
PIFE: Permutation Invariant Feature Extractor for
Danmaku Games

1st Takuto Itoi
Simo-Serra Lab.
Waseda University

Tokyo, Japan
takutoitoi914@ruri.waseda.jp

2nd Edgar Simo-Serra
Simo-Serra Lab.
Waseda University

Tokyo, Japan
ess@waseda,jp

Abstract—Dealing with unstructured complex patterns pro-
vides a challenge to existing reinforcement patterns. In this
research, we propose a new model to overcome the difficulty in
challenging danmaku games. Touhou Project is one of the best-
known games in the bullet hell genre also known as danmaku,
where a player has to dodge complex patterns of bullets on the
screen. Furthermore, the agent needs to react to the environment
in real-time, which made existing methods having difficulties
processing the high-volume data of objects; bullets, enemies, etc.
We introduce an environment for the Touhou Project game ‘東方
花映塚～Phantasmagoria of Flower View.’ which manipulates the
memory of the running game and enables to control the character.
However, the game state information consists of unstructured and
unordered data not amenable for training existing reinforcement
learning models, as they are not invariant to order changes in
the input. To overcome this issue, we propose a new pooling-
based reinforcement learning approach that is able to handle
permutation invariant inputs by extracting abstract values and
merging them in an order-independent way. Experimental results
corroborate the effectiveness of our approach which shows signifi-
cantly increased scores compared to existing baseline approaches.

Index Terms—reinforcement learning, permutation invariance,
pooling, touhou

I. Introduction

In danmaku games, also known as bullet-hell shooting
game, the player has to eliminate enemies on a 2D screen
while carefully avoiding being hit by a large number of
slow particles and moving enemies that fill the screen. These
objects, observed in lists of information are uncertain in
numbers and in order. Suppose there are data of two particles
‘A’ and ‘B’ stored in the game’s memory. Since the order of
data stored in the game is arbitrary, there exists a possibility of
observing the data as either (AB) or (BA). Despite that deep
reinforcement learning has achieved significant performance in
many domains such as playing Go [1] and Atari games [2], this
feature of danmaku games makes standard approaches struggle
since they may act differently even when only the order of the
data is changed due to the dependency on the order of the
observed data. In this research, we propose a model that is
invariant to the order of the data.
Another difficulty posed by danmaku games is that the agent

is required to have quick and precise reactions. Compared
with traditional shooting games such as ‘space invaders’ or
‘xevious’, the bullets in danmaku games are much greater

Fig. 1. Our permutation invariant deep reinforcement learning model.
Unordered input data is processed by our proposed method: PIFE (Permutation
Invariant Feature Extractor) that extracts the abstract values which is passed
to a neural network that selects the action.

in numbers, cover the major part of the screen, and follow
complex patterns, making it non-trivial to dodge them and re-
quires lots of strategy and memorization. In terms of machine
learning, the agent is required to process huge data in real-time
while matching patterns with previously known ones to make
the right decision necessary for survival. Danmaku games can
represent a significant increase in complexity in comparison to
most commonly used game environments, and to the best of
our knowledge, this is the first research that tackles the proble
of applying reinforcement learning to the genre.
Providing a new method for deep reinforcement learning

that enables it to handle a huge data with permutation invari-
ance is not only useful for danmaku games but also widens its
ability to many other fields. For example, autonomous driving
uses sensors to detect the obstacles which varies in time and is
observed in no such order. Our model is able to handle these
inputs very quickly independent of the data order.
To address this issue, we propose a new learning method us-

ing a Permutation Invariant Feature Extractor (PIFE) inspired
by PointNet [3], [4]. We interpret the data given from the
environment as an unstructured set and extract abstract values
that represent the data which are then amenable to processing
with standard reinforcement learning methods. The overview
of our method, shown in Fig. 1, shows that the input data are
first processed with PIFE. The different input modalities, with
variable number of elements and arbitrary order, are processed
with PIFE and concatenated before processing with a neural
network. An added benefit of our approach is an increase in
computation speed as our method significantly decreases the



dimension of the input data.
As a representative example of danmaku games, we focused

on a Touhou Project game 東方花映塚～Phantasmagoria of
Flower View [5]. We implement an OpenAI gym environment
[6] for this game. This environment consists of a server that
handles multiple game instances and a client that connects
to the server to receive the observed data and control the
character (more details in Sec. III-A). The server launches an
instance of the game for each connection with a client and
uses DLL injection [7] to extract the current state of the game
that exists in the memory of the game.
In summary, our main contributions are as follows: (a) We

created a permutation-invariant deep reinforcement learning
method to deal with inputs that are lists of data. Compared with
classic deep networks to show our method performs better with
less computational force. (b) We implemented an OpenAI gym
environment of a danmaku game, ‘Phantasmagoria of Flower
View’ to advance the research in the field.

II. Backgrounds
A. Danmaku Games and Touhou Series
Danmaku game, also known as bullet hell games, is a popu-

lar game genre that is similar to ‘Shoot’em ups’ games. Some
examples of the shoot’em up games are ‘Space Invaders’ and
‘Asteroids’. In these games, the player controls a character in
the game which can shoot bullets. There are enemy characters
on the screen and they shoot bullets as well. The goal of the
game is to hit the enemies with bullets while dodging theirs.
Fast reaction and very precise control is mandatory for players
to score better. Danmaku games share the same feature with
shoot’em up games, however, the number of enemies and the
number of bullets are significantly more numerous, such that
the enemy’s bullets fill the screen and there are not much space
to dodge the bullets as in Fig. 2 which is a snap shot of the
game. This feature distinguishes danmaku games from other
shooting games and the difficulty is one of the main appeal
points of the genre.
Among other danmaku games, the Touhou Project series

is very popular and famous. Therefore, as a representative
example of danmaku games, we focused on one of the Touhou
Project game ”東方花映塚～Phantasmagoria of Flower View”
[5]. Unlike other Touhou Project games, 東方花映塚 (Kaei-
duka) is a competitive game, where the objective is to defeat
the opponent by sending more bullets to the opponent’s field
and eventually shoot them down. The player can move up and
down, left and right, fire bullets, and use spell cards to send a
barrage to the opponent’s field. Thanks to this feature, it will
be possible for humans to play against the agent after being
well trained to know how well it performs. Additionally, the
game features large amounts of randomness which force rein-
forcement agents to react to novel circumstances encountered
during gameplay.

B. Permutation-Invariant Networks
Within the field of supervised learning, there exists many

fields of studies according to the special features of the input

Fig. 2. A screen capture of a danmaku game. The player controls the red
character (marked with green circle) in the left screen and the right screen is
for the opponent. All other objects are bullets, enemies etc. which the player
should dodge and survive longer than the opponent.

dataset. Permutation-invariant dataset is one of the interesting
fields for supervised learning. Permutation invariance means
that the order of objects in a list does not matter to determine
the feature or the meaning of the dataset. One example of a
permutation invariant dataset is point cloud which the data are
collections of coordinates of points in a multi-dimension space.
The order of the input data has no ‘meanings’ to what the data
suggests. The order of the coordinates could be completely
shuffled, yet the overall shape would not change at all. In
order to train a model with these kind of dataset efficiently,
the output from the model should be exactly same regardless
of the order of the input data.
To extract the feature of point cloud, PointNet [3] and

PointNet++ [4] were suggested. PointNet is used for solving
clustering and classification problems on point cloud data
and is mainly applied to automatic driving and construction
projects. PointNet is characterized by its ability to learn
regardless of order invariance [3], movement invariance [3],
and locality [4]. Given a set of n data, n-Max pooling is
performed in the last layer to obtain an output of arbitrary
dimensionality regardless of the number of data.

III. Proposed Approach
Our method for training the agent has the following compo-

nents: the permutation invariant reinforcement learning agent,
the game server who launches the game, and the game client
(gym environment) who connects the agent to the server.

A. Environment and Setup
Unfortunately, there has not been any previous attempts of

reinforcement learning applied to danmaku games. Meaning
that there are no existing implementations or wrappers of
the game that enables interaction using python. In order
to do machine learning with this game, we created a gym
environment: ‘Touhou Gym‘.



Fig. 3. Overview of the Permutation Invariant Feature Extractor (PIFE) used
in our architecture.

The Touhou Gym is based on the OpenAI gym environment
[6]. It is composed of two main components: the game server
and the game client. The game server will wait for a connection
from the client, and for each connection, the server starts a new
game instance that collects the data using DLL injection in the
game and sends it to the client. After the connection between
the client and the server is established, the client provides the
game data to the agent.

B. Network Architecture
1) Permutation Invariant Feature Extractor (PIFE): There

are four types of objects that are permutation invariant in this
game; Enemies, Bullets, Items, and ExAttacks. Each of the
objects consists of collection of particle data, which form an
array structure. In our model, we use four different Permutation
Invariant Feature Extractors (PIFE) and then concatenate the
output for further processing with the rest of the model. The
structure of PIFE shown in Fig. 3 is inspired from PointNet
and consists of three modules; an InputTNet, followed by a
multi layer perceptron (MLP), and finally, a max-pooling layer
outputs the feature vector of the given input. The InputTNet
aims to normalize the input data. The output is then passed to
an MLP and then to a max-pooling layer with the number of
input objects gives the feature vector of the given input data.
Our proposed structure share the same feature with PointNet
mentioned in Sec. II-B that by the use of max-pooling, where
the output becomes the maximum value of the input values
which is not affected by the order of the data, PIFE is able to
extract the feature values of the input data that are invariant
to the order of the input.

2) Reinforcement Learning Methods: The player data and
the outputs of the four PIFE are concatenated and processed
by traditional reinforcement learning methods. Since all the
permutation-invariant data from the environment are processed
by PIFE, the network is able to select an action regardless
of the order and only by the underlying meaning of the
environment with traditional methods. In our experiment, three
methods were used to calculate the optimal action given the
player data and the outputs of the PIFEs; Dueling Double DQN
(D2DQN), Advantage Actor Critic (A2C), and Proximal Policy
Optimization (PPO).

IV. Comparison
Our goal is to show the effectiveness of our method on

environments with permutation invariant datasets i.e. Touhou

TABLE I
Number of parameters in the neural network of each model.

D2DQN A2C PPO

FCN 234,482,021 201,587,344 234,482,021
PIFE 43,104,035 10,209,358 43,104,035

Gym. Therefore, we trained two variations of models; one
that has permutation invariance and one that does not using
the same gym environment. The model without permutation
invariance uses a two layer Fully Connected neural Network
(FCN) instead of the Permutation Invariant Feature Extractor
(PIFE). In this experiment, we used prioritized experience
replay with mini-batches of size 64. The behavior policy
was ε greedy with ε annealed from 1 to 0.01 and fixed at
0.01 thereafter. Both models trained for 150 games which
are roughly 150,000 iterations controlling a randomly selected
character. The parameters of the D2DQN model were copied
to the second network after each game. We utilized PFRL [8]
for experiments.
Tab. I shows the number of parameters in the neural network

of each model. It is clear that the number of parameters of the
model using dueling neural network with permutation invariant
is about five times less and model for A2C using permutation-
invariant is 20 times less than that of FCN. This difference not
only increases the training efficiency but also enables the agent
to react quicker to the game due to less computational time.

A. Quantitative Results
Fig. 4 shows the comparison of the total score of each game

using D2DQN and other methods. The orange line shows the
change of the total scores of each game during the training
using PIFE, and the blue line shows it of FCN. Comparing
the two lines, we can point out that figure of D2DQN and
PPO shows more rapid growth in PIFE compared to FCN.
Besides, PPO reached its peak after approximately 50 epochs.
This means that the model with permutation invariance is able
to learn more efficiently. However, looking at A2C, the growth
of score does not seem to vary between using PIFE and FCN.
Besides, the line of each method seem to only have small
improvements. In the case of A2C, it seems that the training
itself had a problem somewhere.
After training each agent, we evaluated the agents by making

them play the game 10 times. The average scores and the
average number of frames the agent survived are listed in Tab.
II. Judging from the results, PIFE + PPO showed the best
performance of all and methods using PIFE scored better than
that of FCN except when combined with A2C.

B. Qualitative Results
Fig. 5 to Fig. 7 are snapshots of the agent trained using

our PIFE playing the game. The pictures are taken rapidly
and shown from left to right. The character controlled by the
agent is the red character marked with a yellow circle. Fig.
5 is a sequence when the agent is successfully attacking the
opponents. The agent is able to move towards the enemies



Fig. 4. The total score of each game while training between FCN and PIFE using D2DQN (left), A2C (middle), and PPO (right).

Fig. 5. The agent successfully attacks enemies. Fig. 6. The agent successfully dodges enemies. Fig. 7. The agent fails to avoid irregular bullets.

TABLE II
Evaluation result of all agents. Average of 10 game plays.

FCN + D2DQN A2C PPO
PIFE + D2DQN A2C PPO

Ave. score 33798 31602 35597
46700 26154 48222

Ave. survival frames 10525 9312 11663
13270 8257 13643

and attacks them by shooting the bullets upwards. Fig. 6
shows when the agent successfully avoids the bullets in a very
tough situation. The character is surrounded by bullets, bars
from below (which are also objects that should be avoided),
yet avoids all without being damages and escapes from the
difficult area. These pictures show that the agent is successfully
learning how to play the game, and to obtain more scores.
Despite that the quantitative results of A2C (Fig. 4) did

not show good results and the total scores of each game did
not increase, from a qualitative perspective, the agent seemed
to be learning how to dodge the bullets pretty well. Around
the third iteration the agent already learned how to dodge the
normal bullets. However, the agent was not able to dodge some
uncommon enemies and bullets like the red big dots seen in
Fig. 7. The ability to avoid these kind of uncommon bullets
should be obtained with further exploration and more training,
however the agent started sticking on the top of the field after
the forth iteration. We were not able to suppress this behavior
and unfortunately, the agent continued to stick to the top even
with any combinations of the hyper parameters.

V. Limitations and Discussions
The results indicate that a permutation-invariant deep rein-

forcement learning method is effective for environments that
have permutation-invariant data structures. Compared to DQN
methods that use classic deep networks, our method can learn
faster with less computational force. However, the results show

that further improvements for using A2C in the Touhou gym
environment can be made. Moreover the stability of the agent
and the gym environment leaves a room for further exploration.
Especially, the issue that the agent has a possibility to stick to
the top of the screen is crucial.
Additionally, our contributions to implementing the gym

environment must open up a high potential for research in
danmaku games. This gym environment provides a way to
obtain the inner-stored values of the game from python easily.
This allows easier researches and testing of reinforcement
learning algorithms. Moreover, compatibility with the OpenAI
gym environment enables testing the environment with codes
implemented for other environments too.
We are also looking towards implementing this strategy to

not only danmaku games but also real-life problems such as
autonomous driving where the agent must handle huge amount
of input data very quickly.

References
[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van

Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learning,”
arXiv preprint arXiv:1312.5602, 2013.

[3] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
652–660.

[4] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierar-
chical feature learning on point sets in a metric space,” arXiv preprint
arXiv:1706.02413, 2017.

[5] ZUN, “弾幕開花宣言　東方花映塚　～ Phantasmagoria of Flower View.”
https://www16.big.or.jp/~zun/html/th09top.html, 2005.

[6] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

[7] J. Shewmaker, “Analyzing dll injection,” GSM Presentation, 2006.
[8] Y. Fujita, P. Nagarajan, T. Kataoka, and T. Ishikawa, “Chainerrl: A

deep reinforcement learning library,” Journal of Machine Learning
Research, vol. 22, no. 77, pp. 1–14, 2021. [Online]. Available:
http://jmlr.org/papers/v22/20-376.html


