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Abstract—We propose a novel single image 3D face reconstruc-
tion method for realistic in-game avatar auto-creation. Although
some existing 3D face reconstruction methods have been able
to generate good geometry, there are still some shortages in
texture generation, especially diffuse prediction, which limits its
application in games or other scenarios. The main problems of
these methods include: the details in the photo are not accurately
restored, the produced diffuse is over smoothed, or the occlusion
and lighting are not correctly removed, and so on. Although some
methods collect high-quality 3D face data for neural networks
to learn to generate realistic 3D faces, collecting 3D face data
is known expensive. To address the above problems, we propose
to utilize data from three sources, including single face images,
manually inpainted diffuse maps paired with face portraits,
and multiple photos of single IDs generated by a pretrained
network. To make full use of these data, we propose a three-
pathway network architecture that takes face images as input,
produces diffuse maps, normal maps, as well as pose and light
coefficients. The network parameters are optimized by comparing
the rendered results with the input images, along with some other
objective functions.

Index Terms—Avatar, 3DMM, Deep Learning, 3D Face Recon-
struction

I. INTRODUCTION

Personalized game character creation is an emerging feature
in recent PC and mobile games. For example, the well-
known AAA game Grand Theft Auto Online1 features a
character creation platform where users are allowed to edit
the facial appearance of their in-game characters. However, to
generate desired game characters that look similar to the user
themselves or their favorable celebrities, normal users would
spend hours tuning hundreds of facial parameters (e.g. eyes,
nose, and face shape) even after considerable practice.

To facilitate the process of in-game character creation,
Shi et al. [1], [2] proposed character auto-creation methods
that allow users to automatically generate corresponding face
parameters from a single face photo, greatly reducing the
character creation effort. However, the faces created by their
method are usually limited by the degree of freedom on
the facial parameters and the facial textures provided by the
games. Another recent solution for creating in-game avatars is
to generate a 3D head model by directly scanning a face model
from multiple views with a mobile device. This technology

*Corresponding author
1https://www.rockstargames.com/GTAOnline
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Fig. 1: From left to right: input portraits, in-game characters
generated by our method and AvatarMe [5]. The avatars we
generated allow players to change hairstyles and accessories
at will, and can be rendered in games with different lighting
and poses.

has been adopted in some recent games such as NBA 2K2.
However, the scan generation process would be very slow -
the users usually need to wait a few minutes before finishing
the creation of their characters. Besides, such an approach is
not suitable for creating characters for other people such as
celebrities, whose multi-view photos are hardly available for
normal users.

Some recent advances in 3D face reconstruction can predicts
accurate 3D faces geometry from single view images based
on the 3DMM model and CNNs [3]–[9], however, the texture
they produce are not sufficient for practical usage, especially
in game environment. One or more defects exist in these
methods: 1) the details in the photo are not accurately restored;
2) requires high-quality 3D face datasets, which are expensive
to collect; 3) the produced diffuse is over smoothed; and 4)
the occlusion and lighting are not correctly removed.

To generate 3D faces/heads that can be easily integrated into
games with limited paired data, we propose to utilize three
source of face data, including single face images, manually
inpainted diffuse maps paired with face portraits, and multiple
photos of single IDs generated by a pretrained network. Based
on those data, a novel method for automatic game character

2https://www.nba2k.com



avatar creation from single images is also proposed in this
paper. With our method, the user only needs to upload a
portrait photo, and our system automatically constructs a
character’s realistic avatar whose face shape and appearance
are similar to the input portrait in less than half a second. We
take advantage of the differentiable rendering technique and
proposed a rendering-in-the-loop reconstruction framework
as well as a set of facial texture consistency constraints
for generating realistic-looking in-game avatars. We design a
three-pathway reconstruction architecture that is trained in a
semi-supervised fashion with both limited labeled data (2D
face images and ground truth diffuse maps) and a large number
of auxiliary unlabeled data (real 2D face images and synthetic
2D face images).

Our method consists of four modules. In each training
iteration, a batch of input face images are first processed by
a “Shape Reconstruction module” to produce game head 3D
meshes. Then the input face images are transformed to UV
space by a “UV Unwrapping module”. The produced coarse
UV maps, as well as the input face images, are then fed
to a “Texture Prediction module” and generate diffuse maps,
normal maps, and the lighting coefficients for the game mesh.
Finally, we introduce a “Differentiable Rendering module”
in the training loop that renders the facial images based on
the above predictions and enforces the rendering output to
be similar to the input as much as possible. To improve
the robustness of various poses and illuminations, we also
introduce three discriminators and use adversarial training
to improve the fidelity of the predicted facial textures. The
modules in the three pathways are training jointly by using
both labeled and unlabeled data.

In summary, this paper makes the following contributions:
• We introduce a rendering-in-the-loop in-game avatar cre-

ation method with self-supervised training that greatly
reduces the cost of dataset acquisition while maintaining
robustness and fidelity of the reconstruction.

• We propose a three-pathway reconstruction architecture,
which utilizes both labeled and unlabeled data and tex-
ture consistency constraints to generate realistic-looking
avatars.

• We integrate the prediction of normal maps and also an
iterative rendering design to further improve the fidelity
of the created 3D avatars. In particular, normal maps can
greatly improve the geometry details of the low-resolution
head meshes visually.

II. RELATED WORKS

Most 3D face reconstruction methods nowadays are derived
from 3D Morphable Face Models (3DMM). 3DMM was
first introduced by [10]. Since then, multiple variations of
3DMM have been proposed [11]–[16]. Based on the Pricipal
Compoment Analysis (PCA), 3DMM produce low-dimensinal
representations of the 3D face, including identity, expression
and texture. The Basel Face Model (BFM) [11] is one of the
most popular 3DMM variants. After scanning human faces
into point clouds, it unifies them into a template mesh by the

Nonrigid ICP algorithm. Then, the 3DMM is constructed from
PCA and dimensionality redution.

A group of methods iteratively fit a 3DMM into the input
2D image to reconstruct the 3D face from a single image.
However, ambiguities occur when the expression, pose and
illumination is different from the fitted model. Much ef-
fects [17]–[19] are made to increase the robustness of 3DMM
fitting, but they still suffer from complicated expression and
illuminations of in-the-wild images. On the other hand, deep
learning based methods directly predict the 3DMM coefficients
from images as a regression problem. In order to construct
paired 2D-3D data as supervision, Richardson et al. [20], [21]
generate synthetic data by randomly sampling the morphable
face model. Tran et al. [22] create the ground truth using an
iterative optimization method to fit a large number of face
images.

In addition to the single image face reconstruction, another
group of methods utilizes videos or multiple images to create
3D avatars. [23] propose to utilize mobile devices to capture
videos of human heads and build dynamic 3D face rigs.
[24] develop algorithms to create an avatar from multiple
images captured with a web camera. Although these methods
can generate high-fidelity 3D faces, they require videos (or
multiple photos taken in a few minutes) as input and need
some assistance from users, which are not feasible for fast
game character avatar creation. Besides, users cannot use such
methods to create characters for their favorite celebrities.

More recently, differentiable rendering techniques are in-
troduced to the 3D face reconstruction tasks [25]–[27]. With
differentiable rendering, facial textures like UV maps can
be smoothly optimized within the training loop. Some of
the recent approaches utilize large-scale databases of high-
quality UV maps to train a neural network for predicting facial
textures. For example, Deng et al. [28] learn a generative
model called UV-GAN to complete the self-occluded regions
in the facial UV map. Chen et al. [29] capture 366 high-
quality 3D scans from 122 different subjects, and use UNets
to produce displacement maps for facial details synthesis.
Then the networks are trained in a semi-supervised way using
labeled 3D faces. Gecer et al. [30] employ the adversarial
learning to train a facial position map generator, and then find
the optimal latent variables through non-linear optimization.
However, such datasets are not publicly available. It is labo-
rious and expensive to capture such a dataset, which is in-
feasible for normal users. Additionally, with the differentiable
renderer, some methods have been developed to reconstruct
both the facial shape and texture from a single image in an
unsupervised or weakly-supervised manner, thereby reducing
reliance on expensive 3D face datasets. Deng et al. [3] propose
a method to predict the 3DMM shape and texture coefficients
at the same time with image-level and perception-level losses,
leading to the state-of-the-art reconstruction results. Lin et
al. [31] further refine the facial textures from images by
applying graph convolutional networks. Despite the high-
fidelity reconstruction results obtained, these 3DMM based
methods aim to reconstruct the 3D shape and texture for



the face region rather than the whole head, which cannot be
directly used for the game character creation. On the contrary,
we aim to create the whole head model with a complete texture
based on the input, which can be easily applied to most 3D
games.

III. PROPOSED METHOD

We propose a novel three-pathway architecture for game
character avatar automatic creation. We make full use of the
face data and utilize three types of source data for training,
i.e. 1) real face images with paired human annotated diffuse
map, 2) single face images, and 3) generated multiple face
images from same IDs. A brief overview of our method is
shown in Fig. 2. A high-level abstraction of our method can
be viewed as a semi-supervised rendering process, where we
enforce rendered face images to be similar to the inputs by
using the predicted 3D shape and facial textures. The three
pathways are trained simultaneously and their functionalities
are described as follows.

1) Paired Image Pathway. We use real 2D face images
and their paired ground truth diffuse maps for train-
ing. The ground truth diffuse maps are adopted from
MeInGame [32], which are created by manually annotate
the unwrapped image. In addition to the reconstruction
of the input, in this pathway, we also enforce the
predicted diffuse maps to be similar to their ground truth.

2) Single Image Pathway. In this pathway, the training is
fully self-supervised. The reconstruction loss is com-
puted between the input face images and the final
rendered images.

3) Generated Image Pathway. We utilize a face image
generation network called DiscoFaceGAN [33] to gen-
erate face images from different identities, lighting,
expressions, and poses. In a single training iteration, we
feed a batch of face images generated from the same
identity but different expressions, lighting, and poses.
An auxiliary loss is computed across the diffuse maps
generated from the neutral front face and other faces
within the batch. We use such data based on a fact that
it is easier to generate a complete texture map for a
neutral front face. Therefore, we treat the diffuse map
generated from the neutral front face image as a pseudo
ground truth in this pathway.

A. Shape Reconstruction

The shape reconstruction module takes in a 2D face image
and produces a 3D game head mesh of the input. We first
produce a 3DMM face by using the BFM model [11] based
on the input face image. The 3DMM coefficients consists of
identity coefficients ci ∈ R80, expression coefficients ce ∈
R64, and face pose p ∈ R6. And the shape of a 3DMM face
mesh S can be represented as:

S = Smean + ciIbase + ceEbase, (1)

where Smean is the mean face shape, Ibase and Ebase are the
PCA bases of identity and expression respectively.

After a 3DMM face is generated, similar to [32], we utilize
Radial Basis Function (RBF) interpolation [34] to transfer the
shape of 3DMM face mesh to the game template head mesh.
In this way, the 3D face, as well as the predicted textures, can
be directly applied to the game environment.

B. UV Unwrapping
Since CNNs are not good at handling spatial transforma-

tions, we unwrap the input image after a 3D game head
mesh is restored. To do this, we first align the game face
mesh to the input face image based on the pose coefficients p
predicted in the shape reconstruction phase. We then project
each pixel of the UV map onto the mesh surface according to
the UV coordinates of each vertex and then back-project the
3D position of each vertex to the 2D input image. For each
vertex, the color (RGB) value is retrieved from the projected
coordinates on the 2D input image. We finally fill in the non-
skin areas with random noise. The skin region is produced by
a lightweight face segmentation network from [1].

C. Texture Prediction
After the UV unwrapping stage, the created coarse UV maps

are fed to the networks. We train the networks to predict the
diffuse maps and normal maps based on the UV maps and the
input 2D face images. Fig. 2 demonstrates the details of the
proposed texture prediction networks. The network generally
follows an encoder-decoder design logic. In the encoder part,
we build an Image Encoder to extract latent features and
predict lighting and pose coefficients from input images. We
build a UV Encoder that extracts latent features from input
UV maps. The latent features from the two encoders are then
concatenated together, fed to a Diffuse Decoder to generate
final diffuse maps, which is trained to eliminated occlusion
and lighting effects.

In addition to diffuse maps, we also introduce another
group of encoder-decoder to predict normal maps from input
images and UV maps. Input UV maps and final diffuse maps
are concatenated first, then fed to the Normal Encoder. The
Normal Decoder takes the concatenated latent features from
the Image Encoder and the Normal Encoder. The predicted
normal map will be loaded into the game along with the diffuse
map and the game head mesh.

D. Iterative Face Rendering
In each training iteration, we design an iterative rendering

strategy to improve the robustness of the texture prediction
module on different poses and illuminations. Fig. 3 demon-
strates the proposed rendering pipeline. In the first round of
rendering, we render a face image based on the predicted
diffuse map, normal map, and the predicted game head mesh.

In the second round of rendering, we randomly rotate the
game head mesh, and re-render a new face image. We use this
image as a new input and pass it through the UV Unwrapping,
Texture Prediction, and Differentiable Render modules. We
also introduce an additional loss to make the face images
rendered in the two stages to be similar. The iterative rendering
is applied to all three pathways.
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Fig. 2: A brief overview of the proposed three-pathway reconstruction architecture. Given a batch of 2D face images, we first
use a shape reconstruction module to restore the corresponding 3D game head meshes. Based on the head meshes and the
correspondence between vertices and UV coordinates, we unwrap the input images to UV space. A few networks then generates
normal maps, diffuse maps, lighting and pose coefficients based on the input 2D images and the UV maps. A differentiable
renderer is finally used to render the face images based on the predicted mesh, diffuse and normal maps.
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Fig. 3: An illustration of the proposed iterative face rendering
pipeline, and the texture consistency losses.

E. Loss Functions

We design three types of loss functions for training: 1)
image reconstruction losses, 2) texture consistency and regu-
larization losses, and 3) adversarial losses. Here we introduce
each of them in detail.

1) Image Reconstruction Loss: To penalize the difference
between the input face image and the final rendered output,
we design two loss functions, i.e. pixel-wise L1 loss and
perceptual loss. The perceptual loss is defined by the distance

between their activation maps of a pre-trained network (e.g.
VGG-19 [35]):

Lperc(x, y) = E

[∑
i

1

Ni
∥ϕi(x)− ϕi(y)∥1

]
, (2)

where ϕi is the activation map of the ith layer of the pre-
trained network. The final image reconstruction loss can be
written as follows:

Lrec(x, y) = ∥x− y∥1 + Lperc(x, y), (3)

where the x and y are 2D images. For all three pathways,
the image reconstruction losses are computed between input
images and rendered images.

In the Paired Image Pathway, image reconstruction losses
are also applied to penalize the difference between the gen-
erated diffuse maps and the ground truth diffuse maps. In
the Synthetic Image Pathway, we compute the image recon-
struction losses between the generated diffuse map from the
neutral front face and those from faces of random expressions,
lighting, and poses. For both the Unpaired Image Pathway and
the Synthetic Image Pathway, the reconstruction losses are also
applied on the generated diffuse maps between the first and
second round of rendering.

2) Texture Consistency and Regularization Losses: We
introduce several loss functions to regularize the generated
diffuse maps, making them satisfy symmetry and global con-
sistency.



Due to the symmetry of a human face, we use a multi-
scale symmetric perception (MSP) loss to ensure the symmetry
of the predicted diffuse maps. The MSP loss penalizes the
difference between two random horizontal symmetric patches
of an image in the perception level. The MSP loss is designed
at multiple image scales:

Lmsp(x) =
∑
s∈S

Lperc(ψ(x, s, r), ψ(x
′, s, r)), (4)

where x′ is a horizontally flipped image of x, ψ(x, s, r)
represents a random patch sampling function, which crops a
patch of size s at random location r from image x. The S
represents different scales. For an image size of 512 × 512
pixels, we use the scale from {112, 224, 336} pixels.

Considering that the skin color on the entire diffuse map
should be close, we minimize the standard deviation of the
RGB values of the skin area on the diffuse map. However,
directly minimizing the standard deviation will wrongly re-
move high-frequency facial details. We, therefore, calculate the
standard deviation in the low-frequency space. The standard
deviation loss is defined as follows:

Lstd(x) =

√
1

|Mskin|
∑

i∈Mskin

(G(x)i − x̄)2, (5)

where G(x) represents the Gaussian Blur function, Mskin is
the skin region mask, i is the pixel index, and x̄ is the mean
value of x in the skin region.

Combining the above objectives, the overall regularization
loss is defined as:

Ldm(x) = Lmsp(x) + Lstd(x). (6)

Similar to the diffuse map, the normal map is also con-
strained by symmetry. The normal map symmetric loss is
computed on a low-frequency level by L1 distance:

Lsym(x) = ∥G(x)− G(x′)∥1, (7)

where the x′ is the horizontally flipped image of input image x.
To prevent the normal map from being abnormal, we penalize
the distance between it and the z axis at the low-frequency
level:

Lz(x) = ∥G(x)− (0, 0, 1)∥1. (8)

The normal map regularization loss is defined as:

Lnm(x) = Lsym(x) + Lz(x). (9)

3) Adversarial losses: To further improve the fidelity of
generated diffuse maps, we adopt the adversarial training
method to improve the fertility of the texture prediction.
Since the layout of the texture map is roughly fixed, we
design three discriminators, i.e. a Global Discriminator, an Eye
Discriminator, and a Cheek Discriminator, and placed them at
fixed locations. The three discriminators are working together
at global scale and two specific local regions to improve the
texture maps.

The discriminators take both generated diffuse maps and
ground truth diffuse maps as input, and predict whether the

inputs are real or fake (generated). In the meantime, we train
the rest of the networks to fool the discriminators.

The training objective is defined as follows:

Lgen = E{logDi(x
′)}

Ldis = E{logDi(x)}+ E{log(1−Di(x
′))},

(10)

where x is the real data and x′ is the fake data. Di, i ∈ {0, 1, 2}
represents the Global Discriminator, the Eye Discriminator,
and the Cheek Discriminator respectively.

4) Final Loss Function: Combining all the above losses,
the final loss functions of our method are defined as follows:

LG = λ1Lrec(d, x) + λ2Lrec(r,m) + λ3Ldm(d)

+ λ4Lnm(n) + λ5Lgen(d)

LD = λ5Ldis(d, dgt),

(11)

where d is the generated diffuse map, dgt is the ground
truth diffuse map, r is the rendered face image, m is the
input image, and n is the generated normal map. x represents
different variables in different pathways: In the Paired Image
Pathway, x represents the ground truth diffuse maps; in the
Unpaired Image Pathway, the loss term λ1Lrec(d, x) will
be ignored, since there is nothing to compare with; in the
Synthetic Image Pathway, x represents the generated diffuse
map of the neutral front face image.

We finally train the discriminators to maximize the follow-
ing objective while train the rest of the networks to minimize
it:

G⋆, D⋆ = argmin
G

max
D

LG + LD. (12)

Since the face renderer we used is differentiable, the training
can be performed in an end-to-end fashion.

IV. IMPLEMENTATION DETAILS

We use the Basel Face Model [11] for face shape recon-
struction. The 3DMM face mesh contains 35,709 vertices and
70,789 faces, while the game head mesh is constructed by
only 5,926 vertices and 11,482 faces. Similar to [32], we
do not consider the hair, eyeballs, etc. in this paper. We
deploy the pre-trained model provided by [3] to predict the
3DMM coefficients to reconstruct a 3DMM face mesh, but
other 3DMM methods should also work.

We use the dataset created by [32] as the ground truth of
our diffuse maps. The portraits from CelebA-HQ [36] are
used as input face images. Due to hardware limitations, we
set the resolution of both input images and texture maps
to 512 × 512 pixels. The differentiable renderer is based
on SoftRas [27], [37]. For the ground truth data, we ran-
domly select 300 / 50 / 50 for training / evaluation / testing; for
the CelebA-HQ (w/o ground truth) dataset, the numbers are
22,500 / 3,750 / 3,750; for the synthetic data, we just randomly
sampled on demand.

We refer the UV Encoder, Image Encoder, Diffuse Decoder
and three discriminators to “diffuse nets”, and refer the Normal
Encoder and Normal Decoder to “normal nets”. To improve
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Fig. 4: Comparison of reconstructed faces with different methods used in games. The first column shows the input images.
Our results are shown in the second column. The rest columns are the reconstructed 3D faces by other methods. Our results
can better reconstruct occluded areas, as well as details such as moles, eyebrows, and beards. Please zoom in for more details.

the stability of training, we perform a warm-up at the begin-
ning of the training process. The whole training is divided into
four stages:

• Train the diffuse nets on the Paired Image Pathway and
the Unpaired Image Pathway for 5 epochs.

• Train the diffuse nets on all three pathways for 10 epochs.
• Train the diffuse nets on all three pathways with the

iterative rendering strategy for 40 epochs.
• Train the normal nets for 15 epochs.

We experimentally tested the appropriate hyper parameters
and set the λs to: λ1 = 3, λ2 = 3, λ3 = 1, λ4 = 0.1, λ5 = 0.1.
The learning rate is set to 0.001 and the batch size is 4. We run
our experiments on an NVIDIA 1080Ti GPU, and it normally
takes less than 0.5s to generate a game avatar with the image
resolution of 512× 512.

V. EXPERIMENTAL RESULTS

A. Qualitative Comparison

We compare our method with two state-of-the-art 3D
face reconstruction methods as well as some other com-
mercial character automatic creation systems applied in
games/apps. The comparison methods include AvatarMe [5],
Deep3DFaceReconstrution [3], Justice (https://n.163.com,
which is based on Face-to-parameter (F2P) [1], [2]), Loomie
(https://loomai.com), MeInGame [32], and Pinscreen (https:
//pinscreen.com). All these methods are designed to create 3D
faces from a single image. As illustrated in Fig. 4, compared

to other methods, our method can produce more realistic faces
that are similar to the input images.

The faces reconstructed by Justice and Loomie have limited
shape ranges and cannot faithfully represent the input face
shapes. The method of Pinscreen can achieve similar face
shapes to some extent, but it cannot handle the uneven lights,
occlusions and self-occlusions very well. While AvatarMe
can produce realistic 3D faces from single images, but their
results cannot faithfully restore the facial details from the input
images (e.g. the beard of the second face in Fig. 4). Compare
with MeInGame, our method produces more realistic textures
and can predict normal maps via self-supervised learning.

B. Quantitative Comparison

Tab. I shows the four groups of metrics computed between
the input face and rendered output. Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index Measure (SSIM) are
commonly used as image quality metrics, a higher number
indicates a better result.

Since it is difficult to build a set of ground truth images
for game characters, another possible way for quantitative
comparison is to use a pre-trained face recognition network
and calculate the similarity between input images and recon-
structed 3D heads [1], [2]. We adopt two pre-trained face
recognition networks, LightCNN [38] and evoLVe [39], to
extract feature vectors from face images. Then we calculate
the cosine similarity of feature vectors between the input
images and rendered face images. We compare the metrics
of feature similarity extracted by pre-trained face recognition
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PSNR ↑ 26.1 26.7 26.4 26.9 27.5 27.3 26.6 24.8
SSIM ↑ 0.81 0.84 0.82 0.84 0.87 0.88 0.83 0.83

LightCNN ↑ 0.74 0.77 0.80 0.83 0.85 0.87 0.72 0.72
evoLVe ↑ 0.64 0.73 0.78 0.77 0.80 0.81 0.64 0.62

TABLE I: Reconstruction accuracy of different methods.

AvatarMe Face-to-Parameter MeInGame Ours

0.133 0.019 0.207 0.641

TABLE II: User study: the statistics of user preference rate on
different methods.

networks between the input images and rendered 3D face
meshes with [3], [32].

To further demonstrate the effectiveness of our methods, we
perform a user study over the results generated by different
methods. Since [32] already proved the superiority of the
neural texture generation, in this experiment, we only conduct
user study to compare with AvatarMe [5], MeInGame [32],
and Face-to-Parameter [2]. In the user study, invite 16 non-
professional volunteers and generate 39 questions for each
of them. In each question, there are one input face image
and screenshots of results from our method and other three
methods [2], [5], [32]. Each participant was asked to choose
the best result from different methods by considering both
facial similarity and fidelity. Tab. II shows the proportion of the
frequency of each method is selected. We can see that our user
preference rate is significantly higher than other comparison
methods.

C. Ablation Study

We conducted an ablation experiment to evaluate the ef-
fectiveness of different technical components of our method,
including the Paired Image Pathway, Unpaired Image Pathway,
Synthetic Image Pathway, multi-scale symmetric perception
loss, adversarial loss, and the iterative rendering design. We
gradually apply each component for training, and evaluate the
results on the test set.

The results on different configuration are shown in Tab. I
and Fig. 5. We aim to produce an avatar that can be loaded to
games, thus, the produced diffuse maps should be reasonable
for the specific game. Without using the ground truth diffuse
maps, the networks may not be able to learn the distribution
of real diffuse maps and generate reasonable texture, and the
adversarial training cannot be performed either.

Due to the limited paired data, we deploy the Unpaired
Pathway to improve the robustness and preventing over-fitting.
With the Synthetic Pathway, we can guarantee the results
from the same person look similar under different illumination,
pose, expression, etc. (identity consistency). We also design a

Input image (a) (b) (c)

(d) (e) (f) (g)

Fig. 5: Ablation study under different configurations. (a)
Unpaired Image Pathway only, i.e. completely self-supervised,
(b) Paired Image Pathway only, (c) Paired Image Pathway
and Unpaired Image Pathway, (d) all three pathways, (e)
three-pathway and MSP loss, (f) three-pathway, MSP loss and
adversarial losses, (g) our full model.

Fig. 6: Examples of user customization on top of our generated
game character. Users can change hairstyles, glasses, and even
facial shapes (e.g. the rightmost result) at will.

loss (Sec. III-E1) based on the observation that neutral front-
view faces usually produce better results.

We can see as each module is applied successively, the
method can obtain higher generation accuracy. Also, in Fig. 5,
we can see that when the above components are added one
by one, the generated facial features, especially the eyebrows,
become more and more realistic.

D. Customization

After the game avatars being generated, users can optionally
customize the avatars according to their preference by choos-
ing different hairstyles, glasses, etc. They can also modify the
facial shape of the avatars. In Fig. 6, we show a group of
user customization results on top of the automatic generation
result.

VI. CONCLUSION

We introduce a novel game character face automatic cre-
ation method, which generates realistic in-game avatars via
differentiable rendering and a three-pathway generation net-
work. The training of our method utilizes both labeled and
unlabeled data, making it robust to various occlusion, lighting,
and pose changes. We also design an iterative rendering
strategy to improve the self-consistency of the results. Ex-
periments and ablation studies suggest the superiority and the
effectiveness of our design.
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