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Abstract—Computer programs have become stronger than top-
rated human players in several games. However, weak players
may not enjoy playing against these strong programs. In this
study, we propose combining two programs with different roles to
create programs suitable for weak players. We use a superhuman
program that generates candidate moves and evaluates how good
the moves are, as well as a program that evaluates the moves’
naturalness. We implement an instance for Go, which employs
a superhuman program, KataGo, and a neural network trained
using human games. Experiments show that the proposed method
is promising for playing good-quality games with weak players.

Index Terms—teaching, strength adjustment, entertaining, Go

I. INTRODUCTION

Computer programs have attained superhuman levels of
play in a wide range of games. A well-known example is
AlphaZero [1] for chess, shogi, and Go. These strong programs
provide humans with challenges and learning opportunities.

However, human players may not enjoy playing against
or learning from these strong programs for two reasons: (1)
Human players can hardly win, and losing constantly is frus-
trating. (2) These programs’ moves are sometimes not human-
like or mysterious, making it difficult for human players to
learn. In contrast, many human teachers play teaching games
with students to help improve the their skills. For simplicity
of discussion, the following takes a board game, Go, as an
example and presents critical factors in teaching games.

Go teachers usually (a) try playing balanced games with
students. Although these teachers have higher skills, they (a1)
do not try to always win against their students (a2) nor try to
win or lose completely by a large margin in each game.

Also, (b) Go teachers usually try to reflect the goodness
of the students’ moves in the final outcomes. Namely, if the
students play many good moves, the teachers tend to let the
students win, rewarding the good moves, and vice versa.

To play balanced games, Go teachers give handicap stones,
intentionally play some bad moves to lose advantages, or do
both. Nonetheless, (c) Go teachers try to keep the quality of
the move as good as possible. Thus, students can learn good
stone shapes or good move flows from the teachers.

For computer programs, (d) naturalness, or more specifically
human-likeness, is an important factor. A typical example is
that human players tend to finish a battle in some local area
and then move on to another, but strong Go programs do not.

We aim at creating programs that consider factors (a)–(d)
to play good-quality games with weak players1. Considering
all four factors at once is a challenging task. For example,
to achieve (a), a naı̈ve method is to select moves whose win
rates are closest to 50%. However, the method is likely to play
well or badly based on the goodness of the opponent’s moves,
failing to achieve (b). Also, many moves may not have good
shapes and not be human-like, failing to achieve (c) and (d).

As weak players’ opponents, we propose combining two
programs with different roles and implement an instance
for Go. First, we employ KataGo [2] to provide candidate
moves along with accurate evaluations on advantages. Second,
we employ a neural network trained using human games to
evaluate the moves’ naturalness. Experiments compare several
methods and show that our method can generally play good-
quality games against weak programs while looking natural.

II. RELATED WORK

Significant effort has been put into developing suitable pro-
grams for human players to play with. Some researchers tried
weakening strong programs. For programs based on Monte-
Carlo tree search (MCTS), Sephton et al. [3] investigated
several ways of selecting the moves to play. One of which
selected moves based on a softmax policy: move i was selected
with a probability of (ni)

z
/Σj(nj)

z , where ni is move i’s visit
count and z a parameter controlling the program’s strength.
Liu et al. [4] extended the method by adding a threshold,
Rth, to avoid extremely bad moves. Let nmax be the highest
visit count among the moves from MCTS. Only moves with
ni ≥ nmax ×Rth became candidates for the softmax policy.

Some researchers employed human games to tune param-
eters for weakening strong programs. Nakamichi and Ito [5]
replaced evaluation functions with those trained using amateur
players’ games to create weaker but human-like programs.
Rosemarin and Rosenfeld [6] modified MCTS in AlphaZero
programs slightly and used human games with different rating
ranges to learn three parameters to achieve different strengths.

Some researchers used human games to train neural net-
works to imitate human players’ moves. McIlroy-Young et al.
[7] trained different neural networks for different rating ranges.

1We target middle-level amateur players, specifically, kgs8k to kgs2d in Go.
The KGS Go Server, https://www.gokgs.com, is an online platform for playing
Go, which also ranks players (including humans and computer programs).

https://www.gokgs.com


They showed that the players’ moves in each rating range
could be best predicted by the neural network trained for
that range. They also showed that AlphaZero-based programs
played quite differently from humans, including the interme-
diate weaker versions. Jacob et al. [8] further incorporated
neural networks trained using human games into MCTS. They
showed that both the accuracy of predicting human moves and
the playing strengths could be improved.

Some researchers employed game-specific knowledge to
create natural-looking programs. For example, Shi et al. [9]’s
work on Go considered the distance to the previous move.

III. APPROACH

Ideas. We propose playing teaching games with weak
players by combining two programs with different roles.
Specifically, we need a superhuman program that generates
candidate moves and can accurately evaluate the quality of
each move. Additionally, we need a program that informs
us how natural each candidate move looks. From the two
programs’ results, we attempt to select moves that play close
games with weak players while being not too bad and looking
natural. In contrast, most of the previous methods attempt to
decide moves without considering such a division of roles.

Go Implementation. For Go, we employ an AlphaZero-
based program, KataGo [2], as the superhuman player’s role
and a neural network (NN) trained using strong human play-
ers’ games2 as the naturalness role. The NN outputs the policy
(probabilities of moves) and the estimated win rate given a
position, and we use only the policy part, denoted by πhuman.

To generate a move, (i) we let KataGo search using Nsim

simulations to obtain candidate moves as well as the moves’
statistics. We focus on each move i’s visit count, ni (i.e., the
number of times this move was selected from the root node
during search), and territory advantage ai (i.e., the number
of points that the current player is leading). We refer to
ai’s instead of win rates because the former provides richer
information to determine how advantageous a player is.

Next, (ii) we retain moves in the candidate list with
visit counts ni higher than a threshold (say 10) so that
the statistics are somewhat reliable. We further obtain the
maximum territory advantage of the remaining moves (i.e.,
amax = maxi∈{j|nj>10} ai) and delete moves that lose too
many points (i.e., amax−ai higher than some other threshold,
say 20). Overall, step (ii) aims to filter out obviously bad
moves. Let M denote the set of remaining moves after (ii).

With the move set M , (iii) we decide the ideal advantage
loss l∗ for this position to play close games. The ideal
advantage loss is defined as follows:

l∗ =


0, if amax ≤ −α

(1 + amax

α ) · β, if − α < amax ≤ α

2 · β, if α < amax

(1)

where α is a positive number deciding the range that we tune
l∗ finer, and β decides the degree of the loss. Namely, when

2https://sjeng.org/zero/best v1.txt.zip, which was released in the Leela Zero
project, https://github.com/leela-zero/leela-zero.

we are behind with a huge margin (amax ≤ −α), we do not
eagerly try losing more points. When it is a close game, the
ideal advantage loss l∗ is about β points. Even when we lead
a lot (α < amax), l∗ is bounded by 2 · β to avoid bad moves.

Finally, (iv) we calculate scores for each move in M and (v)
select the move with the highest score. The score si of move
i considers both naturalness and the ideal advantage loss l∗:

si = (p′i + ϵ) · γei (2)

where p′i is move i’s probability from πhuman, ϵ a small number
to prevent the first term from being 0, ei the error of loss
between move i and the ideal loss (i.e., |(amax − ai) − l∗|),
and γ a coefficient deciding the importance of ei. Based on the
scores calculated using Eq. (2), natural moves with advantage
loss close to the ideal loss are more likely to be selected.

IV. EXPERIMENTS

We compared several methods and let them play against
weak programs rather than human players so that we could
collect numerous games for analysis. Each pair played 500
games, altering between black and white. Japanese rules with
a komi of 6.5 were used. For weak programs, we selected
programs and settings with well-known strength: GNU Go3

level 10 (˜kgs8k) and Pachi4 with settings of kgs3k and kgs2d.
We created five types of programs for comparison, and we

created three types of programs based on KataGo [2]. The first
(P1) was the proposed method in Section III. The second (P2)
was the softmax method by Liu et al. [4]. The third (P3) was
a naı̈ve method that selected moves with territory advantages
closest to zero.

For P1 and P2, we further introduced a trick, optimistic
komi, because we observed that the two methods hardly lost to
the weak programs. With an optimistic komi of k, the program
searches with a komi of 6.5 − k when it plays black and
6.5 + k when it plays white. Consider a position where one
move wins 0.5 points and another loses 0.5 points. With a
normal komi of 6.5, the latter move is rarely visited; thus it is
out of consideration because of the thresholds on visit counts.
However, such losing moves may be good for playing teaching
games. The proposed and the softmax methods considered
more moves because of the dynamic komi.

In addition to the three types of programs based on KataGo,
we let the weak programs (P4) play against themselves (e.g.,
GNU Go vs. GNU Go). Furthermore, we let πhuman (P5) play
against the two Pachi programs. P5 selected moves with the
highest probability, i.e., argmaxi p

′
i, which we considered as

an instance of McIlroy-Young et al. [7]’s method.
In addition, we obtained and analyzed human games from

the Fox Go dataset5. For the ranks corresponding to kgs8k,
kgs3k, and kgs2d (5k, 1d, and 5d in Fox Go), we identified
players that played most frequently at the corresponding ranks
(who were more likely belonged to that rank) and extracted
approximately 30 games between those players for each rank.

3https://www.gnu.org/software/gnugo/
4https://github.com/pasky/pachi
5https://github.com/featurecat/go-dataset

https://sjeng.org/zero/best_v1.txt.zip
https://github.com/leela-zero/leela-zero
https://www.gnu.org/software/gnugo/
https://github.com/pasky/pachi
https://github.com/featurecat/go-dataset


After games were played/collected, they were reviewed
using another KataGo program to evaluate the played moves
and determine the final winner. Subsections IV-A to IV-D show
the results in terms of factors (a)–(d).

A. Results of Factor (a)–Balanced Games

We set Nsim to 1,000 for KataGo-based programs (P1–P3).
The k for optimistic komi was 4 for the proposed (P1) and
the softmax (P2) methods. Additionally, we tuned parameters
by preliminary experiments so that P1 and P2 had win rates
of approximately 50% against the weak programs, which is a
way to achieve (a1). For P1, we set α to 25.0, γ to 0.4, and ϵ
to 0.001 and used β to control the programs’ strength: 6.0 for
GNU Go, 3.0 for Pachikgs3k, and 2.0 for Pachikgs2d. For P2,
we set Rth to 0.1 and used z to control the strength: 0.65 for
GNU Go, −0.5 for Pachikgs3k, and 1.0 for Pachikgs2d.

Table I shows the win rates of P1–P5 against the weak
programs, with 95% confidence intervals. P1 and P2 achieved
different strengths by adjusting one parameter (β for P1 and
z for P2). P3’s (the naı̈ve method) win rate was low, but it
intrinsically attempted to play close games for each move6.
P4 (the programs themselves) had, of course, balanced wins
and losses. For P5 (πhuman), the strength was between kgs3k
and kgs2d. To obtain NNs with the desired strength, training
on different sets of human games is required, which needs
more effort than tuning programs’ parameters.

TABLE I
WIN RATES AGAINST WEAK PROGRAMS

GNU Go Pachikgs3k Pachikgs2d
P1 (proposed) 53.6±4.4% 48.4±4.4% 50.4±4.4%
P2 (softmax) 49.4±4.4% 47.4±4.4% 47.6±4.4%
P3 (naı̈ve) 7.0±2.2% 7.4±2.3% 6.4±2.1%
P4 (weak program) 52.0±4.4% 47.8±4.4% 50.6±4.4%
P5 (πhuman) – 65.8±4.2% 19.2±3.5%

To measure (a2), we calculated the ratios of games where
the final territory differences were within −10 to 10. Table II
shows the ratios with 95% confidence intervals. Because of the
space constraint, the rest of this paper only shows the results
of kgs3k. The other two ranks, kgs8k and kgs2d, generally
had similar tendencies. As expected, most games against P3
ended with small territory differences. Next were P1 and P2,
where P1 was slightly better than P2. For P4 and P5, as well
as humans at the same ranks (Fox Go), many games ended
with big territory differences.

B. Results of Factor (b)–Reflecting Goodness/Badness

To measure (b), we first define the badness of the weak
player’s moves. Based on the evaluator KataGo, we obtained
the maximum territory advantage amax for each position as
was obtained in Section III. We then calculated the loss of the
played move i by amax − ai. We defined the badness of a
player for a game using the average loss of its moves.

6The reason for the low win rate is as follows: For moves with territory
advantages closest to zero, it was random whether the advantages were
positive or negative. In endgames, once a move with a negative advantage
was selected, the program was hard to win the game.

For each set of 500 played games, we did simple supervised
learning to predict the final win/loss using the badness of the
target weak player (e.g., Pachikgs3k). Given game g’s badness
bg , the weak player was predicted to win if bg was lower
than some threshold bth ∈ {0, 0.01, ..., 5.99}, and otherwise
predicted to lose. Among the threshold values, we selected the
one that led to the highest Matthews correlation coefficient
(MCC)7, a measure of the quality of binary classifications.
MCC ranges from −1 to 1, where 1 indicates perfect predic-
tions. A higher MCC indicated that the target weak player’s
goodness/badness was better reflected in the final wins/losses.

Table II shows the results of the maximum MCC of
games against Pachikgs3k. P1 and P2 rarely played very bad
moves, and the weak player was likely to lose if it made
some mistakes. Thus, the weak player’s goodness/badness was
properly reflected in the final wins/losses. In contrast, some
moves by weak programs (P4) and programs without searches
(P5) were bad. Particularly, every 2–3 out of 100 moves
were very bad, as will be shown in Subsection IV-C. The
weak player’s goodness/badness was hardly reflected since P4
and P5 themselves made mistakes, resulting in relatively low
MCCs. As for P3, who tried playing close games eagerly,
when the weak player played very bad moves, P3 also tried
doing so. Thus, the MCC was close to 0 (random prediction).

C. Results of Factor (c)–Move Quality

We employed both quantitative and qualitative evaluations
to measure (c). For the quantitative evaluation, we calculated
the frequency of very bad moves played by P1–P5 (and the
extracted Fox Go games). A move i was said to be very bad
if the loss amax−ai was higher than 15.0. Table II shows the
frequency of playing very bad moves. As expected, P1 and P2
played very bad moves the least frequently. P3 selected very
bad moves when the opponent did so. Thus, it played more
very bad moves than P1/P2, where the frequency was similar
to P4. P5 selected moves without searches and played very bad
moves the most frequently among the compared programs. As
for human players, it seems that very bad moves were played
more, though the number of extracted games was few and the
game settings differed (e.g., thinking time limit).

For the qualitative evaluation, we asked five Go experts
(≥kgs3d, including a professional) to evaluate games gen-
erated/collected in our experiments, where P3 was excluded
since it played many bad and obviously unnatural moves. We
randomly selected games where the programs played white, as
well as human games from the Fox Go dataset, and asked the
experts to review the white player’s moves. The games were
provided randomly and blindly. Namely, the experts did not
know which player played which game.

On a scale of 1 to 5, we asked the experts to score the quality
of the white player’s moves (how good the shapes/flows were,
5 being very good). Table II shows the results. P1 received
a bit higher score than human players and was clearly better
than P2 and P4. P5 received the highest score despite the

7https://en.wikipedia.org/wiki/Phi coefficient

https://en.wikipedia.org/wiki/Phi_coefficient


TABLE II
RESULTS OF RANK KGS3K

(a2) Close games (b) Rewarding (c) Move quality (d) Naturalness
(%) Games with final

territory difference in [−10, 10] MCC (%) Moves
with big loss

Expert
evaluation

Distance to
previous move Average of p′ Expert

evaluation
P1 (proposed) 59.4±4.3% 0.645 0.28% 3.5 3.711 0.468 3.4
P2 (softmax) 53.4±4.4% 0.720 0.22% 2.4 5.860 0.253 1.8
P3 (naı̈ve) 97.0±1.5% 0.022 1.37% – 5.949 0.281 –
P4 (Pachikgs3k) 20.4±3.5% 0.240 1.87% 3.0 3.627 0.381 2.9
P5 (πhuman) 18.4±3.4% 0.165 3.03% 4.1 3.139 0.571 4.3
Fox Go 7.1±9.5% – 7.35% 3.3 3.426 0.364 3.6

fact that 3.03% of the moves were very bad from KataGo’s
perspective. We considered such a mismatch to be reasonable,
which is explained as follows. Since P5 was trained using
strong players’ games, its playstyle might be the most strong-
human-like and thus was easier for the experts to understand.

D. Results of Factor (d)–Naturalness

We also employed both quantitative and qualitative eval-
uations to measure (d). For the quantitative evaluation, we
calculated the Euclidean distance between a move and the
previous. As discussed in Section I, human players tend
to finish local battles before moving on to the next, and
we considered that the distance could reflect this tendency.
Table II shows the average distances. There were two clearly
different groups: P2/P3 and P1/P4/P5/human. Among KataGo-
based programs, P1 was clearly more natural than P2 and P3.

Next, we employed πhuman to evaluate naturalness. For each
move i, we obtained its probability p′i from πhuman and then
calculated the average. We considered that the moves might
look more natural with a higher average p′. Table II shows the
results. P5, of course, had the highest value since it played the
moves with the highest p′i. P1 was the next highest, where
πhuman was involved in the move selection. P4 had a moderate
value, which was close to humans. P2 and P3 had the lowest
values, again showing that they were unnatural.

For the qualitative evaluation, we asked the experts to eval-
uate the naturalness in addition to the moves’ quality. Table II
shows the average scores. P5’s moves appeared the most
natural, for a similar reason explained in Subsection IV-C.
P1 received a close score to human players, whereas P2 was
clearly the worst. We concluded that employing πhuman did
help significantly improve the naturalness.

In summary, the proposed method was the most promising
among the compared ones, explained as follows. In terms of
naturalness, P2 and P3 were unpromising. P3–P5 played more
bad moves than P1/P2 and could not reflect their opponent’s
goodness/badness in final wins/losses. P5 required different
sets of human games to train NNs for each rank, while P1
achieved different strengths by tuning one parameter, β.

V. CONCLUSIONS AND FUTURE WORK

To play good-quality games with weak players, we proposed
combining two programs with different roles: a superhuman
program for generating candidate moves, which also evaluates
the moves’ goodness, and a program for evaluating the moves’

naturalness. We implemented an instance for Go by employing
KataGo as the superhuman program and a neural network
trained using strong human players’ games as the naturalness
evaluator. Our experiments compared several methods that
served as the opponents of weak players (programs). The
results indicated that the proposed method could generally
play balanced games, reflect weak players’ goodness/badness
in final outcomes, and select good and natural moves.

For future research directions, we intend to further improve
the proposed method in terms of naturalness and quality of
moves and deploy it on Go servers to play with human players.
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