϕa

Jπ(ϕa)
21: Train alpha: α← α− λα∇αJα(α)
22: Update the target critic: ϕ̄c ← τϕc + (1− τ)ϕ̄c

23: end for

III. EXPERIMENT

A. Implementation Details

We implement CGAR on the SAC algorithm noted as
CGAR-SAC. The implementation of the SAC comes from
[18]. We evaluate our method on OpenAI MuJoCo tasks,
including tasks such as standing, walking, and running. The
state of the agent consists of parameters such as positions and
velocities. Action is a real-valued vector that represents the
control of the agent’s joints. The purpose of model learning
is to maximize the expected discounted rewards. We test
the agent performance every 10,000 environment steps. We
compute the mean episode returns an agent obtains over ten
episodes for every evaluation. All results are over five different
seeds, and we keep the minimum, maximum, and mean values
over these seeds.

B. Comparison between CGAR-SAC with SAC

We compare the performance of CGAR-SAC with SAC.
We counted the mean, maximum and minimum values of the
average return obtained overall seeds during each evaluation
and plotted them in Fig. 3. The curve represents the average
return, and the shading represents the range between the
maximum and minimum. From Fig. 3 we can see that in most
tasks, CGAR-SAC converges faster and achieves better final
performance than SAC, especially Cheetah Run, Walker Walk,
and Finger Spin. And CGAR-SAC is not weaker than SAC
in other tasks. We also counted the average return obtained
overall seeds during each evaluation and calculated their mean



TABLE I
MEAN VALUE OF THE AVERAGE RETURN FOR THE WHOLE TRAINING PROCESS

Task BCC CR RE WW WS FS
CGAR-SAC 843±73 593±51 821±81 761±71 857±32 793±47

SAC 841±89 574±59 817±82 746±110 846±29 760±49

over the entire training process. In Table I, we use the initials
of the first letter of every environment as the table title, and the
full names can be found in Fig. 3. The value of each item in the
table represents the mean value of the average return, and the
subscript denotes the standard deviation. From Table I, we can
see that the mean value of the average return of our method
during the training process is higher than SAC in every task,
and the standard deviation is lower than SAC in most tasks.
We can conclude that CGAR improves the sample efficiency
of SAC.
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Fig. 3. Comparison results between CGAR-SAC and SAC.

IV. CONCLUSION

This paper proposes a novel action redistribution algorithm,
Critic Guided Action Redistribution for game playing. We
demonstrate that the critic can bring more expected discounted
rewards than or at least equal to the actor in the off-policy
actor critic algorithm. Based on the demonstration, we use
the Q value predicted by the critic to redistribute the actions
probability distribution generated by the actor. Then we sample

actions from the new distribution to interact with the environ-
ment. We implement our algorithm on SAC and test it on the
OpenAI MuJoCo tasks. The experimental results demonstrate
that our method improves the sample efficiency and achieves
state-of-the-art performance. Future research can be done by
applying CGAR to other games or analyzing the distribution
of Q value on the multimodal distribution.
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