
LILAC: Learning a Leader for Cooperative
Reinforcement Learning

Yuqian Fu∗†, Jiajun Chai∗‡, Yuanheng Zhu∗‡, Dongbin Zhao∗‡
∗The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation,

Chinese Academy of Sciences, Beijing, China
†Electronic Information School, Wuhan University, Wuhan, China

‡School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
yuqianfu@whu.edu.cn, {chaijiajun2020, yuanheng.zhu, dongbin.zhao}@ia.ac.cn

Abstract—In cooperative multi-agent reinforcement learning,
role-based learning promises to reach satisfactory policy learning
through the decomposition of complicated tasks using roles.
Different roles are responsible for different aspects of the task.
However, how this group of roles can be quickly identified is not
clear. To address this problem, we propose a novel framework,
LearnIng a LeAder for Cooperative reinforcement learning
(LILAC), which introduces a leader to integrate information to
assign roles. Leaders take a broad view of the whole task and
feed the integrated information into a Gaussian mixture model to
sample role embedding distribution. It enables LILAC to assign
appropriate roles to different agents and improves cooperative
performance. In order to evaluate the cooperation of multiple
agents, a mixing network, inputted by individual local utility
networks, is constructed to estimate the global action value. Two
loss functions, temporal difference loss and mean divergence
loss, are adopted by LILAC to learn network parameters and
to encourage diversity of policies for different roles. By virtue
of the leader module, LILAC outperforms the StarCraft II
micromanagement benchmark in our experiments, especially on
challenging tasks.

Index Terms—multi-agent reinforcement learning, role-based
method, deep learning, game AI

I. INTRODUCTION

In recent years, deep reinforcement learning (DRL) has
achieved sensational advances in many kinds of games [1],
[2], and it has gained massive attention. The DRL methods
provide impressive performances in various games, including
playing Atari games [3], playing the game of Go [4], and
playing real-time strategy games [5]. The cooperation among
multiple agents in games is often much more critical: agents
must collaborate to complete a common task. These tasks are
researched under the cooperative multi-agent reinforcement
learning (MARL) umbrella. Agents aim to learn policies to
optimize a shared global reward through interaction with
an unknown stochastic environment and with other agents.
Besides, cooperative MARL is significant for coordination
problems in real-world applications, such as coordination of
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robot swarms [6], autonomous cars [7], and traffic manage-
ment [8].

Learning to collaborate remains many challenges. Multiple
agents usually get local observations concurrently, causing
the environment faced by each agent to be non-stationary
[9]. The large dimension of joint action space increases
exponentially with the number of agents, and the global state
is often unavailable for an individual agent during execution
due to communication constraints or partial observability [10],
[11]. Some MARL approaches use a straightforward sharing
mechanism to address these challenges, and all agents update
a shareable decentralized policy or value function. Value
factorization is a popular method to expand cooperative multi-
agent Q-learning in complex domains based on the centralized
training and distributed execution (CTDE) approach [12],
[13]. CTDE tries to learn a centralized joint value function
Qtot, with the individual value functions Qi as input. Each
agent makes individual decisions based on local observations
throughout execution to achieve collaboration. However, the
simple sharing and learning mechanisms face limitations in
some complex scenarios where agents should be divided
into groups and locally cooperate on different assignments.
For example, in the 18th century, Adam Smith observed in
his work The Wealth of Nations that the division of labor
increased production efficiency. Division of labor allows the
agents to learn their subtasks better. We refer to these similar
subtasks/behaviors as the same role.

The concept of role has been introduced by the researchers
into multi-agent systems these years [14], [15]. These ap-
proaches artificially divide roles or learn roles from local
observations of the agent, but fail in taking advantage of the
global information about the environment. In society, we usu-
ally need a leader to assign roles to groups of people, and this
leader often has access to the big picture of the environment
[16]. On the other hand, these methods artificially redefine
role assignments or use simple probability distributions (e.g.,
normal distribution) to estimate roles, limiting the dynamic
property of role assignments.

To combine the advantages of global information and role-
based methods, we proposed a framework called LILAC to
learn a leader for cooperative reinforcement learning. This



Fig. 1: The game interface of StarCraft II RTS game. SMAC
provides a rich multi-agent test platform, which contains
problems explicitly designed for decentralized control.

framework inventively integrates observations from multiple
agents for role assignments in order to achieve a better global
perspective on the division of complex tasks. Because the role
of each agent should be variable at different time steps, LILAC
introduces the multivariate Gaussian Mixture Model (GMM)
to obtain probability distributions for different roles of each
agent. In order to enlarge the distance between different roles,
we introduce the Mean Divergence Loss Function in GMM. In
this way, LILAC provides a mechanism for cooperative multi-
agent reinforcement learning that is adaptable and shareable.

In this paper, we focus on one kind of real-time strategy
(RTS) game, StarCraft Multi-Agent Challenge (SMAC) [17],
which is an environment for research in the field of collab-
orative multi-agent reinforcement learning. This environment
is based on StarCraft II, whose game interface is shown in
Fig. 1. StarCraft II is one of the most popular real-time
strategy games, with a large player community and a variety
of professional competitions. Defeating the human-made AI
in this game requires different kinds of strategies and solid
collaborative skills. SMAC provides a rich multi-agent test
platform for MARL research, which contains problems explic-
itly designed for decentralized control and allows researchers
to explore the collaboration of agents.

We evaluate LILAC against some ablations in SMAC.
The results on this platform are promising by virtue of the
effective division of roles. Results show that LILAC can learn
a leader for collaborative multi-agent reinforcement learning
and achieve state-of-the-art performance in several hard and
super-hard scenarios in SMAC.

II. RELATED WORK

Multi-agent Reinforcement Learning: Recent years have
witnessed a great success of MARL that has the potential to
tackle a wide range of real-world challenges. Many methods
have emerged under the CTDE paradigm. Most of them
fall into one of two categories: value-based methods and
policy gradient methods. MADDPG [18] and COMA [19]

are two typical policy-based approaches for exploring multi-
agent policy gradient optimization. Another method category,
value-based methods, focuses primarily on the factorization
of the value function. VDN [20], QMIX [12] and QTRAN
[21] have successfully expanded the family of functions that
the mixing network can represent. QPLEX [22] factorizes
the joint value function using a duplex dueling network
architecture, achieving Individual Global-Max conditions’ full
expressiveness potential. Weighted QMIX [23] provides two
algorithms, Centrally-Weighted QMIX and Optimistically-
Weighted QMIX, that employ a weighted projection to pri-
oritize the better joint actions.

Representation Learning in MARL: Learning an effective
representation in MARL receives significant attention. One
popular method is role-based. Many natural systems have
documented the emergence of the roles, such as bees, ants, and
humans [24]. These natural phenomena inspire many MARL
algorithms. ROMA [14] creates a stochastic role embedding
space to drive agents to various policies depending on different
roles. RODE [15] divides joint action spaces into role action
spaces, using an action encoder to learn action representations
and clustering to decrease the policy search space. Besides,
prior works usually redefine role assignments or use simple
distributions to represent roles. Unlike previous works, our
approach focuses to decompose roles more effectively and
generate the distribution of roles more adaptively. Experiments
show that our new method makes role assignments more
efficient.

III. BACKGROUND

A. Dec-POMDP

We consider a fully cooperative multi-agent task with par-
tially observable environment, which can be formulated as a
decentralized partially observable Markov decision process
(Dec-POMDP) [25]. A Dec-POMDP can be described as a
tuple G = ⟨N,S,A, P,R,O,Ω, n, γ⟩, where A is the set
of actions, s ∈ S is the set of states with initial state s0,
and N is the set of n agents. Besides, γ ∈ [0, 1) is a
discount factor. Each agent i ∈ N gets its local observation
oi ∈ Ω based on the observation function O(s, i) at each
time step and takes action ai ∈ A. All agent actions form
a joint action vector a. Based on the transition function
P (s′|s,a), then the environment transitions to the next state
s′, giving each agent a global shared reward r = R(s,a).
Furthermore, to overcome the problem of partial observability,
several approaches use a GRU [26] cell to encode historical
observations and actions into a local trajectory. Each agent
has its trajectory τi ∈ Ti

.
= (Ωi × A)∗, and each agent gets

its policy πi(ai|τi) based on τi. All agent policies form a
joint policy π, which induces the joint action-value function
Qπ

tot(s,a) = Es0: a0:∞[
∑∞

t=0 γ
trt|s0 = s,a0 = a,π,at ∼

π(st)]. This function represents an approximation of the
cumulative reward, which is the agents’ maximum objective.
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Fig. 2: The framework of QMIX, reproduced from the original
QMIX paper [12]. (a) The mixing network’s structure (blue)
, with parameters provided by a hyper-network (red) condi-
tioned on the global state. (b) The overall QMIX architecture.
(c) The structure of local utility network.

B. Value Decomposition

Recently, CTDE has emerged as a promising way in collab-
orative multi-agent systems. CTDE has recently gained atten-
tion for its ability to deal with nonstationarity while learning
decentralized policies. Agents learn in a centralized way and
access the global state while taking action based on their local
action-observation history. Value function factorization is one
promising method for implementing the CTDE framework:
VDN [20] and QMIX [12] provide decentralized utility value
functions for agents and integrate all agents’ utility values
into a global action value via a mixing network. These value
decomposition methods achieve automated learning decom-
position of the joint value function according to the IGM
conditions [21], which assumes that the joint greedy action
should be consistent with the set of individual greedy actions
of agents. The equation of IGM is described as follows:

argmax
a

Qtot (τ ,a) =

 argmaxa1 Q1 (τ1, a1)
...

argmaxan
Qn (τn, an)

 . (1)

VDN assumes that the joint value function can be com-
bined linearly with the individual agent value function of all
agents. The sum Qtot of all individual value functions can be
computed as follows:

Qtot(τ,a) =

n∑
i=1

Qi(τi, ai). (2)

On the other hand, the linear assumption is far too naive
to cope with most scenarios. Therefore, QMIX proposes a
nonlinear global value function. The overall structure of QMIX
and the structure of each component is shown in Fig. 2.
The global value function in QMIX is represented as a state-
based, learnable, and monotonic combination of the agent’s
action-value functions, which is an improvement on VDN.
It uses a mixing network and assumes that the joint action-
value function Qtot is monotonic to the individual action-value
function Qi for the propose of satisfying the IGM conditions:

∂Qtot(τ,a)

∂Qi (τi, ai)
≥ 0, ∀i ∈ {1, . . . , n}. (3)

IV. METHODS

In this section, we propose the method to learn a leader for
cooperative reinforcement learning (LILAC), a novel frame-
work that introduces the leader to assign roles using GMM
and promote collaboration in MARL.

LILAC is a value-based MARL framework based on the
CTDE paradigm. Throughout the training, agents learn local
Q-value functions based on the global Q-value Qtot, which are
generated from the mixing network. Besides, the agents esti-
mate a global temporal difference (TD) error for optimization.
The leader keeps working to integrate agents’ information to
improve collaboration. Each agent is assigned roles and makes
individual decisions dependent on the local utility function.

A. The LILAC Architecture

As shown in Fig. 3, the LILAC framework focuses on
assigning each agent a role by the leader. LILAC employs a
GRU cell to encode historical observations into a trajectory τi
for the agent i. Concatenated observations Ocat from agents
and τi are fed into the leader network, which generates the
parameters of GMM. GMM samples role embeddings, which
are further inputted into the local utility as parameters. The
local utility network learns local utility functions for agents.
The utilities are put into the mixing network to generate a
temporal difference loss for centralized training. During the
execution, the mixing network is removed, and each agent
takes action according to its local value function.

The direct introduction of the original concatenated obser-
vations does not generate valid integrated information. Intu-
itively, we design a leader network better to integrate different
agents’ observations for roles assignment. The leader network
uses a simple structure that contains two fully-connected
layers to output the latent concatenated information. We use
a trainable function f to learn the parameters of the GMM:

(ϕ,µ,σ) = f(Ocat, τi; θρ)

p(ρi) ∼
k∑

j=1

ϕjN (µj , σj)
(4)

where k indicates the number of normal distributions in GMM,
and µ, σ are their means and variance. Besides, k also means
the number of role distributions. ϕ is the weights of different
normal distributions, τi is the local trajectory of the agent, θρ
is the parameters of f . The integrated information and local
trajectories are fed to f to generate the parameters of GMM.
p(ρi) is the probability of a role ρi, following GMM.

The role ρi of agents i is presented using a multivariate
GMM, and we encode roles in embedding space to learn
desired attributes. GMM has a wide range of applications
in many fields, such as image segmentation [27], speech
recognition [28], and text summarization [29]. GMM has some
advantages over other distributions, such as the ability to learn
the distribution parameters and the ability to approximate the
distribution with a finite number of parameters. In LILAC,
we use different norm distributions N (µj , σj) to represent
different role distributions, so k also means the number of
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Fig. 3: LILAC architecture. (a) Structure of LILAC. Leader network encodes the concatenated observation and uses them to
generate the parameters of GMM. The GMM generates a distribution of latent role embeddings from which a sample of a
role embedding is taken and fed into the role decoder. The role decoder generates roles, which are taken by the local utility
network as the parameters. The role decoder contains two fully-connected layers to output the role vectors. To estimate the
global action value, local utilities are input into the mixing network. In addition to the widely used TD loss, we also propose
the mean divergence loss function to enable the diversity of policies for different roles. The end-to-end training manner is
possible using this framework. (b) Agent’s trajectory. Agent i uses local observations to generate history/trajectory. (c) Local
utility network. It estimates the agent’s utility Qi based on its local trajectories and roles.

roles. Besides, the agent may not have only one role in the
whole complex task, so we use different normal distributions
in GMM to represent the dynamic. GMM samples the role
embeddings, which are decoded as roles. Roles are then fed
into the local utility network parameterized by θh to get the
action-value functions for each agent i.

The value functions of agents depends on their roles, each
role in charge of similar sub-tasks. Every agent i has its local
utility determined by the agent’s history observations τi and
role vector ρi. The local utility network is made up of three
layers: two fully-connected layers aggregated by one GRU
layer. The last fully-connected layer generates an estimated
value for each action. The utility Qi and other agents’ utilities
Q−i are fed into the mixing network to generate a global
action-observation value. We choose QMIX’s mixing network
for its monotonic approximation in this paper, although any
mixing method might simply be used instead. The mixing
network’s parameters are created by a hyper-network parame-
terized by θm and are conditioned on the global state st. The
framework of QMIX is introduced in the previous section and
shown in Fig. 2.

B. Mean Divergence Loss Function

In MARL, we usually use the TD error as the loss function.
TD error is defined as:

LTD(θ) = [y −Qtot(s,a; θ)]
2 (5)

where y = r+γmaxa′ Qtot(s
′,a′; θ−), θ = (θρ, θh, θm). The

parameters of a target network θ− will be kept constant for
several iterations till updated by the copy of θ. The target
network is widely used in DQN to make training more stable.
However, in LILAC, we add the mean divergence loss function
to enable diversity policies for different roles. In the case
where the mathematical form of the GMM is known, the mean
divergence loss function is defined as:

LM (θρ) =

k∑
ia=1

k∑
ib=1
ib ̸=ia

∥µia − µib∥2 (6)

where k is the number of roles treated as a hyperparameter,
and ia, ib indicate different roles. We are expecting two roles
ia and ib to have different behaviors, and it can be achieved
by maximizing ∥µia − µib∥2, the distance of means between
two normal distributions.

We have introduced the role assignment network and the
mean divergence loss function. All the parameters in LILAC
are optimized with the sum of mean divergence loss and TD
loss. The overall loss function of LILAC is:

L(θ) = λMLM (θρ) + LTD(θ) (7)

where λM is a scaling factor. Because of the centralized
training with a decentralized execution framework, the mixing
network is removed during execution, and each agent makes
decisions conditioned on local trajectories.



V. RESULTS

A. Performance on SMAC

We evaluate LILAC on the SMAC because of its various
scenarios and high control complexity. The code are available
online1. At each time step, the agent can move in four
fundamental directions, stop, take noop (do nothing), or
choose an enemy to attack. As a result, if there are me

enemies in the environment, action space of each allied unit
has me + 6 discrete actions. According to the difficulty of
the human-made AI in the game and the attributes of the
map, the SMAC is divided into easy, hard, and super-hard
categories. Maps that are hard and super-hard are often used
for exploration.

Our evaluation procedure is similar to [12], [14], [17]. All
of the experiments in this section are run using five different
random seeds for evaluation. We conduct a grid search over the
scaling factor λm and fix it at 0.05, across all the experiments.
k is also considered as a hyperparameter. Specifically, we
set k to 3 in maps with homogenous enemies and to 5 in
maps with heterogeneous enemies. The dimension of role
embedding space is set to 3 for the ease of visualizing role
embedding representations. The trajectory encoder in LILAC
is basic network architectures (This encoder could be GRU or
fully-connected networks).

Our methods are compared to the various baselines men-
tioned in TABLE I on several SMAC maps. The results with
95% confidence intervals are shown in Fig. 4. Since LILAC
is designed to help exploration by assigning different roles
to agents, our method’s performance on hard and super-hard
maps is particularly significant. Fig. 4 shows the performance
of LILAC in three typical hard scenarios and one super-hard
scenario. We can see on all four hard and super hard maps,
LILAC has considerable performance. The MMM2 map, in
which one medivac, 2 Marauders, and 7 Marines face the
same number and type of enemies, requires agents to cope
well with heterogeneous and asymmetric settings. The agents
can quickly discover suitable unit positioning and improve
performance with the help of an efficient division of roles
and a cooperative exploration scheme. Compared to the role-
based method ROMA, the introduction of the leader network
and the use of GMM achieves better results.

TABLE I: Different algorithms.

Alg. Description

Related
Works

QMIX [12]
QTRAN [21]
MAVEN [30]
ROMA [14]

Ablations LTD LILAC without LM

B. Ablation study of loss functions

To further understand the effectiveness of LILAC, we
design ablation experiments for the loss functions given in

1https://github.com/fyqqyf/LILAC

TABLE I, and present results on two different maps: MMM2
(heterogeneous) and 10m_vs_11m (homogeneous) in Fig.
5. The contribution of the mean divergence loss is shown
by the superiority of our method over LTD. By comparing
LILAC and LTD, we can see that the specialized loss LM

is essential in the field of performance improvements. In
addition, we can see that the performance improvement of
LILAC on the heterogeneous scenario MMM2 map is more
obvious than that on the homogeneous map 10m_vs_11m.
The above results prove that division of labor improves the
efficiency of processing complex tasks.

C. Role Embedding Representations

We visualize the learned role embedding representations
for 10m_vs_11m (10 Marines face 11 Marines) to demon-
strate the superiority of role assignment and plot the results
at different time steps in Fig. 6. In different time steps
(t = 1, 8, 17, 26), the roles of agents keep changing. At the
beginning of the game (t = 1, 8), the tasks to be handled are
complex, so the distribution of the role embeddings is more
dispersed and does not show significant clustering. However,
we can see that the role embedding representations are similar
across different time steps (t = 17, 26), meaning that role em-
beddings become more stable and consistent. This observation
supports the claim that the role embedding representations will
change over time and eventually stabilize so that GMM can
improve the adaptivity and dynamic of role assignment.

VI. CONCLUSION

How to decompose role effectively is a long-standing
problem for existing role-based MARL methods. This pa-
per presents the efficient LILAC multi-agent reinforcement
learning method, which integrates multi-agent information to
learn division of labor and collaboration. We introduce a
multivariate GMM to generate the distribution of roles. The
experimental results on the StarCraft II SMAC platform show
that the method can successfully tackle these large numbers
of agents scenarios after training. We expect that our approach
will provide insight into future research, motivating agents to
collaborate with diversity, and explore challenging multi-agent
coordination problems.
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