
Towards Modern Card Games with Large-Scale
Action Spaces Through Action Representation

Zhiyuan Yao∗, Tianyu Shi†, Site Li‡, Yiting Xie‡, Yuanyuan Qin‡, Xiongjie Xie‡, Huan Lu‡ and Yan Zhang‡
∗School of Business, Stevens Institute of Technology, Hoboken NJ USA

† Intelligent Transportation Systems Centre, University of Toronto, Ontario Canada
‡Deterrence, rct AI, Burbank CA USA

Email: ∗zyao9@stevens.edu, †ty.shi@mail.utoronto.ca, ‡lisite, xieyiting, qinyuanyuan, eric, hiker, yan@rct.ai,

Abstract—Axie infinity is a complicated card game with a huge-
scale action space. This makes it difficult to solve this challenge
using generic Reinforcement Learning (RL) algorithms. We pro-
pose a hybrid RL framework to learn action representations and
game strategies. To avoid evaluating every action in the large
feasible action set, our method evaluates actions in a fixed-size set
which is determined using action representations. We compare
the performance of our method with two baseline methods in
terms of their sample efficiency and the winning rates of the
trained models. We empirically show that our method achieves
an overall best winning rate and the best sample efficiency among
the three methods.

Index Terms—Game AI, Reinforcement Learning, Large-Scale
Action Space, Action Representation, Axie Infinity

I. INTRODUCTION

Games have facilitated the rapid development of RL al-
gorithms in recent years. Card games, as a classical type of
games, also pose many challenges to RL algorithms. The direct
applications of generic algorithms [1]–[4] in card games are
problematic in many aspects because of large-scale discrete
action spaces [5] with millions of actions. Prior works have
proposed RL methods to approach a number of traditional card
games, like Texas Hold’em [6]–[8], Mahjong [9], DouDizhu
[5], [10], etc. However, the issues brought by the large action
space still remain, especially for modern card games such as
Axie Infinity1 which has a huge discrete action space.

Axie Infinity is an one-versus-one online card game which
has millions of players globally. Axies are virtual pets that
have different attributes such as species, health, speed, etc.
Each axie has its own card deck consisting of 2 copies of
4 cards. The player needs to form a team of 3 axies at the
beginning and play their cards (24 cards in total) to beat the
opponent player’s team.

This game is different from the traditional card games in
the following aspects:

1) For a fixed team, the player needs to choose one
sequence of cards from 23 million different card se-
quences.

2) The effect of a card is usually influenced by many factors
such as its position in the card sequence, other cards, and
the status of the axies.

1A detailed description of Axie Infinity and its rules can be found in
https://whitepaper.axieinfinity.com/

3) There are thousands of teams for players to choose. The
optimal strategies for different teams are various.

These difficulties are all connected to the large-scale action
space, and they are shared by a lot of other modern card games
such as Hearthstone2.

Some existing works have investigated the large action space
issue in card games. Zha et al. [5] propose an action encoding
scheme for DouDizhu. However, this encoding scheme cannot
properly encode the action in our problem as the complexity
of the action space in our problem is much higher than
that in DouDizhu (27472 possible moves). Dulac-Arnold et
al. [11] propose to choose actions in a small subset of the
action space to speed up the action search process. This
set is chosen based on a proper action encoding method
which usually relies on prior knowledge. However, the prior
human knowledge for our problem is hard to obtain due
to the diversity of the teams and the strategies. Chandak et
al. [12] propose an algorithm to learn action representations
from the consequences of corresponding actions. This method
can avoid using prior human knowledge, but the policy-based
method produces optimal actions which are not feasible in the
discrete action set. We also mention several general techniques
in [13] to reduce the size of the action space to improve the
performance. However, they are not applicable in our case as
it still requires prior human knowledge of this game.

In this paper, we consider a hybrid RL method to deal
with the large discrete action space. This method chooses the
optimal action in a small subset of the large-scale feasible
action set. It can quickly train models on different teams
with minimal prior knowledge. We test our method with
other baseline methods using Axie Infinity task. We have the
following main contributions:

1) A Markov Decision Process (MDP) formulation for
Axie Infinity problem including a novel action encoding
scheme.

2) An efficient RL method to solve card game problems
with large-scale discrete action space.

3) A supervised learning method to learn action represen-
tations.

4) Empirical results demonstrating the superiority than
other baseline methods

2https://playhearthstone.com

II. PROBLEM FORMULATION

We assume our agent uses a fixed team to play against a
rule-based player who randomly uses multiple popular teams.
As the opponent is fixed, we formulate this environment as
a single-agent Markov Decision Process (MDP). This MDP
has a finite time horizon, each time step is one game round.
The process is terminated when one player is defeated. The
one-step transition probability measure is denoted as Pt.
Every state in the state space S consists of all the available
information to our player. This includes all six axies’ status,
energy, available cards, card history, etc.

In Axie Infinity, each team has three axies, each of which
has two copies of 4 distinct cards. Thus, this forms a 24-
card deck. In each round, the player places a sequence of
cards for each axie, thus three sequences of cards are placed.
Each sequence can have at most 4 cards by the rule of the
game. Considering all these rules, we propose a novel action
encoding scheme to vectorize an action as a 6×12 matrix. One
example is given in Figure 1. All legit actions form the discrete
action space A whose size equals 23,149,125. In contrast,
DouDizhu in [5] only has 27,472 actions.

Fig. 1. A demonstration of an encoded action consisting of 3 card sequences.
Axie A/B/C respectively places 1/2/4 cards in this round. The status of each
card is encoded in a 6-digit vector where the first two digits represent the
number of this card and the rest 4 digits encode its positional information.
The matrix is formed by 12 such vectors for 12 distinct cards.

We define the reward as the result of the game, with a
penalty on the activity of discarding cards. Mathematically,
we denote the terminal state set T as a set of states at
which the game is over. For a transition tuple (st, at, st+1),
0 ≤ t < T − 1, we define the reward function as

rt(st, at, st+1) =

{
I − c · nd, if st+1 ∈ T ,

0, o.w.,

where I and nd are components in st+1. The game result
indicator I equals to 1/0/-1 if the agent wins/ties/loses the
game, and nd is the number of discarded cards in the whole
game. The positive constant c adjusts the importance of the
penalty term.

III. METHODOLOGY

Due to the challenges brought by the large-scale action
space, we consider to only evaluate a small group of actions

which are filtered out from all feasible actions. We form this
small set of actions with those actions which have similar
effects with a target action. This target action is generated by
a policy function. A distance function is needed to measure the
“similarity” between two actions. Inspired by Word2Vec [14],
we learn an action embedding function which maps one-hot-
like action vectors into a continuous space which is defined as
the latent action space. The Euclidean distance in this latent
space reflects the difference between two actions in terms of
their effects. We notice that the method in [11] incorporates
a similar idea. The difference between their work with ours
is that [11] uses the Euclidean distance in the original action
space instead of the latent space.

A. A Decision Procedure

We illustrate the decision procedure in Figure 2. The al-
gorithm generates a point in the latent action space based on
the state. Those feasible actions which are close to this point
in the latent space form a candidate set of actions. Then, we
apply the Q-function to evaluate each action in this set to find
the optimal one.

Specifically, this decision procedure of our method consists
of 3 parametrized components:

1) A raw policy function uθ1 : S → Rn where n is the
dimensions of the action space, A ⊂ Rn.

2) An embedding function fθ2 : Rn → E where E is
the latent action space, and E ⊂ Rm, m < n. For an
arbitrary action a, e = fθ2(a) is called the latent action
representation of a.

3) A state-action value function, i.e., a Q-function qθ3 : S×
A → R. The Q-value qθ3(s, a) evaluates the expected
return when executing action a at state s.

For a given input s, the overall policy function µ selects
the action using the following procedure. First, we obtain a
point ā = uθ1(s) as a “raw action”, note it is possible that
ā ̸∈ A. Second, we denote the set of all available actions for
s as U(s). We calculate the distance between feasible actions
with the raw action in the latent space by

d(a, ā; fθ2) = ∥fθ2(a)− fθ2(ā)∥2,

for all a ∈ U(s). We form a k-element subset of U(s) with
the top k closest actions to the raw action in the latent space,
denote it as Uk(s; θ1, θ2). Mathematically, this is done by

Uk(s; θ1, θ2) = argmin
U⊂U(s),|U|=k

∑
a∈U

d(a, uθ1(s); fθ2). (1)

In the last, we select the action which has the highest Q-value
in this subset. If we denote an overall policy function as µ for
a given state s, the action is selected by

a∗ = µ(s; θ1, θ2, θ3) = argmax
a∈Uk(s;θ1,θ2)

qθ3(s, a). (2)

B. Training procedures

Our method consists of three sets of parameters θ1, θ2, and
θ3. We design a two-stage algorithm to train these parameters.

Fig. 2. An illustration on the decision procedure.

In the first stage of training, we design a supervised learning
method to learn the embedding function fθ2 . We learn the
action representations based on the effects of the actions on
the system states. For instance, assume an arbitrary state s ∈ S
and two actions a1 and a2, if the probability measure p(s, a1)
is similar to p(s, a2) where p(s, a) = P (St+1 | St = s,At =
a), we say a1 and a2 have similar effects. Following this idea,
we define a deterministic transition function mθ4 : S×E → S ,
mθ4(s, fθ2(a)) should estimate the next state after executing
a at s. We define the following objective function for the first
stage training

J1(θ2, θ4) = EPt,·[(mθ4(s, fθ2(a))− s′)2]. (3)

We collect the transition tuples (s, a, s′) in a dataset D by
randomly selecting actions. Then, we apply a gradient-based
optimization method to optimize θ2 and θ4 by minimizing J1
on D. We only need θ2 in the next stage.

In the second stage of training, similar to Deep Determin-
istic Policy Gradient in [2], we apply an iterative training
procedure to alternatively update the deterministic raw policy
function (the actor) uθ1 and the Q-function (the critic) qθ3 . We
use the raw action ā instead of the final action a∗ in the policy
improvement part, details can be found in [11]. The Q-function
training uses Monte-Carlo estimate described in [15].

IV. EXPERIMENT

We compare our method with two baseline methods:

1) Douzero. We adapt the Douzero method in [5] to our
problem. We design a similar action encoding scheme
as the one mentioned in this paper, where each action
is encoded as a 2-by-12 matrix.

2) Douzero+pooling. We reduce the size of the action space
by shrinking its dimensions. We design this baseline
method by adding an 1D pooling layer in [16] on the
flattened actions from Douzero.

Indeed, other techniques to reduce the scale of action spaces
are mentioned in [13]. They inevitably introduce prior human
knowledge, which conflicts with our intention, and this makes
the comparison unfair. We try to answer the following ques-
tions through experiments:

1) Does our method produces overall better performance
than other baseline methods?

2) Does our method achieve better sample efficiency?

Fig. 3. Comparison on the learning curves. Six line-charts shows the
learning curves of 18 models in the first 5 × 105 steps. It can be seen that
our method shows a faster convergence with the same amount of samples on
most of the 6 teams.

A. Sample Efficiency

We select six teams that are popular at different levels in the
global rank3. We train a model for each team using 3 methods:
our method, the Douzero method, and the Douzero+pooling
method. Thus, we trained 18 models in total. To make a fair
comparison, we stop the training after 1 × 107 steps for all
these models.

Figure 3 shows the evolution of average returns during
training in the first 1 × 105 steps. It can be seen that, on
most of the teams, the models from our method have the
highest average return among the three by trained with the
same amount of samples. This indicates that our method can
quickly produce high-quality models with limited amount of
samples.

B. Battle

We evaluate the performance of each model by letting it play
against other models and rule-based players. This guarantees
that the models trained for the same team have the same set
of opponents. Each battle consists of 1000 games. Each model
plays 29000 games against various opponents to obtain a

3A detailed description of these 6 teams can be found in our full paper:
https://arxiv.org/pdf/2206.12700.pdf

TABLE I
THE AVERAGE WINING RATE OF 3 METHODS ON 6 TEAMS

(174000 GAMES FOR EACH METHOD)

Method Winning rate

Our method 0.4986

Douzero 0.4477

Douzero+pooling 0.4283

Fig. 4. Comparison on battle performance between our method with
two baseline methods on 6 teams. We train 18 models using these three
methods on 6 teams. We evaluate each model by letting it play against a same
set of opponent players consisting of the other trained agents and random
players (29000 battles in total). Note the qualities in the left/right bar-plot
respectively show (the number of wins of our method - the number of wins
of the Douzero/Douzero+pooling method).

comprehensive result. This makes the variance of estimators of
the winning rates small enough to show statistical significance.

We aggregate the winning rate of the models trained by each
method in Table I. It can be seen that the overall winning rate
of our method is 5% and 7% higher than the Douzero and
Douzero+pooling method respectively. This also confirms our
method has a better generalization ability on different teams.

We also compare the models which use the same team. For
each team, we calculate the difference between the number of
wins by our method with that of Douzero or Douzero+pooling.
A positive difference indicates our method plays this team
better than the baseline method. We visualize these differences
in the number of wins in Figure 4. We can find that our method
can achieve a higher number of wins across most teams than
the baseline methods. This indicates that our method has good
generalizability to most team types. We notice that our method
cannot outperform Douzero on teams 2 and 6. The reason is
that strategies for these two teams are more diversified than
those for the other teams. This makes high-reward actions far
away from each other in the latent space. In such cases, the
Douzero method may make better decisions than our method
because it evaluates every feasible actions, though it is more
computationally expensive.

V. CONCLUSIONS

In this study, we try to use an RL method to solve the
challenges in a card game problem with a large action space.
We give an MDP formulation for the game Axie Infinity.

We propose a general RL algorithm to learn the strategies
of different teams. We design a training procedure to learn
the action embedding function without prior information. We
empirically demonstrate our method outperforms the baseline
methods in terms of the battle performance and the sample
efficiency.

Our work can be improved by incorporating the self-play
technique [17] in training to enhance the opponents. Moreover,
many modern card games provide rich textual data to explain
the rules and the cards. Using advanced language models to
learn prior information from such textual data can enhance
the action embedding component in our method. Future works
may focus on these directions for further improvement.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[2] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[3] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning.
PMLR, 2016, pp. 1928–1937.

[4] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[5] D. Zha, J. Xie, W. Ma, S. Zhang, X. Lian, X. Hu, and J. Liu, “Douzero:
Mastering doudizhu with self-play deep reinforcement learning,” in
International Conference on Machine Learning. PMLR, 2021, pp.
12 333–12 344.

[6] M. Bowling, N. Burch, M. Johanson, and O. Tammelin, “Heads-up limit
hold’em poker is solved,” Science, vol. 347, no. 6218, pp. 145–149,
2015.

[7] N. Brown and T. Sandholm, “Superhuman ai for heads-up no-limit
poker: Libratus beats top professionals,” Science, vol. 359, no. 6374,
pp. 418–424, 2018.

[8] ——, “Superhuman ai for multiplayer poker,” Science, vol. 365, no.
6456, pp. 885–890, 2019.

[9] J. Li, S. Koyamada, Q. Ye, G. Liu, C. Wang, R. Yang, L. Zhao,
T. Qin, T.-Y. Liu, and H.-W. Hon, “Suphx: Mastering mahjong with
deep reinforcement learning,” arXiv preprint arXiv:2003.13590, 2020.

[10] Y. Guan, M. Liu, W. Hong, W. Zhang, F. Fang, G. Zeng, and Y. Lin,
“Perfectdou: Dominating doudizhu with perfect information distillation,”
arXiv preprint arXiv:2203.16406, 2022.

[11] G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag, T. Lillicrap,
J. Hunt, T. Mann, T. Weber, T. Degris, and B. Coppin, “Deep re-
inforcement learning in large discrete action spaces,” arXiv preprint
arXiv:1512.07679, 2015.

[12] Y. Chandak, G. Theocharous, J. Kostas, S. Jordan, and P. Thomas,
“Learning action representations for reinforcement learning,” in Inter-
national conference on machine learning. PMLR, 2019, pp. 941–950.

[13] A. Kanervisto, C. Scheller, and V. Hautamäki, “Action space shaping
in deep reinforcement learning,” in 2020 IEEE Conference on Games
(CoG). IEEE, 2020, pp. 479–486.

[14] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[15] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[16] D. Yu, H. Wang, P. Chen, and Z. Wei, “Mixed pooling for convolu-
tional neural networks,” in International conference on rough sets and
knowledge technology. Springer, 2014, pp. 364–375.

[17] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al., “A general
reinforcement learning algorithm that masters chess, shogi, and go
through self-play,” Science, vol. 362, no. 6419, pp. 1140–1144, 2018.

