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Abstract—When generating content for video games us-
ing procedural content generation (PCG), the goal is to
create functional assets of high quality. Prior work has
commonly leveraged the feasible-infeasible two-population
(FI-2Pop) constrained optimisation algorithm for PCG, some-
times in combination with the multi-dimensional archive of
phenotypic-elites (MAP-Elites) algorithm for �nding a set
of diverse solutions. However, the �tness function for the
infeasible population only takes into account the number of
constraints violated. In this paper we present a variant of
FI-2Pop in which a surrogate model is trained to predict
the �tness of feasible children from infeasible parents,
weighted by the probability of producing feasible children.
�is drives selection towards higher-�tness, feasible solu-
tions. We demonstrate our method on the task of generating
spaceships for Space Engineers, showing improvements over
both standard FI-2Pop, and the more recent multi-emitter
constrained MAP-Elites algorithm.

Index Terms—Procedural Content Generation, Constrained
Optimisation, Evolutionary Algorithms, �ality-Diversity

I. Introduction

Designing content is still one of the most time-consuming

steps in developing video games. Many games nowadays

include some kind of procedural content generation (PCG) to

reduce the time spent in developing content, be it levels, in-

teractive items or even entire quest lines [1]. One usual PCG

approach is to search within a space of possible content for

solutions with good quality. �is search process can be seen

as an optimisation problem, where the quality of the content

is de�ned by an utility function. In some cases there are re-

strictions imposed upon the content, which can be expressed

as constraints in the optimisation problem. �e feasible-

infeasible two-population (FI-2Pop) genetic algorithm (GA)

[2] has been widely used in constrained optimisation tasks

due to its simplicity and intuitiveness. FI-2Pop has been used

for PCG extensively, as it allows the programmer to specify

domain-speci�c constraints and �tness functions [3].

FI-2Pop is able to freely explore the solution space in its en-

tirety, regardless of feasibility (constraint satisfaction), so that

feasible solutions that would otherwise be unreachable due to

the feasibility region’s topology can be reached via infeasible

solutions. In the original algorithm, infeasible solutions are

selected for evolution in inverse proportion to the number

of constraints broken, but this selection mechanism does not

directly optimise for feasible solution �tness. In this work

we propose a novel variant of FI-2Pop, training a surrogate

�tness function that predicts the �tness of infeasible solu-

tions’ o�spring, weighted by the probability of generating a

feasible child, which can accelerate the optimisation process.

We apply our algorithm to PCG for creating novel spaceships

in the video game Space Engineers, improving upon prior

work based on standard FI-2Pop [4]. We then show our

o�spring �tness prediction method’s e�ectiveness in a mixed-

initiative se�ing, solving the spaceship generation task with

the constrained multi-dimensional archive of phenotypic-

elites (CMAP-Elites) algorithm [5]. Finally, we extend the

la�er application to include an optimising emi�er [6], which

uses our novel infeasible �tness function to balance both

�tness and coverage of solutions.

II. Background

A. Procedural Content Generation

PCG is the process of algorithmically creating components

for an application, either independently or in tandem with a

human designer. PCG has been widely used in video games,

creating everything from assets to entire levels [1].

Evolutionary algorithms (EAs; including GAs), are a family

of population-based search algorithms well-suited for PCG:

by assigning a �tness value to solutions, EAs can be used to

search for desirable content. To do so while retaining a wide

set of solutions to be chosen from, one can use EA-based

“quality-diversity” (QD) algorithms, e.g., MAP-Elites [7], [8].

B. FI-2Pop

�e FI-2Pop GA [2], [9] evolves two separate populations

of solutions to follow a �tness signal in a constrained domain.

One population is comprised solely of feasible solutions and

the other solely of infeasible solutions. Each feasible solution

has no constraint violations and its �tness is determined by

a domain-speci�c utility function, whereas each infeasible

solution violates at least one constraint and its �tness is the

inverse of the number of constraints violated.

�e GA loop of FI-2Pop is as follows: one or more solutions

are picked from each population (based on their �tness) as

parents to generate new o�spring solutions via crossover

and mutation. Each parent may generate either a feasible

or infeasible o�spring, regardless of its own feasibility. All

o�spring are then added back to the populations based on

their feasibility. If the size of a population exceeds a set limit,



solutions are removed from it based on their �tness. �is loop

is then repeated for a given number of generations.

Selecting infeasible solutions inversely to the number of

constraints violated makes selection pressure towards feasi-

bility a generic repair mechanism. While simple and e�ective,

this heuristic could be replaced by a more information-rich

function for optimisation, as we propose in section IV.

C. Surrogate-Assisted Evolutionary Algorithms

Surrogate-assisted EAs (SAEAs) [10] use a surrogate model

to approximate the �tness function in computationally-

expensive problems. SAEAs use a surrogate model that is

trained on the �tness of solutions collected from previous

runs. �e model then interacts with the EA by estimating

the �tness of newly-generated solutions. SAEAs typically

include a re-evaluation step where some or all solutions in

the current generation are evaluated with the true �tness

function, to be used in subsequent training of the model.

�is online training helps ensure convergence of the EA by

improving the modelling of relevant areas of the search space.

�ere are many classes of �tness models; in our work

we use a regression-based absolute �tness model, where

the estimator takes features of the solution and is trained

to predict the �tness directly [10]. However, in contrast to

most uses of SAEAs, we use our model to create a di�erent

�tness function than the original algorithm’s (FI-2Pop’s). Our

proposed �tness function is similar to “�tness inheritance”

[11], [12], where the estimation is based on the parents’

�tness, although we assign �tness based on the �tness of

the parents’ prior o�spring. We call this novel estimation

“acquirement”, and give more details in section IV.

D. MAP-Elites

MAP-Elites [7] is an “illumination algorithm” that searches

for a diverse set of high-performing solutions, as de�ned

by behaviour characteristics (BCs) of interest. MAP-Elites

projects and subdivides the search space into BC-based niche

bins, each containing one or more solutions. In standard

MAP-Elites, the underlying search process is unguided and

unbiased: at each step, a random bin is selected amongst

all non-empty bins with uniform probability. New solutions

are then generated from the selected bin and then assigned

to their respective bins. Bins have a �xed capacity, so new

solutions can take the place of older or less-�t solutions.

MAP-Elites requires an optimisation algorithm in order to

produce new solutions, and EAs are typically used for this in

practice. For PCG with constraints, the most common choice

is FI-2Pop. �ere are multiple variations on MAP-Elites, such

as le�ing a bin contain more than one solution (elite), or

allowing near-bin crossover. Other variations have focused

on the bin selection process itself: emi�ers [6] can be used

to more directly optimise for average �tness or coverage.

Recent work [13] extended this to a meta-optimisation pro-

cess, whereby a bandit algorithm selects between di�erent

types of emi�ers to optimise for given metrics. MAP-Elites

has been augmented with surrogate models before, using

Gaussian processes [14] and neural networks [15]; however,

these simply model the original �tness function instead of

replacing it. In Section V we demonstrate FI-2Pop with our

novel �tness function extended to the CMAP-Elites se�ing,

and with the use of emi�ers.

III. Domain

Space Engineers is a 3D sandbox game with realistic

graphics and physics, played by approximately 5,000 players

daily, where the objective is to build spaceships and other

structures to collect resources, navigate through space, and

interact with other characters. Structures are formed out

of interacting blocks, each with their own properties and

functionalities. In order to be usable, these structures must

satisfy various functional constraints. For example, a space-

ship needs a cockpit, an engine, and thrusters.

Procedurally generating structures for Space Engineers in-

volves creating solutions that both respect constraints de�ned

by the game itself, as well as any additional, hand-engineered

hard or so� constraints, whilst simultaneously striving to

�nd aesthetically-pleasing results. We follow previous work

[4], which introduced a hybrid EA consisting of multiple

modular L-systems [16] and FI-2Pop, to combine domain

knowledge with constrained optimisation in order to proce-

durally generate spaceships. We use the same feasible �tness

function and constraints. �e hard constraints are, �rstly,

no intersections between blocks, and secondly, the structure

must contain all required blocks. �e so� constraint is to

have symmetry along any axis. �e feasible �tness function

is based on a probability density estimate of various metrics,

derived from human-designed spaceships made available on

Steam Workshop. �e 4 metrics used are the ratio between

the number of functional blocks and the total number of

blocks, the ratio between the �lled and total volume, the

ratio between the major and medium axis of the ship, and

the ratio between the major and minor axis.

IV. Surrogate Infeasible Fitness Acqirement

As discussed previously, the infeasible �tness for standard

FI-2Pop selects infeasible parents likely to result in feasible

o�spring (by virtue of having relatively few constraint vi-

olations), but this �tness calculation does not account for

o�spring �tness. We propose using a surrogate model to

estimate the �tness of infeasible parents’ children, weighted

by the probability of the children being feasible, driving

selection towards high-performing, feasible solutions.
1
�is

can be seen as encouraging evolvability [17] in the infeasible

population, where parents are chosen directly based on their

probability of generating children with higher �tnesses.

�e main FI-2Pop loop involves selecting parents to create

children using crossover and mutation, a�er which children

are placed into their respective populations. Selection and

evolution happen separately for the feasible and infeasible

populations. In our variant, we keep a bu�er for each

1
A heuristic analogous to a look-ahead search with depth 1.



infeasible parent that contains the �tnesses of any feasible

children it produces; we also keep a tally of the empirical

probability of the infeasible parent producing a feasible child.

We then train a surrogate model—in our experiments, a fully-

connected neural network—to directly predict a statistic of

the children’s �tness from the phenotypic representation of

the parent, weighted by the sample probability of producing

a feasible child, using the mean-squared objective. �e es-

timated �tness is therefore Scf [F (cf )] · nf

nall
, where S is a

statistic (e.g., mean) calculated over all feasible children cf ,
F (cf ) is the �tness of the feasible children, and nf and nall
are the number of feasible and total o�spring, respectively.

In preliminary experiments, we tested di�erent statistics

of the children’s �tness, including the mean (denoted “µ”),
the maximum (denoted “M”), the minimum (denoted “m”),

as well as the upper and lower con�dence bounds (which

have been used as selection heuristics in SAEAs [18]). We

found that the con�dence bounds have properties similar to

the maximum and minimum, so we retained only the �rst

3 statistics for the rest of our experiments. At initialisation,

the �tness of all infeasible solutions is set to a small, positive

value ε, causing the algorithm to select infeasible solutions

uniformly. �e surrogate model is trained as soon as one

datapoint is available, and is updated online whenever new

data is available. Whenever the model is updated, we use it to

reassign �tnesses for recently-generated infeasible solutions.

FI-2Pop has previously been combined with MAP-Elites

to form CMAP-Elites [5], a quality-diversity algorithm that

can �nd solutions that satisfy given constraints. In our

current work, we demonstrate our novel variant of FI-2Pop

within CMAP-Elites. �e most bene�t comes from using an

optimising emi�er (denoted “E”), which selects bins with the

highest �tness per population. As the optimum choice of

statistic and/or emi�er may change per domain, or even over

time, we use the ε-greedy bandit algorithm [19] (denoted “B”)

to select both in order to maximise �tness and coverage.

V. Results

We demonstrate the performance of our proposed FI-2Pop

variant over 3 experiments using the previously proposed

hybrid EA in the Space Engineers domain [4]: FI-2Pop,

CMAP-Elites (which contains FI-2Pop), and CMAP-Elites

with emi�ers. For all experiments we ran each method for 50

generations, and provide average results with standard error

(SE), collected over 50 random seeds.

In our �rst experiment, we compared the standard FI-

2Pop algorithm and our variant with di�erent statistics. All

statistics result in a higher elite �tness (Figure 1a), which

is the �nal solution given by FI-2Pop. We also tracked

the percentage of o�spring with infeasible parents that are

feasible (denoted Π), introduced at each generation. We plot

the cumulative sum of this metric in Figure 1b, where it

demonstrates that our variant can introduce more feasible

solutions with infeasible parents, as compared to standard FI-

2Pop which plateaus a�er 30 generations.
2
Finally, we also

2
�e exception is M-FI-2Pop, where the �tness may be too optimistic.

tracked the estimator loss. Although the loss jumps when

new datapoints are added, it otherwise steadily decreases

over time, indicating that it continues to capture the current

data distribution.

In our second experiment, we tested CMAP-Elites with the

standard FI-2Pop GA and our variants. We set CMAP-Elites to

operate on a �xed 32×32 grid, using axis ratios (Section III)

as the BCs.
3
Under this se�ing, we found that our variants

perform similarly to CMAP-Elites.

In our third experiment, we replaced the standard MAP-

Elites selection rule (a “random emi�er”) with the optimising

emi�er (E). We found that this resulted in a much higher

feasible �tness overall, at the cost of a lower coverage. To

compensate for this, we used an ε-greedy bandit (B) to

optimise the percentage increase of feasible �tness plus the

percentage increase of coverage. �is setup produced high-

�tness solutions (higher than standard CMAP-Elites, lower

than E) at a high coverage (comparable to standard CMAP-

Elites, higher than E). We show some of the metrics of the

most salient experiments in Figures 1c and 1d.

(a) FI-2Pop elite feas. �tness (b) FI-2Pop cumulative Π

(c) CMAP-Elites avg. feas. �tness (d) CMAP-Elites feas. QD-score

Fig. 1: Di�erent metrics for FI-2Pop and CMAP-Elites (mean

± SE) for the feasible population.

We report �nal metrics for all experiments in Table I.

From these results, we demonstrate that our variant can �nd

solutions at a higher �tness, as compared to the traditional

FI-2Pop algorithm. A similar conclusion can be drawn for the

application of our variant to CMAP-Elites, when combined

with the optimising emi�er. Additionally, we note that using

a bandit to select the emi�er and statistic allows us to �nd an

advantageous tradeo� between feasible �tness and coverage,

and can also be adapted to optimise di�erent metrics, or

combinations thereof. We quantify this tradeo� via the QD-

score [20], which is calculated as the sum of elite �tnesses

in all archive bins (with zero �tness if the bin is empty). Our

B-CMAP-Elites achieves the highest QD-score overall.

Finally, we give a qualitative overview of the spaceships

generated by the di�erent approaches. We found that our

3
We note that this choice of BCs restricts the maximum coverage to 50%.



Method
Feas. �tness Infeas. �tness Coverage QD-score

Π
Top Avg Top Avg Feas. Infeas. (Feas.)

FI-2Pop 2.8915 2.7777 - - N/A N/A N/A 0.0032
M-FI-2Pop 2.9088 2.8074 0.1610 0.1554 N/A N/A N/A 0.0030
µ-FI-2Pop 2.9103 2.7949 0.1677 0.1639 N/A N/A N/A 0.0034
m-FI-2Pop 2.9166 2.7867 0.0977 0.0953 N/A N/A N/A 0.0034

CMAP-Elites 2.4637 1.2730 - - 0.0477 0.0420 63.4168 0.0179
M-CMAP-Elites 2.3903 1.2699 0.0857 0.0443 0.0482 0.0425 64.0300 0.0154
µ-CMAP-Elites 2.4851 1.2737 0.1115 0.0533 0.0462 0.0401 62.2313 0.0138
m-CMAP-Elites 2.4221 1.2581 0.0713 0.0375 0.0480 0.0421 63.8382 0.0192

EM-CMAP-Elites 2.6915 1.9298 0.0238 0.0138 0.0327 0.03290 57.0036 0.0080
Eµ-CMAP-Elites 2.6359 1.9125 0.0326 0.0144 0.0342 0.0331 58.784 0.0079
Em-CMAP-Elites 2.7284 1.9925 0.0604 0.0392 0.0323 0.0328 57.6187 0.0085

B-CMAP-Elites 2.4860 1.3792 N/A N/A 0.0471 0.0431 66.5877 0.0207

TABLE I: Final metrics for all experiments. Bold values

indicate the best result within each se�ing.

FI-2Pop variant is able to generate more complex solutions

than those produced by standard FI-2Pop (Figure 2b versus

Figure 2a). Spaceships generated by standard CMAP-Elites

are relatively simple (Figures 2c and 2d), whilst our variant

with the optimising emi�er can �nd more interesting solu-

tions (Figures 2e and 2f), while retaining comparable diversity

if used in combination with the bandit algorithm.

(a) FI-2Pop

(28, 3)

(b) m-FI-2Pop

(29, 4)

(c) CMAP-Elites

(28, 2)

(d) CMAP-Elites

(16, 1)

(e) Em-CMAP-Elites

(28, 2)

(f) Em-CMAP-Elites

(16, 1)

Fig. 2: In-game screenshots of elite solutions with comparable

BCs (major/middle/minor axes ratios, given in parentheses)

from di�erent experiments.

VI. Discussions

In this work we presented a variant of FI-2Pop that uses

a surrogate model to compute a di�erent �tness for the

infeasible population, based on the ability of an infeasible

solution to generate high-performing feasible solutions, more

directly targeting �nal (elite) �tness. We also tested CMAP-

Elites with both standard FI-2Pop and our variant. When

combined with an optimising emi�er, our method outper-

forms standard CMAP-Elites. Finally, we showed how adding

a simple bandit algorithm to automatically choose between

emi�ers and metrics can help our variant achieve both high

�tness and coverage of the search space.

�ere are several considerations to using our method.

Firstly, training the surrogate model requires additional time

and resources. However, the tradeo� would be favourable for

domains where evaluating the feasible �tness is expensive.

Secondly, our choice of �tness function performs be�er

in domains where population hopping (in particular, when

infeasible parents produce feasible o�spring) is frequent,

as more data is available to train the model. Finally, our

method does not explicitly take into account the number

of constraints violated, which may be a more important

signal in other domains. Nevertheless, the concept of using

a surrogate model to construct a more informative �tness

function for FI-2Pop’s infeasible population has potential

bene�ts for PCG, and even wider applications requiring

constrained optimisation.

Acknowledgements

�is project was partly funded by a GoodAI research grant.

References

[1] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup, “Procedural

content generation for games: A survey,” ACM Trans. Multimedia
Comput. Commun. Appl., vol. 9, pp. 1:1–1:22, 2013.

[2] S. O. Kimbrough, G. J. Koehler, M. Lu, and D. H. Wood, “On a

Feasible–Infeasible Two-Population (FI-2Pop) genetic algorithm for

constrained optimization: Distance tracing and no free lunch,” EJOR,
vol. 190, no. 2, pp. 310–327, 2008.

[3] A. Baldwin, S. Dahlskog, J. M. Font, and J. Holmberg, “Mixed-initiative

procedural generation of dungeons using game design pa�erns,” in

IEEE CIG, pp. 25–32, 2017.
[4] R. Gallo�a, K. Arulkumaran, and L. B. Soros, “Evolving Spaceships with

a Hybrid L-system Constrained Optimisation Evolutionary Algorithm,”

in GECCO Companion, 2022.
[5] A. Khalifa, S. Lee, A. Nealen, and J. Togelius, “Talakat: bullet hell

generation through constrained map-elites,” in GECCO, pp. 1047–1054,
ACM, 2018.

[6] M. C. Fontaine, J. Togelius, S. Nikolaidis, and A. K. Hoover, “Covariance

matrix adaptation for the rapid illumination of behavior space,” in

GECCO, pp. 94–102, ACM, 2020.

[7] J.-B. Mouret and J. Clune, “Illuminating search spaces by mapping

elites,” arXiv:1504.04909, 2015.
[8] D. Gravina, A. Khalifa, A. Liapis, J. Togelius, and G. N. Yannakakis,

“Procedural Content Generation through �ality Diversity,” in CoG,
2019.

[9] “Introducing Distance Tracing of Evolutionary Dynamics in a Feasible-

Infeasible Two-Population (FI-2Pop) Genetic Algorithm for Constrained

Optimization,” 2004.

[10] H. Tong, C. Huang, L. L. Minku, and X. Yao, “Surrogate models

in evolutionary single-objective optimization: A new taxonomy and

experimental study,” Information Sciences, vol. 562, 2021.
[11] R. E. Smith, B. A. Dike, and S. A. Stegmann, “Fitness inheritance in

genetic algorithms,” in SAC, pp. 345–350, ACM, 1995.

[12] K. Chellapilla and D. B. Fogel, “Fitness distributions in evolutionary

computation: motivation and examples in the continuous domain,”

Biosystems, vol. 54, pp. 15–29, 1999.
[13] A. Cully, “Multi-emi�er MAP-elites: Improving quality, diversity and

data e�ciency with heterogeneous sets of emi�ers,” in GECCO, pp. 84–
92, ACM, 2021.

[14] A. Gaier, A. Asteroth, and J.-B. Mouret, “Data-E�cient Exploration,

Optimization, and Modeling of Diverse Designs through Surrogate-

Assisted Illumination,” arXiv:1702.03713, 2017.
[15] Y. Zhang, M. C. Fontaine, A. K. Hoover, and S. Nikolaidis, “DSA-ME:

Deep surrogate assisted MAP-elites,” in GECCO, 2022.
[16] A. Lindenmayer, “Mathematical models for cellular interactions in

development I. Filaments with one-sided inputs,” J. �eor. Biol., vol. 18,
no. 3, pp. 280–299, 1968.

[17] L. Altenberg, “�e Evolution of Evolvability in Genetic Programming,”

in Advances in Genetic Programming, Complex Adaptive Systems,

pp. 47–74, M.I.T. Press, 1994.

[18] B. Liu, Q. Zhang, and G. G. E. Gielen, “A Gaussian Process Surrogate

Model Assisted Evolutionary Algorithm for Medium Scale Expensive

Optimization Problems,” IEEE TEVC, vol. 18, no. 2, pp. 180–192, 2014.
[19] R. S. Su�on and A. G. Barto, Reinforcement learning: An introduction.

�e MIT Press, 1998.

[20] J. K. Pugh, L. B. Soros, and K. O. Stanley, “�ality Diversity: A New

Frontier for Evolutionary Computation,” Front. Robot. AI, vol. 3, 2016.


