
Quick generation of crosswords using concatenation
Jakub Dakowski

Faculty of Psychology & Cognitive Sciences
Adam Mickiewicz University

Poznań, Poland
https://orcid.org/0000-0002-7811-4580

Piotr Jaworski
Faculty of Psychology & Cognitive Sciences

Adam Mickiewicz University
Poznań, Poland

piojaw@amu.edu.pl

Waldemar Wojna
Faculty of Law & Administration

Adam Mickiewicz University
Poznań, Poland

walwoj@st.amu.edu.pl

Abstract—We propose two crossword generation methods
based on a crossword concatenation, word addition and cross-
word rotation operation. This can be viewed as an alternative
to the method proposed by Bonomo, Lauf and Yampolskiy or
Bulitko and Botea, who focus on generating matrices filled with
letters and mutating them in order to make them into actual
crosswords. The first one uses a combination of first improvement
and best improvement local search methods. The choice on which
one to use is made using the temperature calculated for a given
turn. Second algorithm is a simulated annealing algorithm which
uses best improvement search and word removal operation. The
crosswords are evaluated using a goal function that includes the
amount of intersections in a crossword and the density of letters
in the crossword. Unfortunately, both of these solutions, while
producing decent results, create puzzles unsolvable for humans
in reasonable time. Because of that, we plan on implementing: a
better goal function, targeted word removal and targeted word
addition. We also plan to switch simulated annealing for a cuckoo
search algorithm.

Index Terms—artificial intelligence, optimization, crosswords,
puzzles, local search, simulated annealing, cuckoo search, content
generation

I. INTRODUCTION

While the crossword generation problem has been studied
for some time, it has recently received incredible attention due
to the rise of new AI methods. Bonomo, Lauf and Yampolskiy
[1] proposed using a genetic algorithm for crossword gener-
ation. Similarly, Bulitko and Botea [2] use an approach with
the additional usage of neural networks for crossword quality
estimation. Unfortunately, their crosswords were meant for a
competition-level AI solver and because of that it is safe to
assume they were unsolvable to humans. Rigutini, Diligenti
and Gori [3] propose an NLP algorithm for clue generation.

Harris [4] proposes dividing these efforts into unconstrained
and constrained crossword generators. The latter use a pre-
determined black field placement and crossword generators
that do not need this assumption are unconstrained. Harris
[4] observed that most crossword generators described in the
literature are constrained. While his work is from 1990, this
rings true to this day1.

This paper employs a different approach. We introduce
an inductive method of crossword generation based upon

1Bonomo, Lauf and Yampolskiy [1] use a set of three predefined grids and
while Bulitko and Botea [2] use random grids, the algorithm still only tries to
satisfy the black fields provided by a random generator. The system developed
by Rigutini [3] also seems to employ this design.

three operations: crossword concatenation, rotation and word
removal. These methods are utilized in two AI algorithm
designs based on simulated annealing and local search. Next,
we present a summary of their performance and discuss our
plans for this project. These are focused on adjusting the
difficulty level of crossword solving and include an improved
goal function, targeted crossword modification and a cuckoo
search algorithm [5].

To create a common understanding of what we will consider
crosswords, we invite the reader to look at the figure I. One
can define the crosswords:

Definition 1: A crossword is a two dimensional matrix filled
with empty (black) fields, clue fields and letter (white) fields.
Every white field can be filled with one letter in such way
that in every direction pointed by the clue field the white
fields make up a word related to the clue via the dictionary.
This word ends at the first black field encountered in a given
direction.

II. METHOD

This section presents the crossword representation, the old
goal function and AI algorithms used. We used Python 3 with
multiprocessing support, allowing quicker crossword genera-
tion.

A. Crossword representation

The software stores crosswords in dynamic slot tables [4],
allowing the system to leave specific fields empty. The letters
are stored in a dictionary, with keys being their coordinates.
Words are stored as "pointers" to their letters. The words are
stored in two separate structures - one for horizontal words
and one for vertical ones. Clues are stored similarly to the
letters.

1) The coordinate system: The most exciting feature of this
class is its possibility to perform three operations on cross-
words – transposition, crossover and word removal. However,
the crossover operation introduced the need to combine two
crosswords while appropriately managing their coordinates.
Because of this, the concept of relative coordinates is intro-
duced.

The algorithm starts from the absolute coordinates. These
are identical to the ones found in slot tables (every column
and row is assigned a natural number and the coordinate is
a pair 〈column, row〉). These can be easily transformed into

Fig. 1. An example of the crossword generated using this algorithm. The
crosswords are compiled using LATEX. Numbers direct the user to the provided
clues. Arrows symbolize whether the word is horizontal or vertical. One can
also see the crossed out field - this symbolises a whitespace.

a coordinate relative to another field (whose coordinates are
〈x0, y0〉) using the formula:

relative(〈x, y〉), 〈x0, y0〉) = 〈x− x0, y − y0〉

This operation can be reversed using the same function
(min returns the lowest possible coordinate in this axis):

relative(〈x− x0, y − y0〉, 〈min(x),min(y)〉) = 〈x, y〉

The relative coordinates can be used to unify the coordinates
of two crosswords before merging. When the software finds
a possible intersection of two crosswords, it can relativize
them in regard to the position of intersectable fields. From
this point on, the two crosswords can be easily compared.
The unification process is also presented on figure 2.

2) Crossover operation: When crossing over two cross-
words, the system chooses a random pair of fields with the
same letters and tries to create an intersection. This relies
on an original letter collision detection algorithm. After the
coordinate relativization stage, merged crosswords are scanned
for fields with the exact coordinates. This way, every collision
can be assessed by checking if a letter would be overwritten. If
any collisions are found, the system looks for another possible
intersection. The merging process is a set union operation. At
the end the crosswords go back to the absolute representation.

3) Rotation operation: While the crossover operation is
complex, the crossword rotation could not be simpler. It works

Fig. 2. An example of the coordinate unification process. The coordinates
have been marked using parenthesis instead of angled brackets. Notice how
the yellow field is the intersection, and its relative coordinates in AB are
(0, 0). This changes when the coordinates are turned back into their absolute
counterpart.

just like matrix transposition. Here is an example to illustrate
it:

{〈1, 2〉 : a, 〈2, 6〉 : b}T = {〈2, 1〉 : a, 〈6, 2〉 : b}

The crossword has only two possible configurations pre-
venting the creation of words that go from right to left or
from the bottom to the top.

4) Word removal operation: The word removal operation
is also quite simple. As the words stored in the crosswords
are also pointers to the coordinates of their letters and the
Crossword class also stores the coordinates of all word
intersections in order to ease this process.

5) Crossword attributes: As the crosswords are simple data
structures, we can define certain functions that will describe
their traits. These functions will be used in the incoming
sections:

• intersections(a) returns the amount of intersections in a
crossword. This is the size of aforementioned intersection
set.

• width(a) and height(a) return the x-axis and y-axis val-
ues of the highest coordinate (in the absolute coordinates)

• letters(a) returns the amount of white fields in a cross-
word. This is calculated using the combined sets of
letters.

B. Crossword generation

How can one use this operation to generate puzzles? We
can take a random word and transform it into a crossword by
placing it in an empty crossword slot table. Then the same
is done for another word, and they are combined using the
proposed concatenation operation. This is repeated until some
constraint is satisfied, and the crossword is ready.

Unfortunately, it will leave the user with a very sparse (and
frankly, quite challenging) crossword. So, how to create good
crosswords? This is the case of optimizing the goodness of a
crossword. However, how does one define a good crossword?

1) Goal function and simple local search: We have pro-
posed a temporary goal function for crosswords:

f(x) = intersections(x) ∗ letters(x)

width(x) ∗ height(x)
Initially, we only used the ratio of letters to crossword size

(the second part of the equation). This, however, introduced
huge crosswords with quite a small amount of words in them.
We introduced the intersection amount to this function, as they
give the user more hints regarding the words in the crosswords
and promote more compact crosswords.

Using a simple best improvement and first improvement
local search [6], one can now take multiple words and check
which one fits best into the crossword. Ironically, this approach
can produce undesirable results, as in the beginning, the
puzzles should focus more on expanding and not on being
dense. This produces small and sparse crosswords, as there is
no room for additional words. We have found three approaches
to solve this issue:

• Simulated annealing-inspired local search with algorithm
seeding,

• Simulated annealing [7] with algorithm seeding,
• Cuckoo Search [5] (this one will be described in the

discussion section).
2) Algorithm seeding: As the algorithm performed much

better when it was tasked with optimizing an already existing
crossword, we have decided to "seed" every crossword. This
way, the starting puzzles are treated as the skeleton for the
result. For now, the seeding algorithm combines multiple
random words.

3) Simulated annealing-inspired local search: Since the
best improvement local search will continually search for the
highest goal function value, it can quickly get stuck in a local
optimum. Seeding allows the production of puzzles with a high
ratio of black fields to the filled-in ones, but it does not solve
this problem.

This is quite similar to the problem solved by simulated
annealing, and so we have modified the concept of slowly
increasing the cautiousness of changes. The system starts at
a high temperature, which allows it to conduct risky first
improvement searches. With every turn, this value is lowered,
and the system will have fewer chances to perform them,
focusing on best improvement searches instead. These searches
are performed on a specified number of random words not
included in the puzzle.

This paints the image of an algorithm that starts by creating
a randomized puzzle and then tries to fill it in being slightly
more strict with every coming turn.

4) Simulated annealing: We have also introduced a more
typical simulated annealing technique which uses local search
and the word removal method. The algorithm creates a ran-
domized puzzle and tries filling it in using the best improve-
ment search while also having the possibility to remove a
random word from the puzzle. This chance decreases with
the temperature.

C. Web scrapping

To create a dictionary, the author has downloaded the words
available in [8]. This was done using a script written in Python
using the BeautifulSoup 4 package [9] and the lxml parser.
The data was quite low quality (repetitions, lack of the clues
for certain words or their unhelpfulness), so it was curated
manually. It is worth mentioning that the dictionary can be
easily switched for another one and the software will still
work. Therefore, one can also use it to generate crosswords
in other languages. In some cases, the clues had multiple
versions. In these situations all of them are printed. In the case
of homographs, the software disallows them in one crossword.

III. ALGORITHM EVALUATION METHOD

The first algorithm was prepared to be tested by setting the
following hyperparameters:

• Starting temperature of 1 – this means that at the be-
ginning, there will be a 100% chance of using the first
improvement search.

• Temperature change speed of 0.015 (this means that every
turn, 1.5% of the temperature dissipates).

• The amount of words in the seed is set to 12.
• The maximum size of a crossword is set to 33 by 25 (this

perfectly fits an A4 page).
• The algorithm was set to stop if the filled-in ratio reached

80%.
The second algorithm used a much lower starting tempera-

ture of 0.2. Other parameters were left unchanged.
We generated 110 puzzles using both methods. The exper-

iment was done using an Intel Core i9-10850 processor with
the clock speed set to 4.8 GHz. All of the data was processed
using the R language [10] and the dplyr [11] library used for
easier data transformation.

IV. RESULTS

The first algorithm’s average puzzle generation time is 3.94
seconds (Standard Deviation (SD) = 1.71 s, Coefficient of
Variation (CV) = 59%). This seems like a fair value, as
even 8 seconds (the maximum generation time) should not be
problematic for the end-user. This was also significantly lower
(t=6.926, df=181, p<0.001) then the generation time of the
second algorithm (Mean (M) = 5.07s, SD=2.78s, CV=54%).

The crosswords generated by the first algorithm had the
mean letters to fields ratio (letters(x)

width(x)∗height(x)) of 68.87%
(SD=15%, CV=25%). The variation here is low, but the value
could be improved. It is still better than what Bonomo, Lauf
and Yampolskiy [1] achieved, as, in many of their grids, a
great number of letters would be discarded. The first and
second algorithm (M=0.66, SD=8%, CV=13%) didn’t differ
significantly when it comes to white field ratio (t = -1.6096,
df = 165.52, p = 0.1094).

The mean ratio of intersections to letters (intersections(x)letters(x)))
in the first algorithm was 13.95% (SD=2.29%, CV=16%). It
is hard to compare this to the work of other authors. We
hypothesize this value should be improved, as it seems that the

word intersection can be used as additional clues. This idea
is expanded on in the discussion. Unfortunately, the second
algorithm isn’t useful here, as its result here (M=12.07%,
SD=1.58%, CV=13%) is significantly lower (t = -7.0472, df
= 193.7, p<0.001).

Unfortunately, both generators created crosswords too com-
plex for humans.

V. DISCUSSION

The main limitation of this work is its current ineffective-
ness at creating solvable puzzles and leaving local optima.
We presume the reason for this is the vast randomness of our
approach. Difficulty threshold of crosswords tends to be based
on interaction between clues and structure of cells [12]. Due to
randomness there is no possibility to form specific patterns and
crosswords’ themes. It seems improbable for the crosswords
to be good when we need to rely on pseudorandom functions.

Besides minor improvements, like better algorithm seeding
procedure and code optimization, there are three main im-
provements authors would like to focus on in the future. These
changes aim to improve the solving experience for the users.

1) Goal function improvements: It is worth focusing on the
frequency of a word in a language - the more often it is used,
the easier it is to recall from memory, and the structure of the
word - complexity refers to the number of letters building it.
In order to keep the difficulty of the clues at the right level
we plan to use the collocation extraction tool [13].

A vital element that constitutes a component of the difficulty
of the word is its location in the crossword. We would like to
expand on the idea of filled-in letters being clues and assess
the possibility of guessing the words when certain letters are
provided. This is related to the psycholinguistic model of
lexical search, i.e. the Cohort model [14]. According to this
model, when a person hears speech segments in real-time,
each speech segment "activates" every word in the lexicon
that begins with that segment. As more segments are added,
more words are excluded until only one word remains that still
matches the input. Similarly, here with each letter typed, the
set of remaining possibilities narrows. This hypothesis could
be tested empirically in a paradigm similar to the hangman
game. The respondent would be presented with a word with
letters in different positions and asked to guess the word as
quickly as possible. Such an experiment would help determine
which letters in which positions are most helpful in guessing
passwords.

2) Targeted word elimination and addition: With the
cohort-inspired crossword quality assessment comes the idea
of assessing the quality of single words and crossword areas.
This can be used in three ways:

• The software can eliminate words straying from the
intended difficulty level.

• The system can search for the best and worst areas in the
puzzles.

• The worst areas could be subjected to a targeted word
search, which would find the best possible fits from the
dictionary.

3) Cuckoo search: The procedure for finding the best areas
in puzzles could be used to implement the Cuckoo search (as
described in [5]). Similarly to how cuckoo birds lay eggs in
the nests of other birds, the crossword would be able to place
its best parts in other crosswords. While they would be able
to "destroy the egg" using the word elimination, the fragment
could also incorporate into the puzzle. Of course, at every turn,
some crosswords would not survive.

VI. CONCLUSION

This work presented our current results in unconstrained
crossword generation. After a brief overview of the field, we
proposed a representation for crosswords in our software, three
crossword operations and tested two crossword generation
algorithms based around local search and simulated annealing.
We discussed our plans on making our system less dependent
on randomness using better goal function, word search and
cuckoo search. This is a response to the main limitation of
our work to this day.

REFERENCES

[1] D. Bonomo, A. P. Lauf, and R. Yampolskiy, “A crossword puzzle
generator using genetic algorithms with wisdom of artificial crowds,” in
2015 Computer Games: AI, Animation, Mobile, Multimedia, Educational
and Serious Games (CGAMES), 2015, pp. 44–49.

[2] V. Bulitko and A. Botea, “Evolving romanian crossword puzzles with
deep learning and heuristic search,” in 2021 IEEE Conference on Games
(CoG). IEEE, 2021, pp. 1–5.

[3] L. Rigutini, M. Diligenti, M. Maggini, and M. Gori, “A fully automatic
crossword generator,” in 2008 Seventh International Conference on
Machine Learning and Applications. IEEE, 2008, pp. 362–367.

[4] G. Harris, “Generation of solution sets for unconstrained crossword
puzzles,” in Proceedings of the 1990 Symposium on Applied Computing.
IEEE, 1990, pp. 214–219.

[5] M. Kochenderfer and T. Wheeler, Algorithms for
Optimization. MIT Press, 2019. [Online]. Available:
https://books.google.pl/books?id=uBSMDwAAQBAJ

[6] P. Hansen and N. Mladenović, “First vs. best improvement:
An empirical study,” Discrete Applied Mathematics, vol.
154, no. 5, pp. 802–817, 2006, iV ALIO/EURO Workshop
on Applied Combinatorial Optimization. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0166218X05003070

[7] A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras,
and TensorFlow: Concepts, Tools, and Techniques to Build
Intelligent Systems. O’Reilly Media, 2019. [Online]. Available:
https://books.google.pl/books?id=HnetDwAAQBAJ

[8] polski-slownik.pl, “Wszystkie wyszukiwane hasła do krzyżówek,”
2021. [Online]. Available: https://polski-slownik.pl/hasla-do-
krzyzowek.php?pokaz=wszystkie

[9] L. Richardson, “Beautiful Soup documentation,” crummy.com, 2020.
[10] R Core Team, R: A Language and Environment for Statistical

Computing, R Foundation for Statistical Computing, Vienna, Austria,
2021. [Online]. Available: https://www.R-project.org/

[11] H. Wickham, R. François, L. Henry, and K. Müller, dplyr: A Grammar
of Data Manipulation, 2021, r package version 1.0.7. [Online].
Available: https://CRAN.R-project.org/package=dplyr

[12] J. K. McSweeney, “Analysis of crossword puzzle difficulty using a
random graph process,” in The Mathematics of Various Entertaining
Subjects. Princeton University Press, 2015, pp. 105–126.

[13] P. Pęzik, Narodowy Korpus Języka Polskiego. Wydawnictwo Naukowe
PWN SA, 2012, ch. Język mówiony w NKJP, pp. 25–49.

[14] W. D. Marslen-Wilson and A. Welsh, “Processing interactions and
lexical access during word recognition in continuous speech,” Cognitive
Psychology, vol. 10, no. 1, pp. 29–63, 1978. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/001002857890018X

