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Abstract—Recent advancements in deep reinforcement learn-
ing have demonstrated highly skilled agents that are capable of
complex behavior. In video games, such agents are increasingly
deployed as non-playable characters (NPCs) to enhance the
gaming experience, as convincing human-like behavior is known
to increase player engagement. However, the believability of an
agent’s behavior is often measured solely by its proficiency at
a given task, which alone is not sufficient to discern human-
likeness. In this paper, we build a non-parametric two-sample
hypothesis test to compare the behaviors of NPCs to those of
human players using distributions of their movement patterns.
We show that the resulting p-value metric not only aligns with
anonymous human judgment of human-like behavior, but it can
also be used as a measure of similarity.

Index Terms—Human-like Behavior, Game AI, Navigation,
Non-parametric Statistics, Reinforcement Learning

I. INTRODUCTION

The development of non-playable characters (NPCs) has
received increased attention in recent years due to impressive
successes in training highly skilled agents to play complex
games [1], [2]. The believability of these agents is often
contextually measured by their proficiency in accomplishing a
specifically designed goal; however, the behavior that an agent
exhibits in the process is equally as important. In fact, it has
been shown that developing artificial agents to emulate human-
like behavior leads to increased engagement in games [3]. Yet,
the focus of game AI research is heavily skewed towards the
development of specific skills, leaving the development and
analysis of specific behaviors an open challenge.

The core contribution of this work is our non-parametric
statistical hypothesis testing framework, which we built to
measure the behavioral similarity of any two agents. We
demonstrate the efficacy of this framework within the context
of evaluating the human-like navigation behavior of NPCs in
3D space. While previous work has also sought to use statistics
to analyze navigation behavior [4], they holistically evaluate
entire episodes using parametric models of navigation paths
collected from a fixed environment. Unlike previous work,
we focus on using non-parametric statistics to measure the
similarity in navigation behavior using distributions of fixed-
length movement patterns collected from randomly generated
environments. We combine the use of kernel-based divergence
metrics with statistical resampling to analyze the differences

in these movement patterns without making assumptions about
how data is distributed.

Our hypothesis test extends the PT-MMD [5] framework
from the domain of generative modeling into that of 3D navi-
gation. By splitting entire navigation paths into a distribution
of fixed-length movements, our framework is able to recognize
differences in navigation behavior through variations in move-
ment patterns using non-parametric statistical inferencing.
Thus, when controlling the sensitivity of the test, we are able
to rank NPCs by their similarity to the navigation behavior of
human players using the resulting p-value. The interpretation
of p as a similarity measure has been successfully applied
in contexts such as clustering [6], and we observe sufficient
stability to extend it to evaluating 3D navigation. Furthermore,
we show that our p-value metric can be used as a measure
of similarity that aligns with anonymous human judgment of
human-like behavior. To the best of our knowledge, we are the
first to propose a systematic ranking criteria for NPCs using
a statistical measure of human-likeness.

II. RELATED WORK

Standard approaches to evaluating human-like navigation
behavior require either expert human judges that rely heavily
on time-intensive manual efforts, or domain-specific metrics
that fail to capture fine-grained details of human-likeness [7],
[8]. Consequently, there has been growing interest in de-
signing automated proxies that leverage machine learning
techniques [9], [10]. These works are primarily motivated to
classify human-like navigation using datasets of trajectories
pulled from various types of artificial or biological agents;
thus, the outcome of their work is a detection model that
produces as output a probability that a sample is human. The
general applicability of such techniques outside the environ-
ment in which the model is trained requires further study.

III. THE HUMAN-LIKE BEHAVIOR HYPOTHESIS TEST

To construct our test, we represent navigation behavior as a
distribution of movements using episodic trajectories collected
from an agent. We define an episode as a sequence of state-
action pairs spanning an initial state s0 to a terminal state
sN . We define a trajectory, denoted as τ , as a continuous
subsequence of an episode. To motivate our test, we articulate
our behavioral similarity hypothesis—the behaviors of any two



agents are sufficiently similar if the distributions over their
respective trajectories are sufficiently similar.

A. Representing the Navigation Behavior of Agents

To represent the navigation behavior from each episode,
we use the absolute 3D location of the agent at each time
step. We then transform each episode into a distribution of
movements by subsampling fixed-length trajectories uniformly
with replacement from each episode using a time horizon
denoted by T . More formally, let ct be the 3-dimensional
Cartesian coordinates of an agent at time t such that ct =
(xt, yt, zt), and let c(τ) be the sequence of coordinates for a
given trajectory τ such that c(τ) = {c0, · · · , cT }. Given an
episode of length N , we consider overlapping trajectories to
be uniquely different such that c(τi) and c(τj) have the same
probability 1

N−T of being sampled for T ≤ N . To ensure that
we are analyzing movement without being biased by absolute
location, we subtract the initial Cartesian coordinate c0 from
each sample c(τ) so that each movement starts from the origin.

Because we use a set of episodes, we independently
subsample K trajectories of length T from each episode
with replacement. In large environments, the number of time
steps taken to complete even simple tasks is heavily skewed
right. Thus, to correct for any biases from larger episodes,
we set K to the length of the largest episode in a given
set. This ensures that a sampled trajectory has a uniform
probability of being drawn from any of the episodes collected.

B. Evaluating Behavioral Similarity using Hypothesis Testing

Our central hypothesis posits that the similarity between
the behaviors of any two given agents can be estimated
by the similarity between their respective distributions of
trajectories. To test this, we consider the setting in which
sample distributions X and Y are independently drawn from
distributions P ∗ (for a human player) and Pθ (for another
agent), respectively. To measure their behavioral similarity,
we evaluate the null hypothesis (H0) against the alternative
hypothesis (H1), as summarized below. Note there is no point-
to-point correspondence between X and Y , making the test
independent of the source of the data and nature of the agent.

H0 : P ∗ = Pθ

H1 : P ∗ 6= Pθ

Our test is motivated by the following insight: if the null
hypothesis is true, then any difference between P ∗ and Pθ
should be due to sampling error. To evaluate the differences
in these distributions, we use maximum mean discrepancy
(MMD) and m out of n bootstrap resampling. MMD is a
kernel-based divergence metric often used to compute the
distance between the projections of two high-dimensional data
distributions [11]. In our experiments, we apply its pairwise
estimation formulation using the standard Gaussian kernel
and Euclidean distance function. With m out of n bootstrap
resampling, samples of size m are repeatedly drawn with
replacement from a sample distribution of size n to recompute

a sample statistic without making a priori assumptions of how
the data is distributed [12]. Thus, to derive our p-value, we
evaluate and compare distributions of MMD distances in two
settings: separated and pooled sample distributions.

First, we consider the setting in which we evaluate over
separated distributions X and Y . Given that xi and yi each
denote subsamples of size m that are independently drawn
with replacement from X and Y , respectively, we form a
distribution of MMD distances by repeatedly recomputing
MMDk[xi,yi] over S iterations where i ∈ {1, · · · , S}. We
refer to this distribution of distances as δX,Y . Our test statistic,
which we denote as δ, is then calculated using Eq. 1, where
quantile(δX,Y , α) returns the α-th quantile over the distribu-
tion δX,Y and α is a hyperparameter designed to control the
sensitivity of the test.

δ = quantile(δX,Y , α) where α ∈ (0, 1) (1)

Next, we combine sample distributions X and Y to create a
pooled sample distribution, which we refer to as Z. To evaluate
in this setting, we form a distribution of MMD distances
by repeatedly recomputing MMDk[xi,yi] over another S
independently drawn samples where i ∈ {1, · · · , S}; however,
in this setting, xi and yi are both independently sampled
from pooled distribution Z with replacement. We refer to this
distribution of estimates as δZ .

Finally, to evaluate our null hypothesis, we define our p-
value as the percentage of estimates greater than our test
statistic δ, as shown in Eq. 2.

p =
#(δZ > δ)

N
(2)

Given that P ∗ and Pθ are the same distribution, then
distribution δX,Y should be the same as distribution δZ . Thus,
when P ∗ = Pθ, it follows that p converges towards 1− α as
S → ∞. When P ∗ 6= Pθ, we can interpret p as a measure
of closeness between distributions P ∗ and Pθ. Low values of
p indicate that the movement patterns in sample distributions
X and Y are not similar. Because this measure is inherently
noisy, we evaluate the test over multiple runs and report the
interquartile range (IQR) to demonstrate stability.

IV. EXPERIMENTAL ANALYSIS

To evaluate the efficacy of our hypothesis test, we deploy
agents to complete a navigation task in a controlled 3D virtual
environment as shown in Fig. 1.

A. Environment and Navigation Task

Each environment is divided into N equal-sized segments,
each sub-divided into M spawn points which can generate
a token with uniform probability ptoken. These spawn points
similarly govern the procedural generation of enemies, but
with probability penemy. Enemies have a visual radius of
roughly 5 segments and are controlled using a NavMesh [13]
to target and attack the agent without collaboration. In our
experiments, ptoken = 75%, penemy = 25%, M = 16, and N is
sampled from a discrete uniform distribution between 5 and
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Fig. 1: The primitive segment (left) used to generate random maze-
like environments (right). The platform is colored in black, while
off-platform (i.e., falling off the map) is colored in brown.

30, and all generated segments are connected. At the start of
each episode, an agent is deployed to collect tokens that are
randomly scattered around the rendered maze. To successfully
complete the navigation task, an agent must collect all of the
tokens available within the environment without falling off the
map or being attacked by an enemy. An episode ends either
when all tokens are collected or if the maximum step count
is reached. If an agent falls off the map or is attacked by an
enemy, the agent is respawned to continue.

B. Agent Characteristics

We study the behavior of human players, agents trained
using reinforcement learning (RL-based), and NavMesh-based
agents, each bounded to the same action space and rendered as
humanoid characters with physics-based movement dynamics.
At each time step, an agent has two sets of independent
actions: (1) move forward or not; and (2) move left or right
or not, which yields actions such as “Forward-Left”.

Human players are controlled using WASD keys. Unlike
other agents, the observation space of the human player is a
first-person point-of-view of the humanoid agent.

RL-based agents are controlled by a policy modeled by a
3-layer linear DNN inspired by [1] to use self-attention, and
optimized using proximal policy optimization (PPO) [14]. To
form its observation space, the agent is equipped with several
raycast sensors that detect walls, floors, enemies, and tokens.
In our experiments, we use a simple reward signal where the
agent receives +1 for collecting a token, -1 for either falling
off the map or being attacked, and 0 otherwise.

NavMesh-based agents are controlled using an omniscient
behavior tree that greedily collects tokens according to prox-
imity by using a NavMesh [13] as its guide.

C. Comparing the Human-Like Behavior of Agents

To visualize the complexities in the navigation behaviors of
each agent, we show four examples of episodic trajectories
in Fig. 2. Note that the navigation behavior of each agent
varies greatly within the same environment. Previous work
has shown that RL-based agents exhibit more human-like
navigation behavior than NavMesh-based counterparts [2].
Qualitatively, we observe this to hold true with our agents.
To quantify these differences, we evaluate each agent using

(a) (b) (c) (d)

Fig. 2: The navigation behavior of each agent over four different
episodes. Here, blue and orange are the two human players, while
green and red are the RL-based and NavMesh-based agents.

α T=4 T=8 T=16 T=32
0.10 70.1% (2.35%) 69.1% (2.55%) 79.4% (1.77%) 77.3% (3.13%)
0.25 48.4% (2.35%) 47.7% (2.40%) 62.7% (1.86%) 62.4% (1.93%)
0.50 24.9% (2.43%) 24.7% (2.78%) 40.0% (2.53%) 39.6% (2.45%)

TABLE I: Navigation behavior comparison between two human
players across time horizons (T ) and alpha levels (α). We report
the median p-value and IQR (in parenthesis). Experiments show that
the hypothesis test yields high values for human-to-human likeness.

our hypothesis test. For an even comparison, we deploy each
agent to complete the navigation task in the same 40 mazes
and sample their 3D locations directly from the game engine.
We repeat each experiment 10 times using S = 1000 iterations
and a subsample size m = 1000.

We first evaluate human-to-human likeness by comparing
the sample datasets collected from each human player, and
report the results in Table I. Next, we apply our hypothesis
test to compare the navigation behaviors of both the RL-based
and NavMesh-based agents to those of the human players. We
use the aggregated 80 episodes from both humans to form
our sample set X , and evaluate each agent over the same 40
mazes. With T = 32 and α = 0.10, we observe a median (and
IQR) p-value of 78.3% (2.23%) and 0.0% (0.00%) for the
RL-based and NavMesh-based agents, respectively. Finally,
we directly compare the human-likeness of the RL-based and
NavMesh-based agents by evaluating the median difference in
their p-values within each of the 40 maze environments. In this
experiment, we reduce the number of repeats to 3 to obtain our
median and IQR and keep all other hyperparameters the same.
We observe that the navigation behavior of the RL-based agent
is more similar to human players than its NavMesh-based
counterpart in 89.5% of episodes with a median difference
of 29.2% and a maximum IQR of 5%.

D. Human Judgment of Human-like Behavior

In their study of human-like navigation behavior, Devlin et
al. [10] trained two RL-based agents, which they refer to as
symbolic and hybrid agents, to complete a navigation task with
a level of success sufficiently similar to that of human players
so as to focus solely on learned behavior. To analyze human
judgment of human-like behavior, they design a Navigational
Turing Test in which they administer a survey to 60 human
assessors. They report not only that participants were able to
accurately detect human players with statistical significance,
but also that the behavior of the hybrid agent was judged to



T = 4

α Human Hybrid Symbolic
0.10 90.5% (0.95%) 19.6% (1.63%) 8.6% (2.28%)
0.25 75.3% (3.50%) 7.0% (1.48%) 2.8% (0.88%)
0.50 50.9% (1.93%) 1.7% (0.25%) 0.4% (0.25%)

T = 8
0.10 89.7% (1.80%) 19.7% (1.43%) 8.5% (0.75%)
0.25 76.7% (2.75%) 6.6% (1.20%) 2.5% (0.45%)
0.50 50.5% (1.63%) 1.6% (0.25%) 0.5% (0.18%)

T = 16
0.10 90.4% (1.38%) 20.6% (3.03%) 8.7% (0.85%)
0.25 73.5% (2.48%) 7.6% (0.97%) 2.6% (0.28%)
0.50 49.8% (2.87%) 1.7% (0.45%) 0.5% (0.18%)

T = 32
0.10 88.9% (1.60%) 20.9% (4.98%) 7.8% (2.60%)
0.25 75.2% (1.50%) 8.0% (1.65%) 3.1% (1.15%)
0.50 50.0% (1.78%) 1.8% (0.75%) 0.5% (0.45%)

TABLE II: Using data provided by [10], we evaluate the human-to-
human likeness using random splits of the human player data, and
the human-to-hybrid and human-to-symbolic evaluations using the
full distributions of movements collected from each agent. We report
the median p-value and IQR (in parenthesis).

be more human-like when directly compared to the symbolic
agent. Furthermore, they provide a dataset composed of 100
episodes collected from a pool of anonymous human players,
and 50 episodes separately collected from pre-trained symbolic
and hybrid agents. To evaluate the efficacy of our hypothesis
test, we benchmark it against this human judgment of human-
like behavior using the data reported in their study. Note that
our test evaluates navigation patterns, and is intentionally left
unaware of player skill levels or gameplay strategies.

We first analyze our test’s ability to measure human-to-
human likeness for this navigation task. Both the environment
and game engine are different from the previous experiment.
Because human player data is anonymously pooled, we use
random splits of the data over S = 1000 iterations with a
subsample size of m = 250. We repeat each experiment 10
times and report the median p-value and IQR across different
time horizons (T ) and alpha levels (α) in Table II. We then
compare the behaviors of the symbolic and hybrid agents to
those of human players. Using the aggregated 100 episodes
from all human players to form our sample set X , we evaluate
each agent using their 50 respective episodes. We observe that
our test aligns with the human judgment reported in [10] as
the hybrid agent is determined to be more human-like than
the symbolic agent across selections of T and α. Note that
across all selections of T and α, the human-to-human likeness
is greater than the human-likeness of both the hybrid and
symbolic agents.

V. CONCLUSION AND FUTURE WORK

We proposed a non-parametric two-sample hypothesis test-
ing framework based on statistical resampling methods to mea-
sure behavioral similarity through the lens of 3D navigation in
games. We demonstrate that our test is agnostic to the nature
of the agent by comparing the human-like navigation behavior
of both RL-based and NavMesh-based agents. Finally, we use
the results reported by [10] to show that the p-value metric
resulting from our test can be used as a measure of similarity
that aligns with anonymous human judgment.

The study of human-like behavior has a rich history that
intersects across a variety of domains, each with a unique
vantage point of the same larger problem. Yet, understanding
the driving factors for emulating human-likeness still remains
an open challenge. With the rapid pace of research surround-
ing the development and analysis of human-like NPCs, we
hope more researchers adopt and further develop methods
to analyze behavior through the lens of distributions. As
humans tend to be “creatures of habit”, we conjecture that
analyzing distributions of behavior could yield further insights
into its driving factors. Furthermore, such formulations may be
used to reward agents to learn such behaviors as distribution
divergence measures could provide stability whereas static
classifiers tend to be exploited [10]. We leave explorations
into reward design or imitation learning for future work.
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