
Stirring the Pot - Teaching Reinforcement Learning
Agents a ”Push-Your-Luck” board game

Maximilian Hünemörder
Christian-Albrechts-University

Kiel, Germany
mah@informatik.uni-kiel.de

Mirjam Bayer
Christian-Albrechts-University

Kiel, Germany
miba@informatik.uni-kiel.de

Nadine-Sarah Schüler
Ludwig-Maximilians University

Munich, Germany
n.schueler@lmu.de

Peer Kröger
Christian-Albrechts-University

Kiel, Germany
pkr@informatik.uni-kiel.de

Abstract—Recent successes in AI research concerning tradi-
tional games like GO, have led to increased interest in the
field of reinforcement learning. Modern board game design,
however, has risen in complexity. This paper introduces a novel
task for reinforcement learning: ”Quacks of Quedlinburg”. A
modern board game with risk management, deck building, and
the option to choose a specific rule set out of thousands of possible
combinations for every game. We provide an environment based
on the game and perform initial experiments. In these, we found
that Deep Q-Learning agents can significantly outperform simple
heuristics.

Index Terms—Risk management, Board Game Environment,
Reinforcement Learning, DQN, DDQN

I. INTRODUCTION

Board games have played a part in human history for
thousands of years. Since games often serve as simple simu-
lations for real life decision making processes, they provide
interesting tasks for modern artificial intelligence research. For
example, Chess holds a special place in the history of AI
research [1], presumably because it is internationally played,
has perfect information, is completely deterministic and rea-
sonably brute forcible [2]. However, modern board games,
especially so-called ”German Board Games”, e.g. ”Settlers of
Catan”, have become much more complex. They incorporate
tasks like resource or risk management, can involve social
interaction and generally complex strategic decision-making.

A popular subdomain of artificial intelligence is reinforce-
ment learning (RL). RL research and board games are linked
since early work was based on learning to solve games like
Tic Tac Toe, Checkers, and Blackjack [3]. While early RL
agents performed worse than traditional algorithms on such
games, the addition of deep learning techniques, e.g. Deep Q-
Learning [4], lead to recent success stories for more complex
games like GO [5]. These developments show that RL can
even tackle problems that were thought to be very hard by
using traditional AI.

Therefore, in addition to many modern board (and card)
games, that have already been researched in the context of
RL [6]–[11], we introduce the game ”Quacks of Quedlinburg”
as a novel and interesting RL task. This game from 2018
has a risk management component akin to Blackjack and a

Parts of this work has been done in the MARISPACE-X project funded by
German Ministry of Economy (BMWi)

Fig. 1: A player game board (cauldron) and a rule card for
the red ingredients. The drop marker in the cauldron indicates
the starting place each turn. The bag of ingredients in the top-
right corner, exemplary ingredients and some rubies are placed
around the game board. (Screenshot of Tabletop Simulator)

deckbuilding mechanic that strongly rewards planning multiple
rounds ahead. For example, a riskier behavior in the beginning
might lead to a higher reward in the later rounds of the game.
The main reason why we believe this game in particular to be
of interest to the RL research community is that it has a set
of interchangeable rules, that allow for over 45.000 different
rule sets. In this preliminary work, however, we only focus on
a single set of rules. Our contributions can be summarized as
follows:

• A novel application for RL based on the popular board
game ”Quacks of Quedlinburg”

• An implementation of this game in Python and a corre-
sponding environment to be used by RL agents

• Preliminary experiments using simple heuristic AIs and
the established RL algorithms Deep Q Network (DQN)
and Double Deep Q-Network (DDQN)

II. THE GAME

”Quacks of Quedlinburg” is an award-winning German
board game by Wolfgang Warsch. In this game, each player
embodies a quack doctor, who is mixing up their own brew



given various ingredients by successively drawing from an
opaque bag. One of the ingredients however is spoiling the
mixture and when a cumulative value of 7 is exceeded, this
player’s cauldron explodes and they are restricted in their
following actions for this turn. Every turn of the game is
played in two phases, a brewing and a scoring phase. While
brewing, each player blindly pulls ingredients out of their own
bag and places them in their cauldron in order, advancing on
the drawn circular path, see Fig. 1. Each ingredient is marked
by a color and a value, indicating additional rules to be applied
throughout the game. In this process, the player can decide to
stop drawing from their bag at any time, given their cauldron
did not explode yet. After all players have either stopped or
exploded, the second phase begins. In case of an explosion, the
affected player has to choose to either forgo his earned VP for
this turn or waive his chance to buy new chips. In the scoring
phase, all advances on each players cauldron are scored as
victory points (VP) and marked on a common score board.
Further ingredient rules are applied, then each player can use
his advances from the previous phase to buy new ingredients
(two distinct ones per turn) and add them to their bag. With
every bought ingredient, the risk of pulling a white ingredient
out of the bag is reduced. This is repeated for nine turns, after
which the game ends and the player with most VP wins the
game. Note, that in this preliminary work we use a simplified
single-player version of the original game, as it contains the
main mechanics and ideas but was reduced in complexity and
some game features were omitted for now. (Full instruction
sheet1)

We programmed the above described game in Python using
a virtual representation of the score board (the cauldron)
and the white, orange, green, red, blue, yellow and purple
ingredients (black was omitted here as it only works in a
multiplayer game). Each ingredient color is associated with
a specific rule. The full game contains multiple different rules
per color to choose from, as mentioned above, we will limit
ourselves to one rule per color. Our selection can be found
in Table I. One further resource of the game we implemented
are rubies. A player obtains a ruby by either earning one from
an ingredient (blue and green) or by stopping on a certain
position. Pairs of rubies can be traded for advancing a drop
placed in the middle of the cauldron, that corresponds to the
starting position each turn. The rubies can further be saved up
and count as additional VP at the end of the game, making
collecting them a secondary objective.

All information of the game, such as the scoring board
and each player’s belongings, is saved in a collection of
variables called gamestate. Each player’s cauldron and
ingredient bag are represented by lists of ingredients. Each
ingredient is represented as a tuple containing the color and
value of that chip (i.e. [’white’, 2]). For each of the
nine turns, we store each player’s temporary advances, such
as preliminary victory points, earned money as well as whether

1https://cdn.1j1ju.com/medias/ba/73/db-the-quacks-of-quedlinburg-
rulebook.pdf, Visited: 13.05.2022

that player exploded or voluntarily stopped in the current turn.
The number of rubies, the assured victory points and the
starting position marked by the drop conclude the gamestate.

III. EXPERIMENT SETUP AND COMPARED METHODS

To study this strategic decision task, we observed different
AI agents playing the game. The implementation can be found
in our public git repository2.

A. Environment

In order to train and evaluate the RL agents, we build
an environment using the TensorFlow PyEnvironment class,
that wraps around the implementation of the game itself. This
allows us to return rewards to the RL agents based on the game
state. The environment performs the agents’ chosen action,
yielding the game state update. A description of the exact
observable game state and action space can be found in our
repository.

1) Reward: We chose to use the earned victory points (VP)
as the reward measurement for the agent. This guarantees that
the reward directly corresponds to the main objective of the
game. Additionally, we avoid skewing the learned strategies
by rewarding actions that might be artificially enforced and
do not lead to direct VP gain. Consequently, the task becomes
more laborious as not every action results in victory point, i.e.
an immediate reward. However the following section shows
that this reward function is sufficient for the agents to learn
that an action without an immediate gain can still result in a
higher overall result.

2) Legal Actions: A challenge this game presents is that
some game states entail that an agent cannot perform certain
actions. The legal actions vary based on the current phase
of the game, the chosen rule set and the game’s progress.
We therefore add a mask of currently legal actions to the
observations the agents receive.

B. Random Agent

In order to be certain, that ”Quacks” is not only based on
pure chance we programmed a random agent, which randomly
picks an action at each step of the environment. Even using the
same method to bound the legal moves mentioned above, this
agent is expected to perform poorly, because in the brewing
phase the agent is faced with a string of binary decisions to
draw an ingredient from the bag or stop drawing (similar
to Blackjack). When randomly choosing at this point, the
agent usually stops very early, resulting in little reward and
no possibility to expand by buying more ingredients.

C. Heuristic Agents

For a more advanced baseline, we implemented a number
of heuristic agents, that act in simple, predetermined ways.

2https://github.com/huenemoerder/quacks-rl



Rule Color Rule Text Time to apply the rule Costs (1, 2, 4)
Red ”If there are already orange chips in your pot, move the red chip up 1 or 2 places” Instantly when drawn 6, 10, 16
Blue ”If this chip is on a ruby space, you IMMEDIATELY receive 1 ruby.” Instantly when drawn 4, 8, 14
Green ”If the last or second-to-last chip in your pot is a green chip, gain one ruby” At the end of each turn 4, 8, 14
Yellow ”Your first placed yellow chip is moved 1 extra space, the 2nd yellow chip 2 extra Instantly when drawn 8, 12, 18

spaces and the 3rd yellow chip 3 extra spaces” (available from turn 2)
Purple ”For 1, 2 or 3 purple chips you receive the indicated bonus. At the end of each turn 9

1: 1 VP - 2: 1 VP + 1 ruby - 3: 2 VP + 1 drop” (available from turn 3)

TABLE I: Overview of exemplary rules in the game (white and orange have no special rules)

1) ”Explosive” Agent: The explosive agent is programmed
to always draw as many chips as possible until its cauldron
explodes so it is not allowed to draw chips anymore. After-
wards the agent always chooses to take the earned VP instead
of buying any ingredients. Consequently, the contents of its
bag stays the same and it can never advance far on the board,
not gaining many VP.

2) ”Single-Color” Agent: For each color ingredient (red,
green, blue, yellow and purple) we designed different agents,
that would draw chips until the risk to explode is higher than
70%. In the case of an explosion, the agent will buy chips in
the first 6 turns and choose VP starting from turn 7. When
buying, the agent is programmed to buy the most expensive
chip available of its favored color and if there is enough money
left, additionally buy one orange chip. A weakness of this type
of agent is that it will not use its money efficiently especially
in the later turns.

3) ”Expensive” Agent: The expensive agent uses a strategy
many first time (human) players choose. Analogously to the
single-color agent, it draws chips from the bag until the risk of
exploding is high (> 70%), however during the buying phase
it buys chips that deliberately utilize all of its available money,
i.e. it buys the most expensive and the second most expensive
chip. This leads to less wasted money but more variation in
the color choice.

D. DQN

The Deep Q-Network (DQN) approach was proposed in
2015 by DeepMind, [4] and was first applied on ”Atari 2600
Games” [12]. Exemplary for our RL algorithms we trained
two off-policy agents on the environment described in Section
III-A. Each trained agent consists of a learned Q function
which approximates the expected return at a given state (s) for
a single action (a). This function is the agent’s policy which
enables it to select the best action to take given an input state.
Due to our complex game that has an abundance of game state
options, simple q-learning based on value iteration to fill a q-
value table is not feasible. Instead the optimal Q function is
approximating by training a neural network using a loss L(θ),
that is computed during each training step by computing the
difference of the predicted q values Q(s, a, θpred) to the target
values Q(s, a, θtarget) of the Bellman Equation factored with
γ added to the reward r.

L(θ) = Q(s, a|θpred)− (r + γmax
a

Q(s, a|θtarget))

The used Q network architecture contains two dense hidden
layers, the first layer with 150 and the second with 75 neurons.

Both layers use ReLu activation and are initialized using an
truncated norm distribution. The output layer contains as many
elements as the environment allows actions. The TensorFlow
library, [13], provides a variety of pre-implemented agents
including a DQN agent, which we initialized using this Q
network. The policy was updated using the Adam optimizer
and we used epsilon greedy exploration with a probability of
0.1. The agents were equipped with a TensorFlow Uniform
replay buffer with a capacity of maximum 100,000 trajectories.
Because all parties, i.e. the agent and the environment are
Python based, integration was seamless. The serial interface is
defined by the structure of the observation and action tensors,
the two components which are passed in between the agent
and the game. As mentioned in section III-A2, in order to
communicate the legal actions at any state, the agent is given a
mask that encodes this information. The mask is applied to the
network’s q values for a given state. The q values of any illegal
action are set to the minimum of the q values, ensuring only
legal actions are chosen. The training was performed using a
batch size of 64 and a learning rate of 1e-4. The displayed
victory points in Fig. 2a were achieved by the DQN agent
after 267.000 training steps.

E. DDQN

In addition to the DQN agent a Double Deep Q-Network
(DDQN) was trained. DDQN is an amplification of DQN
proposed in 2015 by Hado van Hasselt et al. [14]. A DDQN
agent takes advantage of fixed Q targets using an additional
Q network, the target network. Additionally, this algorithm
solves the overestimation that is to be expected from the DQN
agent by using two networks. The local network will be used
to calculate the single q target for the current state but the
second network is used to calculate the q values in the loss
objective. The same agent parameters and implementation base
as for the DQN agent were chosen. The victory points shown
in Fig. 2a were achieved by the DDQN agent after 425.000
training steps.

IV. RESULTS

We evaluated each of the compared agents by calculating
the average victory points over the same 1,000 seeded games.
The seed ensures a fair comparison since the played games
are deterministic. The results are shown in Fig 2a.

Starting from the left of the figure, as expected the random
agent performs poorly, receiving 1.4 VP on average. The ex-
plosive agent performs better and is able to obtain an average
of 18.5 VP. The single-color agents as well as the expensive



(a) Average victory points achieved for the same 1,000 seeded games (b) Training progress for the RL agents

Fig. 2: Overview and comparison of all agents

agent all perform similarly, reaching an average VP score of
around 30, (Red: 30.1, Green: 30.1, Blue: 31.0, Yellow: 30.9,
Purple: 31.2, Expensive: 30.5). This implies that our chosen set
of color rules is balanced and no color is significantly better on
its own. The DQN and DDQN agents outperform the base line
agents. Both RL agents yield a higher mean of VP, DQN with
an average of 34.2 VP and DDQN with 35.2 VP respectively.
Hypothetically, if pitted against each other the DQN agent
would win 35.3 % of all seeded games against the heuristic
agents, while the DDQN would win 42.6 %. When compared
directly against each other the DDQN performs slightly better
with a winrate of 53.1 %. We trained both agents for 500.000
iterations, we evaluated 20 random games each 1.000 iterations
and picked the iterations where they performed the best. In
Figure 2b these returned results are plotted and the checkpoints
are marked. The average returns of the other agents are marked
as horizontal lines. The agents were initialized with 500 games
taken from a random policy, but almost instantly overtake the
random agent and after 10.000 consistently reach a higher
score than the explosive agent. After 100.000 iterations the
agents have roughly found their optimum and outperform all
the heuristic agents. The almost equal performance of DQN
and DDQN might point to there not being a better strategy
at least for the exact rules combination. We will explore this
further in future work.

V. CONCLUSION AND FUTURE WORK

Our hitherto research concludes that RL agents can learn the
simplified version of the game and detect optimal strategies,
despite the strong luck component. Following up on this, the
next steps would entail extending our environment to support
multiplayer and adding the corresponding rules and features.
Besides that, we aim to train more advanced RL agents. So
far, we only used one rule during training. In the future, we
aim to extend the game to incorporate the 6 different rules
every ingredient color can be assigned. In the full game, i.e.
using all six ingredients, this leads to 66 different possible rule
combinations. We would like to perform more studies on how
agents would adapt to the application of the high variation of

rules available in the full game and how a generalized strategy
for the enhanced game could look.

REFERENCES

[1] D. Heath and D. Allum, “The historical development of computer chess
and its impact on artificial intelligence,” in Deep Blue Versus Kasparov:
The Significance for Artificial Intelligence, 1997.

[2] C. Koch. (2016) How the computer beat the go master.
[Online]. Available: https://www.scientificamerican.com/article/how-the-
computer-beat-the-go-master/

[3] R. Sutton. (1997) History of reinforcement learning. [Online]. Available:
http://www.incompleteideas.net/book/1/node7.html

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[5] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Diele-
man, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,
M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering
the game of go with deep neural networks and tree search,” Nature, vol.
529, pp. 484–489, 01 2016.

[6] M. Pfeiffer, “Reinforcement learning of strategies for settlers of catan,”
05 2022.

[7] K. Xenou, G. Chalkiadakis, and S. Afantenos, “Deep reinforcement
learning in strategic board game environments,” in Multi-Agent Systems,
M. Slavkovik, Ed. Cham: Springer International Publishing, 2019, pp.
233–248.

[8] Q. Gendre and T. Kaneko, “Playing catan with cross-dimensional
neural network,” CoRR, vol. abs/2008.07079, 2020. [Online]. Available:
https://arxiv.org/abs/2008.07079

[9] R. Canaan, X. Gao, Y. Chung, J. Togelius, A. Nealen, and
S. Menzel, “Evaluating the rainbow DQN agent in hanabi with unseen
partners,” CoRR, vol. abs/2004.13291, 2020. [Online]. Available:
https://arxiv.org/abs/2004.13291

[10] L. Perez, “Mastering terra mystica: Applying self-play to multi-agent
cooperative board games,” CoRR, vol. abs/2102.10540, 2021. [Online].
Available: https://arxiv.org/abs/2102.10540

[11] D. Zha, K. Lai, Y. Cao, S. Huang, R. Wei, J. Guo, and
X. Hu, “Rlcard: A toolkit for reinforcement learning in card
games,” CoRR, vol. abs/1910.04376, 2019. [Online]. Available:
http://arxiv.org/abs/1910.04376

[12] M. G. Bellemare, J. Veness, and M. Bowling, “Investigating contingency
awareness using atari 2600 games,” in Twenty-Sixth AAAI Conference
on Artificial Intelligence, 2012.

[13] M. Abadi and A. A. et al., “TensorFlow: Large-scale machine
learning on heterogeneous systems,” 2015, software available from
tensorflow.org. [Online]. Available: https://www.tensorflow.org/

[14] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” CoRR, vol. abs/1509.06461, 2015. [Online].
Available: http://arxiv.org/abs/1509.06461


