CGAR: Critic Guided Action Redistribution in
Reinforcement Leaning

Tairan Huang
SCSE
Beihang University
Beijing, China
trhuang @buaa.edu.cn

Mingming Sun
Cognitive Computing Lab
Baidu Research
Beijing, China
sunmingming01 @baidu.com

Abstract—Training a game-playing reinforcement learning
agent requires multiple interactions with the environment. Ig-
norant random exploration may cause a waste of time and
resources. It’s essential to alleviate such waste. As discussed
in this paper, under the settings of the off-policy actor critic
algorithms, we demonstrate that the critic can bring more
expected discounted rewards than or at least equal to the actor.
Thus, the Q value predicted by the critic is a better signal
to redistribute the action originally sampled from the policy
distribution predicted by the actor. This paper introduces the
novel Critic Guided Action Redistribution (CGAR) algorithm
and tests it on the OpenAl MuJoCo tasks. The experimental
results demonstrate that our method improves the sample effi-
ciency and achieves state-of-the-art performance. Our code can
be found at https://github.com/tairanhuang/CGAR.

Index Terms—Reinforcement Learning, Soft actor-critic, Mu-
JoCo tasks

I. INTRODUCTION

In recent years, reinforcement learning has been widely used
in games and has made excellent progress in Atari, StarCraft,
Dota2, Honor of Kings, and other games [1], [2]. However,
training a reinforcement learning model is time-consuming
due to the massive interactions between the learning and the
environment [3]-[5]. Also, interactions with naive exploration
strategies slow down the model’s learning speed and waste
resources during model training [6], [7]. These deficiencies
restrict the applications of reinforcement learning in games.

Off-policy algorithms store the experience in the buffer and
reuse them to reduce interaction costs. Actor critic algorithms
use an actor to select actions and use a critic to estimate the
value function to reduce the variance of policy gradient and
accelerate the convergence. Deep deterministic policy gradient
(DDPQG) [8] and Soft Actor-Critic (SAC) algorithm [9] com-
bine the advantages of off-policy algorithms and actor critic
algorithms. DDPG learns a critic and an actor at the same time.
It uses the Bellman function to optimize the critic and uses the
critic to optimize the actor. SAC [9] maximizes both expected

Xu Li
Cognitive Computing Lab
Baidu Research
Beijing, China
lixul3@baidu.com

Hao Li
ECE
Peking University
Beijing, China
2101212812 @pku.edu.cn

Ping Li
Cognitive Computing Lab
Baidu Research
Seattle, USA
liping11 @baidu.com

return and entropy [10], [11] to balance exploration and
exploitation. The actor of SAC predicts the action distribution
and then samples action in the training stage and uses the
mean value of the distribution as the action in the evaluation
stage. It further improves the sample efficiency and stability
of reinforcement learning.

Following the same purpose, we propose a novel Critic
Guided Action Redistribution (CGAR) mechanism and show
that SAC with CGAR achieves state-of-the-art performance.
In this paper, we first give a theoretical analysis of actor
critic algorithms and demonstrate that the critic can bring
more expected discounted rewards than or at least equal to
the actor in off-policy actor critic algorithms. To utilize such
advancement of critic, we redistribute the action distribution
predicted by the actor through the Q value predicted by the
critic.

In the proposed CGAR model, after getting an action
distribution predicted by the actor, we sample K actions from
that action distribution. Then, the critic model predicts the
Q values for these K actions conditioned on the state. We
reset the selection probability of these actions based on their
corresponding Q values. Since the critic model is optimized
to predict the expected return, with the distribution positively
correlated to the Q value, the algorithm tends to select the
action with a higher expected return. We deploy our method
on SAC and conduct experiments on the OpenAl MuJoCo
tasks [12]. The experimental results demonstrate that our ap-
proach is effective and achieves state-of-the-art performance.
Here we summarize our main contributions:

+ We demonstrate that the critic can bring more expected
discounted rewards than or at least equal to the actor in
the off-policy actor critic algorithm.

o We propose a novel Critic Guided Action Redistribution
(CGAR), which uses the Q value predicted by the critic
to resample action from the action distribution predicted
by the actor.

Fig. 1. CGAR: Critic Guided Action Redistribution in Reinforcement Leaning

o We apply our method to SAC and achieve state-of-the-art
performance on OpenAl MuJoCo tasks.

II. ALGORITHM

A. Motivation

Under the classic setting of the off-policy actor critic
learning procedure, at each interaction with the environment
(environment step), the agent collects data from the environ-
ment under the policy network with the action distribution
of 7y, (s)- Then, given the updated data buffer D, the critic
is optimized to estimate the future reward. Then, the actor
is updated to maximize the estimated expected future reward
given the currently learned critic. The procedure forms a
dependency circle and loops at each environment step during
training.

At a certain environment step, suppose that the critic Q4.
is optimized to ()y; after ¢ gradient step under the currently
collected data D. The loss function to optimize actor is
generally written as,

Jfr((ba) = EsthEatNﬂ'(pa (at|st) (_Qd)} (Sta at))- (1)

When the loss function is minimized, the action with the
highest probability predicted by the actor is the same as the
action leading to the highest () predicted by the critic.
Then the performance of the actor and the critic is the same.
However, most of the time, the actor is less optimized to the
optimal distribution of action given the current critic, which
leads to poor performance compared with the current critic.
This learning procedure is similar to the knowledge distil-
lation or teacher-student method [13]. In our situation, we use
the Q value output by the critic to calculate the loss function to
train the actor. Hence, critic and actor correspond to teacher
and student, respectively. The performance gap between the
student and teacher has been demonstrated in many previous
works, and the gap exists even though the student network
has the same size as the teacher network [14]-[16]. In
Section II-B, we also give an empirical demonstration of the
motivation. As the performance of the critic is better than
or at least equal to the actor in each environment step, we
can expect that the critic can bring more expected discounted
rewards than or at least equal to the actor during the RL
training procedure. This paper proposes a CGAR algorithm to
ameliorate the performance gap between the actor and critic.

B. Empirical Demonstration of the Motivation

We conduct experiments under supervised learning settings
to empirically demonstrate the above motivation. In detail, We
use MNIST [17] as a dataset and maintain two identical multi-
layer perceptron models, M7 and M,. We let M fit the dataset
and let M, fit M;. Given input = and its label y, the loss
function of M is: L1 = CrossEntropy(Mi(x),y), and the
loss function of My is: Lo = CrossEntropy(Msz(x), Mi(x)).
Under this setting, M is the signal provided to M>, and y is
the signal provided to M. Besides, M; and M, are updated
one after another iteratively. This setting is quite similar to
the off-policy actor critic algorithm in Section II-A, where
the reward is provided to calculate the critic’s target, and the
Q is the signal provided to the actor. To simulate the loss
function of critic, we further design another loss function,
Ly = MSE(M(x),7), where § is the one-hot representation
of y, and Lo remains unchanged. We test the evaluation
accuracy of M; and M, every epoch over five seeds and
report the results in Fig. 2. We can see that under both loss
functions, M5 learns more slowly than M, demonstrating our
motivation’s correctness.

Ly: CrossEntropy Ly: MSE

095
0.98
0.90
0.97 —
- —
i 0.85 = ——t
0.96 - —
i -
= -~
Jo.05 & goso R4
] a g /
“o0e g “ors /
v /
oo3f / 070l
0.92 / 0.65 /
—_ / —_—
091 =M — M
8 10

6 6
Epoch Epoch

Fig. 2. Comparison results of M7 and M.

C. Critic Guided Action Redistribution

We propose our Critic Guided Action Redistribution
(CGAR) based on the above motivation and empirical demon-
stration. In actor critic algorithms, given state s; at environ-
ment step ¢, the actor 7y, predicts the action distribution P;.
After that, it samples action a; from P, to interact with the
environment.

ag ~ Pt = 7T¢a (St). (2)

In our algorithm, we first sample K actions {a,a},...,aX '}
from P;. These actions construct the actions set L.
L = {a} ~ P|i € [0, K — 1]}. 3)

Then we use the critic to predict the Q value for every action
in LY. The Q value Q! is calculated on every action a! in L%

conditioned with state s;. These Q values {QY, Q}, ..., f(-1
construct the Q value set L.
Lo ={Qi =Qu.(se,ap)li € [0, K —1]}. (4

We use the Q value Q! to calculate the probability pi of ai.
The probability set results from the Q value set calculated by
the Softmax function. In this way, we could get the action
probability distribution P;.

P = Softmax'(LtQ)

Qi) (5
= { =y li € [0, K —1]}.
ZjK:ol e

We use the Softmax function to make actions with large Q
values more likely to be sampled while maintaining a certain
degree of exploration. Finally, we select the action a; from
the new distribution. Fig. 1 is our model’s diagram.

ag ~ Py. (6)

D. Implementation

We apply CGAR to SAC. SAC is an off-policy algorithm
based on the Maximum Entropy Principle. Its optimization
goal is simultaneously maximizing both the expected return
and the entropy. It learns a policy mg,, a Q value function
Q4., and a temperature coefficient o, with parameters ¢,
be = (pL, ¢?), and « separately. The loss functions of SAC
are defined below, which are introduced in the SAC paper.

JQ (¢c) :ESt,atND%(ch)c (st’ at)

@)
_(rt + 7E81+1NP(V¢§C (St+1)))>27
Va.(st) =Ea,nry, (arls) Qg (515 at) ®
—alog e, (at]st),
I (Pa) =Es,~DEa;nry, (aslse))
(alog e, (ai]st) — Qp.(st,ar)).
Ja(a) = EatN‘n'd,a (a¢lse) — O‘log Thq (at|5t) - O/H, (10)

Note that different from Eq. (1), there’s an entropy term in
Eq. (9), which doesn’t affect the demonstration in Section II-A.
Our complete algorithm is shown in Algorithm 1. Our unique
operations are marked with red. And the deleted operations in
SAC are marked with blue and strikethrough.

Algorithm 1 CGAR applied to SAC
1: Input: ENV

2: Output: ¢, ¢, and «

3: Initialize parameters ¢., ¢, and «

4: Set oo = o, D=1

5. for k=1,..., Nipn do

6: Sample random action: a; ~ Trandom (St)
7. Execute action: sy11,7¢+1,done ~ ENV(a)
8: Collect data: D <+ DU {sy,ay, St41,Te+1}
9: end for

10: for k =1,..., Niain do

11: Predict action distribution: P; = 7(s;)

12: Sample-action—ar—~Fr

13: Sample K actions from Py:

LY = {ai ~Pi € [0, K — 1]}
14: Calculate the Q value set:

LY, = Q) = Qg (s1,a})li € [0, K — 1]}
15: Get the new distribution: P/ = Softmax(IL,)
16: Sample action: a; ~ P]
17: Execute action: $y41,7¢+1,done ~ ENV(ay)
18: Collect data: D < D U {s¢, at, St41, "t+1}
19: Train critic: ¢, <= ¢ — AoV, Jo(dc)
20: Train actor: ¢ < ¢g — Ax Ve, Jr(¢4)
21: Train alpha: « + a — AV Jo (@)
22: Update the target critic: ¢, < T¢. + (1 — 7)de
23: end for

III. EXPERIMENT
A. Implementation Details

We implement CGAR on the SAC algorithm noted as
CGAR-SAC. The implementation of the SAC comes from
[18]. We evaluate our method on OpenAl MuJoCo tasks,
including tasks such as standing, walking, and running. The
state of the agent consists of parameters such as positions and
velocities. Action is a real-valued vector that represents the
control of the agent’s joints. The purpose of model learning
is to maximize the expected discounted rewards. We test
the agent performance every 10,000 environment steps. We
compute the mean episode returns an agent obtains over ten
episodes for every evaluation. All results are over five different
seeds, and we keep the minimum, maximum, and mean values
over these seeds.

B. Comparison between CGAR-SAC with SAC

We compare the performance of CGAR-SAC with SAC.
We counted the mean, maximum and minimum values of the
average return obtained overall seeds during each evaluation
and plotted them in Fig. 3. The curve represents the average
return, and the shading represents the range between the
maximum and minimum. From Fig. 3 we can see that in most
tasks, CGAR-SAC converges faster and achieves better final
performance than SAC, especially Cheetah Run, Walker Walk,
and Finger Spin. And CGAR-SAC is not weaker than SAC
in other tasks. We also counted the average return obtained
overall seeds during each evaluation and calculated their mean

TABLE I
MEAN VALUE OF THE AVERAGE RETURN FOR THE WHOLE TRAINING PROCESS

Task BCC CR RE WW WS FS
CGAR-SAC | 843173 593151 821481 761471 857432 793147
SAC 841489 574159 817482 7464110 846429 760+ 49

over the entire training process. In Table I, we use the initials
of the first letter of every environment as the table title, and the
full names can be found in Fig. 3. The value of each item in the
table represents the mean value of the average return, and the
subscript denotes the standard deviation. From Table I, we can
see that the mean value of the average return of our method
during the training process is higher than SAC in every task,
and the standard deviation is lower than SAC in most tasks.
We can conclude that CGAR improves the sample efficiency
of SAC.

Ball In Cup Catch Cheetah Run

1000

Episode Return
Episode Return

200

—— CGAR-SAC
o == SAC o

—— CGAR-SAC
—= SAC

25 50 75 100 125
Environment Steps (k)
Reacher Easy

150 175 200 0 200 300 600 800 1000
Environment Steps (k)
Walker Walk

1000 1000

2
g
8

600

Episode Return
Episode Return

N
&
8

400

200 200

! —— CGAR-SAC
4 —= sAC

—— CGAR-SAC
—-= SAC

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Environment Steps (k) Environment Steps (k)
Walker Stand Finger Spin

1000 1000

800

600

2
2
8

Episode Return
Episode Return

400

400

200

—— CGAR-SAC
—= SAC o

—— CGAR-SAC
—= SAC

100 150 200 250 300 350 460
Environment Steps (k)

[50 100 150 200 250 300 0 50
Environment Steps (k)

Fig. 3. Comparison results between CGAR-SAC and SAC.

IV. CONCLUSION

This paper proposes a novel action redistribution algorithm,
Critic Guided Action Redistribution for game playing. We
demonstrate that the critic can bring more expected discounted
rewards than or at least equal to the actor in the off-policy
actor critic algorithm. Based on the demonstration, we use
the Q value predicted by the critic to redistribute the actions
probability distribution generated by the actor. Then we sample

actions from the new distribution to interact with the environ-
ment. We implement our algorithm on SAC and test it on the
OpenAl MuJoCo tasks. The experimental results demonstrate
that our method improves the sample efficiency and achieves
state-of-the-art performance. Future research can be done by
applying CGAR to other games or analyzing the distribution
of Q value on the multimodal distribution.

REFERENCES

[1] D. Ye, G. Chen, W. Zhang, S. Chen, B. Yuan, B. Liu, J. Chen, Z. Liu,
F. Qiu, H. Yu, Y. Yin, B. Shi, L. Wang, T. Shi, Q. Fu, W. Yang,
L. Huang, and W. Liu, “Towards playing full MOBA games with deep
reinforcement learning,” in NeurIPS 2020, December 6-12, 2020, virtual.

[2] N. Brown, A. Bakhtin, A. Lerer, and Q. Gong, “Combining deep
reinforcement learning and search for imperfect-information games,” in
NeurlIPS 2020, December 6-12, 2020, virtual.

[3] R.S. Sutton and A. G. Barto, “Reinforcement learning: An introduction,”
2011.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529-533, 2015.

[5] T. Malloy, C. R. Sims, T. Klinger, M. Liu, M. Riemer, and G. Tesauro,
“Capacity-limited decentralized actor-critic for multi-agent games,” in
COG 2021, Copenhagen, Denmark, August 17-20, 2021. 1EEE, 2021,
pp- 1-8.

[6] R. Liang, Y. Zhu, Z. Tang, M. Yang, and X. Zhu, “Proximal policy
optimization with elo-based opponent selection and combination with
enhanced rolling horizon evolution algorithm,” in COG 2021, Copen-
hagen, Denmark, August 17-20, 2021. 1EEE, 2021, pp. 1-4.

[7] J. Biittner and S. von Mammen, “Training a reinforcement learning
agent based on XCS in a competitive snake environment,” in COG 2021,
Copenhagen, Denmark, August 17-20, 2021. 1EEE, 2021, pp. 1-5.

[8] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” in ICLR, 2016.

[9] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in ICML, 2018.

[10] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learning
with deep energy-based policies,” in ICML 2017, Sydney, NSW, Aus-
tralia, 6-11 August 2017. PMLR, 2017, pp. 1352-1361.

[11] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning,” in AAAI 2008, Chicago, Illinois,
USA, July 13-17, 2008. AAAI Press, pp. 1433-1438.

[12] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. de Las Casas,
D. Budden, A. Abdolmaleki, J. Merel, A. Lefrancq, T. P. Lillicrap, and
M. A. Riedmiller, “Deepmind control suite,” CoRR, vol. abs/1801.00690,
2018.

[13] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” in NIPS Deep Learning and Representation Learning
Workshop, 2015.

[14] S. I. Mirzadeh, M. Farajtabar, A. Li, N. Levine, A. Matsukawa, and
H. Ghasemzadeh, “Improved knowledge distillation via teacher assis-
tant,” in AAAI 2020, vol. 34, no. 04, 2020, pp. 5191-5198.

[15] J. H. Cho and B. Hariharan, “On the efficacy of knowledge distillation,”
in ICCV 2019.

[16] X. Deng and Z. Zhang, “Can students outperform teachers in knowledge
distillation based model compression?”

[17] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.

[18] D. Yarats and I. Kostrikov, “Soft actor-critic (sac) implementation in
pytorch,” https://github.com/denisyarats/pytorch_sac.

