Mjx: A framework for Mahjong Al research
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Abstract—Numerous games have served as testbeds for artifi-
cial intelligence (AI) research to measure its progress. Mahjong
is a highly challenging multi-agent imperfect information game
with a vast player population. However, a challenge with using
Mahjong as a testbed for Al is the lack of a publicly available
framework that is fast, easy to use and implements popular rules
for human players. We propose and describe Mjx, an open-
source Mahjong framework, which implements one of the most
popular Mahjong rules, riichi Mahjong (Japanese Mahjong).
We compared the execution speed of Mjx with existing popular
open-source software and demonstrated that it achieves 100x
faster performance. Mjx is available at https://github.com/mjx-
project/mjx.

Index Terms—Mahjong, reinforcement learning, artificial in-
telligence, multi-agents, imperfect information game.

I. INTRODUCTION

Artificial intelligence (AI) has made remarkable progress
in recent years, and Al which excels at games, is one of the
most important milestones to measure its evolution. Exam-
ples of reported Al progress through popular games include
Backgammon [1], Chess [2], Go [3], [4], Shogi [5], Poker [6]-
[8], and Atari 2600 [9].

Behind such remarkable achievements, enormous engineer-
ing efforts exist. For example, [9] showed the high potential of
deep reinforcement learning (RL) by using Deep Q-Network
(DQN) for Atari 2600 games. To this study, the development of
Arcade Learning Environment [10] (ALE), which treats Atari
2600 games as a testbed for AI research, has significantly
contributed. ALE is also built on top of Stella!, an emulator
of Atari 2600. Through continuous development of ALE (e.g.,
Python support), Atari 2600 is now one of the most commonly
used benchmarks in Al research.

Mahjong is one of the most popular classic multiplayer
imperfect information games. In Mahjong, a player initially
observes only 13 of 136 tiles, and there is enormous un-
certainty from the permutation of the remaining tiles. As
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from mjx import MjxEnv

from mjx.agents import RandomAgent
agent = RandomAgent ()
env = MjxEnv ()
obs_dict = env.reset ()
while not env.done():
actions = {player_id: agent.act (obs)

for player_id, obs in obs_dict.items ()}
obs_dict = env.step(actions)
returns = env.rew ()

Fig. 1. Example usage of Mjx. Every player acts randomly. Different agents
can be used for different players depending on the player id, if necessary. As
typical Mahjong rules give non-zero rewards only at the terminal state, this
example calls the reward function only after the transitions terminate.

humans must make decisions under high uncertainty in the
real world, Mahjong can be a good testbed for Al in this
sense. In addition, one of the key indicators when using
games as a benchmark for Al is the comparison with human
experts (e.g., professional players). Mahjong, like Shogi, has
professional players in Japan?, which is another good reason
to use Mahjong as a testbed for Al research.

However, using Mahjong as a testbed for Al research is
currently difficult due to the lack of a framework that is
easy to use, fast, and implements popular rules for humans.
For example, Mjai [11], the most popular simulator in riichi
Mahjong (Japanese Mahjong), does not focus on execution
speed and is very slow. Slow execution speed is a significant
problem, given that Al technologies such as Deep RL require
huge samples in general.

The contribution of this research is to make Mahjong
easy to use as a testbed for AI research, just as ALE did
for Atari 2600 games. We developed Mjx, based on the
popular riichi Mahjong, which focuses on execution speed,
and provides human-friendly APIs. In the following sections,
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we first describe the characteristics of Mahjong as a testbed
for Al research (section II) and then explain Mjx in contrast
to Mjai (section III). We then compare the execution speeds
of Mjx and Mjai and show that Mjx is capable of high-speed
simulations (section IV).

II. GAME OF MAHJONG AS Al TESTBED

This chapter summarizes the nature of the game of Mahjong
as a testbed for AI research. Note that the properties of
Mahjong described here are not only limited to riichi Mahjong
but also apply to other Mahjong rules. Therefore, we do not
describe the detailed rules of Mahjong in this paper; see [12]
for the rules of riichi Mahjong in detail.

Multi-agent. Mahjong is a four-player game. There is no
popular two-player rule, unlike poker. Also, there are no teams,
unlike contract bridge.

Imperfect Information. Mahjong, like poker and contract
bridge, is an imperfect information game. In Mahjong, infor-
mation about the opponent’s hand and the pile of tiles are
hidden.

Vast hidden state space. What characterizes Mahjong most
is the vast space of hidden states. In Mahjong, except for the 13
tiles in hand, all 136 tiles are initially unobservable. Thus, at
least % ~ 5 x 10'2® possible states correspond to each
(initial) observation. This number is much larger than in poker,
which implies that large randomness behind the observable
information critically impacts Mahjong playing. Moreover, this
characteristic makes it hard to apply planning techniques to the
game.

Sparse Rewards. As in Go, Shogi, and Chess, non-zero
rewards are given only at the end of the game; there is no
immediate feedback on whether each action choice was good
(or not). In Mahjong, one game consists of 8 or more hands,
and the player takes approximately 10 to 20 actions per hand,
so the non-zero reward is given only after more than a hundred
actions. Note that seeking the win in every hand does not lead
to a higher final ranking.

III. MIx

In this section, we first describe the design principles which
express our motivation for the development of Mjx (sec-
tion III-A). Then, we explain how we implemented these de-
sign principles by describing the Mjx features (section III-B).
Finally, to better understand Mjx, we compare the features
against a popular existing Mahjong simulator (section III-C).

A. Mjx design principles

We designed Mjx such that it can complement prior research
and existing software in the following three points:

1) Rules popular with human players. Like poker, there
are several rule variants in Mahjong. One of the key bench-
marks in Al research is comparing the performance of Als with
human experts. Some frameworks offer simplified Mahjong as
a testbed for Al research [13]. While simplified variants are
also helpful for research, the number of human players is small

(or zero), and Als are not comparable with human experts such
as professional Mahjong players.

2) Fast. Elemental technologies in Al, such as deep RL,
require huge samples via simulation. For this reason, Mjx
focused on simulator speed. We will demonstrate that Mjx
achieved much faster simulations than another current popular
Mahjong simulator in section IV.

3) Friendly interface for researchers. While it is vital to
speed up the computation time, it is also crucial to reduce
the time required for human trial and error in research. We
intended to make it easy for researchers to develop and
experiment with Mjx by adapting its interface to the current
community standards for Al research.

B. Mjx features

We describe the features of Mjx, which implements the
design principles.

Mahjong rule. Mjx follows riichi Mahjong rule. It espe-
cially follows the rule of the Tenhou online platform [14].
Tenhou is a popular online platform for competitive players.
There are several reasons for this choice:

« riichi Mahjong is one of the most popular rules in the

world,

o it has competitive human players (professional Mahjong

players), and

o several previous Mahjong studies follow this Tenhou

rule [15]-[17].

Programming language. We provide Mjx as a Python
library since Python is the lingua franca in current Al research
and development. However, Python is tens of times slower in
execution speed than speed-oriented programming languages
such as C++. Therefore, we implemented the core part of Mjx
in C++ to enable fast simulations and wrapped it in Python.
This wrapping makes it possible for Al researchers to use
Python for a better development experience without sacrificing
fast simulations.

API (Application Programming Interface). We designed
Mjx’s API similar to OpenAl Gym’s API, one of the most
popular APIs in RL. See Fig. 1 for an example of the usage.
In particular, we also provide a strictly compatible API with
OpenAl Gym, in which users fix three of the four agents to a
particular agent as an opponent and use the feature extraction
function provided by Mjx (or defined by users). It allows the
implementation of algorithms working with OpenAl Gym to
be used directly with Mjx. Note that Mjx has a server feature,
and users can use any programming language to implement
the agent if they do not stick to Python APIL

Visualization. Mjx supports the visualization of observa-
tions and states as image (Fig. 2). This visualization feature
must help researchers, with domain knowledge in Mahjong,
develop sophisticated Als.

C. Comparison to Mjai

To better understand the characteristics of Mjx, we compare
Mjx and Mjai. Mjai [11] is currently one of the most popular
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Fig. 2. Example visualization in Mjx.

TABLE I
MiJIX AND MJAI COMPARISON
Mjx (proposed) Mjai
Mahjong Rule Tenhou rule Tenhou rule
Programming Language Python (C++) Ruby
Gym-like API v
Stateless Protocol v

open-source simulators available for riichi Mahjong. Table I
compares the features of Mjx and Mjai.

Both Mjx and Mjai use the same Tenhou rule. While Mjai
uses the Ruby programming language, Mjx uses Python. Both
are not computation speed-oriented programming languages,
but Mjx also uses C++ at its core to accelerate the computation
speed. As Mjx uses Python, it can also provide a gym-
like API, similar to the popular OpenAl Gym environment
in RL. Another difference is the communication protocol
between the agents and the simulator. Mjai’s protocol uses
a stateful protocol, while Mjx’s is stateless. In Mjai, the
agents must remember the current situation during the game.
Stateless architecture design is generally easier to accelerate
computation through parallel and distributed computing. This
feature is vital when the agents infer the actions in batch using
neural networks.

IV. PERFORMANCE ON SPEED BENCHMARK

To compare the computational speed of Mjx and Mjai, we
compared the time required to run 100 games for both Mjx
and Mjai using two different agents (Fig. 3).

Setup. We measured the execution time of 100 games in
each setting five times and averaged the results. We used
an Amazon Web Service (AWS) instance as the execution
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Fig. 3. Running time for 100 games. Pass agent plays to retain its hand,
and shanten agent plays to win its hand ignoring the opponents.

environment to facilitate reproducibility. The instance is an
mbi.large instance in the us-east-1 region with two vCPUs
and 8 GiB mem. The launched instance had an Intel(R)
Xeon(R) Platinum 8375C CPU @ 2.90GHz. We used two
types of agents: pass agent and shanten agent. The pass agent
does nothing during the play, and thus its hand does not
change during the play, and no one wins. The shanten agent
always plays to reduce the shanten number, the minimum
number of tile swaps until the hand wins. In other words,
it always plays only for the win of its hand, ignoring the
other players’ moves. As a result, the pass agent’s decision-
making time is short, and thus it is convenient to measure the
execution speed of the Mahjong engines. On the other hand,
the shanten agent has a longer decision-making time, but we
can measure the computation time in more practical situations.
We implemented both agents using the Mjx and Mjai libraries,
respectively.

Results. Fig. 3 shows that Mjx exhibits 100x faster per-
formance than Mjai for the pass agent scenario. Also, for
the shanten agent scenario, Mjx performed 1000x faster on
running time than Mjai. The difference in speed improvement
between the two scenarios is due to the difference in the
speed of the shanten calculations provided by Mjx and Mjai.
These results indicate that Mjx can execute Mahjong games
dramatically faster than Mjai. Therefore, we expect that Mjx
can be used to evaluate and train Mahjong Al more efficiently.

V. RELATED WORK

We have provided Mjx as a tool for Al development in
the game of Mahjong, especially as an environment for the
development and evaluation of RL algorithms. Thus, this
section describes recent developments in RL environments for
research and progress in Mahjong research.

RL environments. There are numerous environments for
the research of RL algorithms. One popular and commonly
used environment is the Arcade Learning Environment [10]
(ALE), where researchers can train and evaluate RL agents
for Atari 2600. ALE became a popular benchmark for discrete
action space with visual observation, especially after DQN



research [9]. OpenAl Gym [18] provides various environments
that range from classical tasks to control in continuous space
with the MuJoCo physics engine [19]. OpenAl Gym’s learning
API has significantly impacted other RL environments, and
researchers have developed gym-like environments and agents
compatible with OpenAl Gym. PettingZoo [20] provides sev-
eral benchmark environments for multi-agent RL with gym-
like API. RLCards [13] offers various environments related
to card games, such as poker. Particularly, RLCards has a
simplified version of the Mahjong environment, of which
PettingZoo provides a wrapper in its gym-like API. However,
this Mahjong environment is simplified and is different from
riichi or other Mahjong variants with a large human playing
population. OpenSpiel [21] provides a collection of various
game environments for research in RL. MinAtar [22] has five
simplified versions of Atari games intended to enhance the
reproducibility and speed of RL research. Rogue-Gym [23]
proposed a roguelike game environment to evaluate RL al-
gorithms’ generalization performance. OpenHoldem [24] pro-
vides a toolkit for research using No-limit Texas Hold’em.

Mahjong research. Bakuuchi [15], the first well-known
Mahjong Al, used Monte Carlo simulation and performed
better than the average human player. Kurita and Hoki [16]
built an Al player comparable to Bakuuchi by constructing
Markov decision processes using state aggregation. Suphx [17]
outperforms most top human players in Mahjong using deep
learning and RL.

VI. CONCLUSION

Mahjong is a highly challenging imperfect information
game with a massive number of human players and has
high potential as a testbed for the development of AI. How-
ever, owing to its rule’s complexity, no simulator exists that
is reasonably fast and compatible with the popular riichi
Mahjong rule. The lack of a fast simulator is a bottleneck
for Mahjong Al research and development since recent deep
RL and planning techniques require a large sample size. We
have developed Mjx, a Mahjong engine that is fast, compatible
with the popular Tenhou rule, and friendly with recent Al
community standard programming languages and APIs. We
demonstrate the usefulness of Mjx by comparing its qualitative
differences and computation speed with Mjai, one of the
popular simulators currently available. We believe that Mjx
has the potential to facilitate the development of Mahjong
Al research and enhance research on Al capable of making
difficult decisions under imperfect information.
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