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Abstract—Air-to-air close-in combat is based on many basic
fighter maneuvers and can be largely modeled as an algorithmic
function of inputs. This paper studies autonomous close-in
combat, to learn new strategy that can adapt to different
circumstances to fight against an opponent. Current methods
for learning close-in combat strategy are largely limited to
discrete action sets whether in the form of rules, actions or
sub-polices. In contrast, we consider one-on-one air combat
game with continuous action space and present a deep
reinforcement learning method based on proximal policy
optimization (PPO) that learns close-in combat strategy from
observations in an end-to-end manner. The state space is
designed to promote the learning efficiency of PPO. We also
design a minimax strategy for the game. Simulation results show
that the learned PPO agent is able to defeat the minimax
opponent with about 97% win rate.

Index terms—air-combat, reinforcement learning, proximal
policy optimization, flight simulation.

I. INTRODUCTION
RTIFICAL intelligence (AI) technology has been
introduced to autonomous air-combat, and is considered
to be one of the critical components in future aircrafts [1].

However, air-combat autonomy is not easy, because of the
challenging and dynamic nature lying in it.
Current air-combat autonomy solutions vary from

rule-based methods to end-to-end deep reinforcement
learning (DRL) methods. The rule-based system is reasonable
and trustable. However, the rule-based systems, which
depend on the expert knowledge, suffer from the curse of
dimensionality and cannot learn any new strategies. Recently,
many researches focus on the end-to-end solutions based on
DRL. DRL has been applied in many fields like games [2],
simulated missile guidance [3], neural architecture search [4]
and autonomous driving [5]. Recently, Pope et al. [6]
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proposed a hierarchical reinforcement learning method to
dynamically select pretrained sub-policies, and won 2nd
place in the final AlphaDogfight Trials event. Combining
what with game theory [7], [8], a multi-agent hierarchical
policy gradient algorithm was proposed in [9]. Other
explorations include using approximate dynamic
programming [10], fuzzy logic [11], and model predictive
control [12] to address the air-combat problem.
Most of the aforementioned approaches successfully solve

air-combat problem with the discrete actions space whether in
the form of rules, actions or sub-polices. However,
three-degree-of-freedom (3-DoF) air-to-air close-in combat
problem with continuous action space is less explored in the
literature. To address the problem with continuous action
space, this paper proposes an end-to-end DRL solution based
on proximal policy optimization (PPO) [13] with an efficient
state space design.
The rest of this paper is organized as follows. In Section II,

the background of air-combat and Markov decision process
(MDP) is presented. The opponent’s minimax strategy is
designed in Section III. We present our solution in Section IV.
Simulation results are shown in Section V. Section VI
provides the conclusions and future directions.

II.PROBLEM FORMULATION

A 3-DoF one-on-one air-combat environment consists of
two air-crafts. Each aircraft has the following six variables: x,
y, z, v, j , g and f , where x, y and z are the position
variables of the aircraft in the global coordinate system, with
respect to northward displacement, eastward displacement,
and altitude, respectively; v, j , g and f are the velocity,
aircraft heading angle, flight-path angle and bank angle,
respectively. We denote one of the aircrafts, which is
controlled by our DRL agent, as red aircraft, and the opponent
as blue aircraft. The control input of red aircraft consists of
tangential load xn , normal overload zn and f . Furthermore,
the first-order inertial links are considered in the control input.
We define xcmdn , zcmdn and cmdf as the control commands.
Under the global coordinate system, the dynamics is

adapted from [14]. In one-on-one air-combat game, the goal
of any aircraft is to attain and maintain advantage over the
opponent, and to escape the weapon engagement zone (WEZ)
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of the opponent. The positions of advantage are quantized by
three terms: antenna train angle a , aspect angle b and the
distanceD between the two aircrafts. Fig. 1 gives examples of
WEZs. If one of the aircrafts attains the region that satisfies
conditions of 30 a , 150 b and D  3000m, then we
say the aircraft wins the game. If both aircrafts fall into each
other’s WEZ, then we call it a draw.

Fig. 1. Aircraft relative geometry.

III. MINIMAX STRATEGY

A.Decision Space Design
The decision space of minimax strategy is defined as the

variations in altitude, aircraft heading angle and
velocity:  , ,z v   jP , where z  [-200m, 200m],
 j [ 10 ,10 ] o o and v  [-30m/s, 30m/s]. Furthermore, all
candidate decisions of each variables correspond to a list of
five discrete values, i.e. z  [-200m, -100m, 0m, 100m,
200m],  j [ 10 o , 5 o , 0o , 5o , 10o ], and v  [-30m/s,
-15m/s, 0m/s, 15m/s, 30m/s].

B.Minimax Strategy
Minimax strategy first uses the dynamics model and

controllers to roll forward aircraft states with many steps,
given one of the candidate decisions. Then minimax strategy
assesses the future state according to a situation assessment
function (SAF). After obtaining all the scores of all candidate
decisions, minimax strategy searches for the optimal decision
d  by solving

,maxmin ,i iji
d   W (1)

where W denotes the score matrix whose element ei,j at row i
and column j stands for the score when own aircraft takes
decision i and the opponent takes decision j. Finally, the
output decision of the minimax strategy can be set as the
tracking signals of controllers to compute control commands,
to take position of advantage in the future situation.

C.Situation Assessment Function
To assessing all the possible tactical situations of different

maneuvers, an SAF is defined to calculate the score matrix W .
We build SAF according to [14], with appropriate
modifications to close-in air-combat case. The main
difference is that the maximum detection range of radar
DRmax=100000m, the maximum range of the missile’s radar
DMmax=60000m, and the maximum range of the missile

DMkmax=30000m.

D.Controller Design
Controllers are designed to track the decision of minimax

strategy, i.e., the desired values of altitude d tz z z @ ,
aircraft heading angle d t  @j j j and velocity

d tv v v @ .
To track the desired velocity, we first denote the tracking

error as v de v v  . A simple controller is designed as

   1 sin ,d v vu v k e g  &g (2)
where vk > 0 is the controller gain.
To track the desired altitude, we design a cascade control

system, which comprises an outer-loop altitude control
system and an inner-loop flight-path angle control system. In
the inner loop, the controller tracks the desired flight-path
angle dg , which is commanded by the outer loop. The
tracking errors for inner-loop and outer-loop are defined as

de  g g g and z de z z  , respectively. The flight-path
angle controller and altitude controller can be designed as
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where kg >0 and zk >0 are the controller gains of inner-loop
and outer-loop, respectively.
Similar to the velocity controller, the aircraft heading angle

controller signal can be designed as
   3 cos ,du v k e g  & j jg j (4)

where de  j j j is the tracking error, and kj > 0 is the
controller gain.
Then the control commands can be calculated by

1,xcmdn u (5)
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IV. POLICY OPTIMIZATION FOR CLOSE-IN AIR-COMBAT

A.Markov Decision Processes and Reinforcement Learning
We assume that the state transitions in air-combat game

satisfies Markov property. A Markov decision process is
formalized as a quintuple (, , P , r, r ), where  is the
finite state space,  is the finite action space,
( , ) :s s aP  0,1    is the probability associated

with transition from the state s to next state s given the
action a of the RL agent, :r    ¡  is the reward
function, and [0,1)r is the discount factor. A stationary
policy of a RL agent is a mapping from state space to action



space:  : p D  . Given a stationary policy p and a

starting state-action pair  0 0,s a , the action value function is
defined as

1
0 01

( , ) [ , , ],t
tt

Q s a r s s a a 


 @p r pE (8)

where tr is the reward at time-step t. The discounted sum of
future rewards is also known as return. Similarly, the state
value function is defined as follows:

1
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

@p r pV E (9)

The control commands  , ,xcmd zcmd cmdn n f is defined as the
action of the agent.

B.Reward Function
According to the aircraft relative geometry in Fig. 1, we

can define the reward function of the game. When D is less
than firepower range, i.e. 3000m, the reward function of the
agent at time-step t is defined as follows:
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where both a and b are normalized to [ 180 , 180 o o ].

C.State Space Design
We design the state space of DRL agent based on the

fight-path coordinate system. The relative position vector in
the view of red aircraft is defined as follows

 T, , ,re b r b r b rp T x x y y z z    (11)
where the subscript r and b respectively stand for red and blue
aircraft, and T represents the transformation matrix from the
global coordinate system into fight-path coordinate system:

cos cos cos sin sin
sin cos 0 .

sin cos cos sin cos
T

 
   
  

g j g j g
j j

g j g j g

Similarly, the relative velocity vector in the view of red
aircraft is

 T, , .re b r b r b rv T x x y y z z   & & & & & & (12)
We add velocity, g , xn , zn and f of own-ship into state

with the following form

        T
, cos ,sin , , , cos ,sin ,add x zO n n   n g g f f (13)

where xn , zn and f are the actions of red aircraft at time-step
t. Then the overall state s are the concatenation of rep , rev and

addO , resulting in a vector of 13 dimensions:
TT T T, , .re re adds p v O    (14)

D.Proximal Policy Optimization
In each iteration, the actor of PPO attempts to maximize

the following surrogate objective:
       
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where  %E denotes the empirical average over a batch of

samples generated by current policy, and tA% is an estimation

of  ,A s aqp ,      
oldt t t t tr a s a s q qq p p , e and z are

hyperparameters to control the changes of policy.
Furthermore, z is adaptive updated to achieve the target
value of the KL divergence dtarg.
To estimate the advantage function and value function, we

use the generalized advantage estimator (GAE) [15]. Given a
batch of samples, the value network aims to minimize
following objective:

    2
.critic

t tL V s R  
 

%
ww E (16)

In addition, we also use an entropy bonus to promote
exploration. Then we have the following overall objective
function that PPO maximizes at each iteration:

       1 2, actor criticL L c L c E   qq w q w p (17)
where 1 2,c c are coefficients, and the definition of the entropy
bonus is as follows:

   , ln .
ts a tE s   : :@

qq p qp pE D (18)

V.SIMULATION AND ANALYSIS

A.Experimental Settings
In each episode of the training process, the initial positions,

velocities, and heading angles of PPO agent and opponent are
randomized. Specifically, the initial x, y, z, v and j are
uniformly sampled from the following intervals:
x [-10000m, 10000m], y [-10000m, 10000m],
z [-5000m, 0], v [0.4Mach, 1.5Mach] and j [ 180 o ,
180o ]. Whereas both the initial values of g and f are set to
0.
We use neural network as our function approximator to

represent policy and value. The network is simply a
fully-connected multilayer perceptron with two hidden layers
of 128 units and ReLU nonlinear activation function,
followed by two separate heads for policy and value. Here,
the outputs of policy head are the means and standard
deviations of three Gaussian distributions.
In each environment time-step, the minimax strategy of the

opponent rolls forward with 2s for z, 2s for j , and 4s for v,
under each candidate decision.

B. Simulation Results
We train PPO agent for 1000 iterations. Fig. 2 shows the

average return of the PPO agent. The solid curves correspond
to the average return and the shaded region to the standard
deviation, averaging over three independent runs. After 400
iterations, PPO learns a policy with average return of 9.3.
When the training process is finished, the learned policies are
tested 100 times to estimate the probability of win, lose and
draw combating with the minimax opponent, averaging over
three independent runs. In Table I, the final testing average
probabilities of success of PPO and minimax strategy
(combating with minimax strategy) are 97.3% and 1.7%,
respectively.



Fig. 2. Average return of PPO agent.

TABLE I
THE PROBABIITY OF SUCCESS, LOSE AND DRAW

Method Probability
of success

Probability
of lose

Probability
of draw

PPO agent 97.3% 2.7% 0.0%
Minimax strategy 1.7% 12.3% 86%

To visualize what strategy and maneuvering PPO agent has
learned, we show some trajectories in the test of PPO
combating with minimax strategy. In Fig. 3(a), PPO uses
combinations of many primary maneuvers, e.g., accelerations,
climbs and turns, to stay close with the opponent and finally
attain the position of advantage. In Fig. 3(b), the values of a
are decreasing to the range of PPO’s WEZ. And the values of
b are always less than 150 rad.

(a) Trajectories of PPO agent (red) versus minimax strategy (blue).

(b) a , b and D values of PPO in the close-in combat.
Fig. 3. Testing scenario in close-in air-combat.

VI. CONCLUSIONS AND FUTUREWORKS

In this paper, we develop a DRL agent for one-on-one
close-in 3-DoF air-combat with continuous action space. We
first build a 3-DoF air-combat environment, develop a
minimax strategy and design controllers based on feedback
control strategy. Then we apply PPO algorithm to close-in
air-combat game and propose an efficient state space design
method. PPO performs strategies and flight maneuvers that
can adapt to different circumstances to defeat an opponent in
combat with minimax strategy. Future works include
extensions to more challenging scenarios like continuous
6-DoF air-combat and multi-aircraft combat.
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