Ordering Levels in Human Computation Games
using Playtraces and Level Structure

Anurag Sarkar
Northeastern University
Boston, MA, USA
sarkar.an @northeastern.edu

Abstract—Prior work using skill chains for matchmaking-
based dynamic difficulty adjustment in human computation
games required skill chains to be manually defined for a game,
and each level to be manually annotated with the individual
skills needed to complete that level. In this work, we present two
approaches for defining level orderings for DDA in the platformer
HCG Iowa James without using such manually-defined skill
chains and annotations. The first involves sequences of action-
context pairs found in gameplay traces. The second consists of
applying K-means clustering on segments of levels. Our results
show that both new approaches outperform baseline random level
ordering and perform similarly to the skill chain approach.

Index Terms—dynamic difficulty adjustment, human compu-
tation games, rating systems, skill chains, playtrace, clustering

I. INTRODUCTION

Human computation games (HCGs) attempt to solve real-
world problems by modeling them as game levels and harness-
ing the collective ability of crowdsourced players. Dynamic
difficulty adjustment (DDA) in such games is a challenge since
levels cannot easily be modified to tailor difficulty without
altering the problem being modeled. To this end, prior work
has performed DDA in HCGs through the combined use
of ratings-based matchmaking and skill chains. The former
involves repurposing player-vs-player (PvP) rating systems
(e.g. Glicko-2 [1]) as player-vs-level (PvL) rating systems by
assigning ratings to players and levels based on ability and
difficulty respectively. Then matchmaking is used to match
players with appropriately hard levels. Skill chains, on the
other hand, define the order in which in-game skills build on
each other and should ideally be acquired. For performing
DDA, previous work has used the game’s skill chain to identify
the set of levels most suitable for a given player given their
currently acquired set of skills. Then, the most appropriate
level from within this set is chosen via matchmaking using the
rating system. In this way, the rating system and skill chain
work together to accomplish DDA by means of dynamically
ordering the levels appropriate to the ability of the player.

While shown to be effective, the use of skill chains in
this approach necessitates significant manual authoring. First,
a skill chain must be defined for a given game. Then, each
level in the game must be annotated with the set of individual
skills required to complete that level. Ideally, we want a DDA
approach that requires a lesser amount of manual authoring.

This material is based upon work supported by the National Science
Foundation under Grant No. 1652537.

Seth Cooper
Northeastern University
Boston, MA, USA
se.cooper @northeastern.edu

¥ e — G
i - o>
r i 1-| S G d
Fig. 1. (left) Iowa James screenshot and (right) skill chain, developed in

previous work, used in the skill-chain based ordering.

In this paper, we thus explore two approaches for obtaining
level orderings for DDA in HCGs without having to rely on
manually authored skill chains and annotations. For the first
of these, we consider sequences of action-context pairs in
playtraces of successful player attempts at levels and order
levels based on relative proportions of similar action-context
pairs. For the second, we apply K-means clustering on level
segments to cluster segments with similar level structure. We
then order levels based on cluster memberships of their con-
stituent segments, the idea being that levels requiring similar
skills will contain similar level structures within them. Like
skill chains, both these new methods thus help identify sets
of levels eligible for the player based on their current ability,
from which we select the most appropriate level again using
ratings-based matchmaking as in the prior approach. While
both approaches do require some designer input to set up for a
specific game, as they are based on gameplay traces and level
geometry, they do not require the manual specification of a
skill chain or per-level manual annotation of skills. We tested
our new approaches using the platformer HCG lowa James
and compared with the original skill chain-based approach
and a random baseline. Our results suggest that the proposed
approaches perform similarly to the prior manual approach,
which all outperform the random baseline.

II. BACKGROUND

Dynamic difficulty adjustment (DDA) [2] refers to dynam-
ically balancing the difficulty of a game relative to player
ability. Traditional methods for DDA that modify game content
are ill-suited for HCGs which model real-world problems and
thus are not amenable to methods that modify levels. Instead,
prior works [3], [4], [5] have used skill chains and rating
systems for DDA in HCGs. Rating systems (e.g. Glicko-2
[1]) are typically used for PvP matchmaking for chess and
esports but have found use for DDA by being repurposed

Fig. 2. Example action-context pair of (‘jump’, 101101). Context bits indicate
(Ground, Moving-Platform, Item, Spikes, Timed-Spikes, Ninja-Star).

to matchmake between players and levels. Skill chains [6]
define the order of skill acquisition in a game by means of
a directed graph and are used for defining levels suitable
for players based on their skills. Together, both of these are
used for DDA in HCGs by controlling level ordering rather
than modifying the content within them. However, skill chains
require significant manual authoring in terms of both defining
them for a game and then annotating each level with the
required skills. We wish to reduce this load through using
playtrace data and clustering. Our use of playtraces to order
levels is similar to [7] who use a trace-based framework for
generating problem progressions for an algebra learning game
and [8] who generate progressions for a foreign language
learning game via reinforcement learning. Additionally, prior
works applying clustering on level structures include [9] which
clusters similar Mario and Lode Runner structures for level
generation and [10] which clusters categories of Mario level
chunks for training probabilistic graphical models to generate
new levels. However, such applications in the context of HCGs
are less prevalent.

III. TowA JAMES

We use lowa James, a 2D side-scrolling platformer HCG
modeling the task of object categorization. Similar to Gwario
[11] which inspired it, each level in Iowa James represents a
scenario where players must collect and avoid items relevant
and irrelevant to that scenario respectively. Collecting all
relevant items unlocks a treasure chest at the end to progress to
the next level. The game features typical platformer mechanics
of running and jumping as well as hazards. Players lose a life
either by collecting an incorrect item or being struck by a
hazard and have three lives to complete each level. The game
featured 3-item and 7-item versions of 25 different maps for
a total of 50 levels. A skill chain for the game developed in
prior work [5] is shown in Figure 1.

IV. METHOD

A. Skill Chain-based DDA

The original skill chain and ratings-based approach for DDA
has been introduced and described in prior work [3], [4]. It
consists of three steps: 1) manually defining the skill chain for
the game 2) manually annotating each level in the game with
the individual skills needed to complete it, and determining
a rating for each level based on its difficulty and 3) using
the Glicko-2 [1] rating system to matchmake between players
and levels and then update the player ratings and skills after
each match. For this work, we took the level ratings and skill

annotations used in prior work [4] involving Iowa James, with
level ratings ranging from 1496 (easy) to 1927 (hard). These
level skills and ratings are then used in step 3 where PvL
matchmaking is done to serve levels to players. Briefly, this
starts by assigning a default rating of 1500 and an empty set
of skills to each new player. Then to get the next level, the set
of eligible levels is determined based on the player’s currently
acquired set of skills. The rating system then chooses which
eligible level to serve based on the player’s current rating.
After the player plays through the level, the player’s rating
and skills are updated based on if the player completed the
level or not. A more detailed description of the working of
this system can be found in [4]. Note that in this method,
there are two points where manual input is required. First,
one must manually craft the skill chain of the game. Second,
each level must be manually annotated with the set of skills
required to complete them. It is this authorial burden we wish
to reduce with the two new approaches described next.

B. Action-Context Fairs in Play Traces

For our first approach, we used sequences of action-context
pairs found in play traces of successful player attempts at
levels i.e. instances of players completing the level. Each such
pair was thus a 2-tuple consisting of a player action and a level
context indicating the context within the 10-tile neighborhood
of the player when the action was performed. For this work,
action was one of left, right, jump and wrong_item with the lat-
ter indicating players collecting an incorrect item. The context
was in the form of a length-6 bitstring with each bit indicating
the presence or absence of a specific game element within
the neighborhood of the player while performing the action.
In order, the bits correspond to: ground, moving platform,
collectable item, spikes, timed rising spikes, ninja star. An
example action-context pair is shown in Figure 2.

We gathered playtrace data using players recruited via a
human intelligence task (HIT) on Amazon Mechanical Turk.
Players were paid $2 but payment was made in advance and
playing the game was completely optional based on a payment
strategy explored in [12]. To ensure similar amounts of data
across levels of all difficulties, players were served levels at
random. Through this HIT, we gathered data for 60 players.
For each instance of a player playing a level, we logged
the trajectory of time-ordered action-context pairs during the
playthrough of the level. Since we are interested in ordering
levels based on the skills required to complete them, we filter
out trajectories of losing playthroughs since we do not want
to consider actions that did not lead to level completion.

Using the winning trajectories, for each level, we determine
the set of unique action-context pairs that appear in a certain
threshold percentage of trajectories involving that level. Then,
to order the levels, we consider each pair of levels A and B.
If the percentage of A’s action-context pairs in B are greater
than the percentage of B’s action-context pairs in A, then A
comes before B in the ordering. E.g., if 50% of the skills
required for A are also required for B but only 30% of the
skills required for B are required for A, then A comes before

PT-10, left-to-right

KM-20, top-to-bottom

Fig. 3. Iowa James level orderings using 10% thresholding on playtrace data (PT-10) and clustering segments using K-means with K=20 (KM-20).

B. Intuitively, an easier level should require fewer of the skills
required by harder levels than vice-versa. Representing these
(partial) orderings as graphs with levels as nodes, if the above
condition is true, then there is a directed edge from A to B, else
the edge is from B to A unless they have the same percentage
in which case there is no edge. Finally, after processing all
level pairs, we apply a transitive reduction to get the final
level ordering graph. Transitive reduction removes direct edges
between two nodes if they are connected by a separate path of
length greater than 1 and is thus useful for reducing the density
of a graph. To determine the percentage of winning trajectories
to consider, we generated the above graphs for thresholds=10,
20, ..., 100% and analyzed the resulting orderings based on
our knowledge of the levels in the game and general idea of
level difficulties based on skill annotations and ratings from
prior works. For e.g., we know levels 00_3 and 00_7 should
appear in the beginning since they were designed to be starting
levels. We found that higher thresholds led to sub-optimal
level orderings since this caused the harder levels to end up
with fewer action-context pairs than the easier levels as more
actions are possible in big difficult levels than small simple
levels. Since we only consider relative proportions of action-
context pairs, this causes harder levels to be ordered ahead of
easier ones. By using lower thresholds, we obtained orderings
closer to expectation. We thus opted to use the graphs obtained
using 10% (PT-10) and 20% (PT-20) thresholding. While we
use a fair amount of heuristics here, we note that it is common
practice (and arguably beneficial) to incorporate some designer
knowledge into automated and semi-automated methods.

C. Clustering

For the second approach, we clustered segments from all
levels in the game. For this, we slid a 16x16 window across
all 50 levels to obtain 52,716 segments on which we applied
K-means using scikit-learn [13]. Clusters thus represent groups
of segments having similar level structures. After obtaining the
clusters, for each level, we identified the clusters that contained
at least 1 segment from that level. Then the order for each pair
of levels was determined based on if cluster memberships of
one level were a subset of those of the other. For e.g., consider
cluster memberships represented as length-k bit vectors where
k is the total number of clusters and the i-th bit is set to 1 or 0 if
a segment from the i-th cluster is present or absent in that level.
Then if k=3 and vectors for levels A, B and C are 100, 101 and

110 respectively, then A comes before B and C since 100 is a
subset of both 101 and 110 but there is no relationship between
B and C. We represent these (partial) orderings as graphs with
nodes representing levels and a directed edge from A to B
indicating A is a subset of B. We applied transitive reduction
to obtain the final graph, generating such graphs for k=1 to
20. Again, we want orderings that have levels 00_3 and 00_7
appearing first and prefer deeper over shallower graphs. We
found either or both of these constraints to not be satisfied in
graphs generated using values of k less than 6. Lower values of
k lead to flatter, broader graphs since there are fewer clusters,
making it more likely for a greater number of levels to have
their segments belong to similar clusters. To cover the range of
remaining k values, we experimentally compared the graphs
produced by k=6 (KM-6) and k=20 (KM-20).

Note that while there is still some amount of manual
authoring involved in the new approaches, it is only for the
game as a whole rather than for each level in the game unlike
the skill chain-based approach. In the playtrace method, the
context must be manually defined but once defined, the same
context is used across all levels. The clustering based method
is even more automated. For space, we only show orderings
PT-10 and KM-20 in Figure 3. We can think of these as skill
chains where the levels themselves correspond to skills and
completing a level corresponds to acquiring that skill.

V. EVALUATION

In addition to the preliminary HIT to gather playtraces,
we ran 3 HITs—the first to determine which playtrace-based
ordering to use, the second to determine which clustering-
based ordering to use and the third to compare the orderings
selected in the first 2 HITs to the original skill chain-based
ordering and a random baseline. All 3 HITs used the same
payment scheme as the preliminary HIT. The HITs to find
which playtrace-based and clustering-based orderings to use
each had 2 conditions with each player being randomly
assigned to one of the two. For these HITs, we looked at:
o Levels Completed - no. of levels completed by the player
o Total Matches - total no. of matches played by the player
We gathered data for 111 and 113 players for the playtrace
and clustering HITs respectively. Results are shown in Table I.
For the playtrace HIT, we observed that 10% thresholding (PT-
10) led to players completing a significantly higher number of
levels while playing a similar number of matches compared

Variable PT-10 (n=59)|PT-20 (n=52)
Levels Completed (p = .039) 2 1
Total Matches (p = .24) 6 5.5
Variable KM-6 (n=55) [KM-20 (n=58)
Levels Completed (p = .52) 1 2
Total Matches (p = .9) 6 6
TABLE 1

MEDIAN VALUES FOR VARIABLES COMPARING THE PLAYTRACE-BASED
(PT) AND CLUSTERING-BASED (KM) ORDERINGS. BOLD VALUES WERE
SIGNIFICANT BASED ON A WILCOXON RANK-SUM TEST.

RAND | SKILL|KM-20|PT-10

Variable (=78) | (n=96) | (n=85) | (n=76)
Levels Completed (p < .01) 1@ 20 20 20
Total Matches (p = .77) 8 6 6 6
Correct Items (p = .052) 75% | 9520 | g2 14°
Incorrect Items (p = .33) 7 6 6 7.5

Highest Level Rating (p < .01)| 1496% | 16697 | 16697 | 1854°

TABLE II

MEDIAN VALUES FOR VARIABLES ACROSS ALL CONDITIONS. BOLD
VALUES WERE SIGNIFICANT BASED ON AN OMNIBUS KRUSKAL-WALLIS
TEST (BORDERLINE SIGNIFICANT VALUES INCLUDED). VALUES WITH
SHARED LETTER SUPERSCRIPTS®*® WERE NOT SIGNIFICANTLY DIFFERENT
IN PAIRWISE POST-HOC COMPARISONS.

to 20% thresholding (PT-20), determined by a Wilcoxon rank-
sum test. Using similar testing on the clustering data, we
observed no statistical differences between the two conditions
but the median number of levels completed was higher for
KM-20. We thus used PT-10 and KM-20 for the final HIT
which hence had 4 conditions:
e RAND - randomly pick a level yet to be completed
e SKILL - use skill chain to determine eligible levels and
rating system to pick level to serve
e KM-20 - use KM-20 level ordering to determine eligible
levels and rating system to pick level to serve
e PT-10 - use PT-10 level ordering to determine eligible
levels and rating system to pick level to serve
For this HIT, we considered 3 additional variables:
o Correct Items - the total number of correct items collected
by a player during a playthrough
o Incorrect Items - the total number of incorrect items col-
lected by a player during a playthrough
o Highest Level Rating - the highest rated (i.e. most difficult)
level completed by a player
We recruited 335 players, each randomly assigned to one
of the 4 conditions. For each variable, we ran an omnibus
Kruskal-Wallis test across conditions and if significant, pair-
wise Wilcoxon rank-sum tests with the Holm correction.
Results are shown in Table II. We found significant omnibus
differences for Levels Completed and Highest Level Rating and
a borderline significant difference for Correct Items. For Levels
Completed, unsurprisingly, RAND did significantly worse than
the others with no difference between those three. For Correct
Items, significant post-hoc differences were observed only
between PT-10 and RAND but the median correct items
collected for PT-10 was far higher than any other condition.
For Highest Level Rating, PT-10 did significantly better than
other conditions while RAND did significantly worse than
others, with KM-20 and SKILL performing similarly.
Our results suggest that the new orderings allow players to
complete a similar amount of levels as the skill chain method
while reducing authorial load. PT-10 also allowed players to

complete significantly harder levels. This is particularly useful
for HCGs where we want to solve hard problems which would
typically be represented by difficult levels. PT—10 was also the
only one that led players to collect significantly more correct
items than RAND though it is worth noting that players also
collected the most incorrect items under PT-10 suggesting
that there may be some trade-off involved where this ordering
favors the higher item versions of levels leading to players
collecting more correct items but also being more likely to
collect more incorrect items. While KM-20 does not outper-
form SKILL or PT-10 along any variable, it requires the least
amount of manual input among the three methods and does
not do any worse than either of the other two. Overall, we find
that our new ordering approaches either improve upon the skill
chain-based approach or do no worse, while reducing authorial
burden. It is also worth noting that the median number of
matches played varied from 6 to 8, suggesting that early parts
of orderings are more important than later parts.

VI. CONCLUSION AND FUTURE WORK

We presented two approaches for learning level orderings
for DDA in HCGs using less authorial load than the existing
skill chain-based approach. The new methods involved ana-
lyzing playtrace data of player actions and clustering level
segments based on structure. We found that the new methods
either outperformed or performed similarly to the skill chain-
based DDA system. In the future, we are interested in applying
these methods on other types of HCGs as well as to learn
progressions for educational games. We also want to explore
context relationships where a context without an element is

considered a subset of the same context with that element.
REFERENCES

[1] M. E. Glickman, “Dynamic paired comparison models with stochastic
variances,” Journal of Applied Statistics, vol. 28, no. 6, pp. 673-689,
Aug. 2001.

[2] M. Zohaib and H. Nakanishi, “Dynamic difficulty adjustment (DDA) in
computer games: a review,” Advances in Human-Computer Interaction,
2018.

[3] A. Sarkar and S. Cooper, “Using a disjoint skill model for game and
task difficulty in human computation games,” in CHI Play, 2019.

, “Evaluating and comparing skill chains and rating systems for

dynamic difficulty adjustment,” in AIIDE, 2020.

, “An online system for player-vs-level matchmaking in human
computation games,” in IEEE Conference on Games (CoG), 2021.

[6] D. Cook, “The chemistry of game design,” 2007, Gamasutra.

[7]1 E. Andersen, S. Gulwani, and Z. Popovic, “A trace-based framework for
analyzing and synthesizing educational progressions,” in CHI, 2013.

[8] T. Mu, S. Wang, E. Andersen, and E. Brunskill, “Combining adaptivity
with progression ordering for intelligent tutoring systems,” in Proceed-
ings of the Fifth Annual ACM Conference on Learning at Scale, 2018.

[9] S. Snodgrass and S. Ontanon, “A hierarchical mdmc approach to 2d

video game map generation,” in AIIDE, 2015.

M. Guzdial and M. Riedl, “Game level generation from gameplay

videos,” in AIIDE, 2016.

K. Siu, M. Guzdial, and M. Riedl, “Evaluating single player and

multiplayer in human computation games,” in FDG, 2017.

A. Sarkar and S. Cooper, “Comparing paid and volunteer recruitment in

human computation games,” in FDG, 2018.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-

plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-

esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine

Learning Research, vol. 12, pp. 2825-2830, 2011.

[4]

[5]

(10]
(11]
[12]

[13]

