Improving DNN-based 2048 Players
with Global Embedding

Wang Weikai
Graduate School of Engineering
Kochi University of Technology
Kami, Japan
258010i@gs.kochi-tech.ac.jp

Abstract—2048 is a popular game for which plenty of computer
players have been created. However, many created 2048 players,
especially all DNN-based ones, only implicitly use tile values as
inputs and access tile position information. In this study, we take
one of the best DNN-based 2048 players as a baseline and propose
a 2048 player directly using both tile values and tile positions
as inputs. Additionally, we explore the possibility of embedding
all tile values and positions that we then concatenate with the
network’s regular value inputs.

We first train these variations in a short session and then select
the best two models with the baseline to be further trained in a
long session. Our best two methods performed better than the
baseline DNN player in both short and long training sessions.

Index Terms—game 2048, DNN, position embedding

I. INTRODUCTION

In recent years, Deep Neural Networks (DNNs) have had
great success in the development of computer game players.
Several of them have achieved expert-level results, such as:
AlphaGo Zero (Go) [1], Alpha Zero (Chess and Shogi) [2],
AlphaStar (StarCraft IT) [3], DeepStack (Poker) [4].

2048 is an “easy to learn but hard to master” game which
made it popular globally on mobile. It is played on a 4 x 4
grid board. In an initial state, two tiles are placed randomly
with values 2 (p = 0.9) or 4 (p = 0.1). After the player
selects a direction, all tiles will move to it. Colliding tiles of
the same value merge into a double valued tile. The player’s
score increases by the merged tile’s value, and a random empty
cell generates a tile of value 2 (p = 0.9) or 4 (p = 0.1). The
game ends if the player cannot move the tiles in any direction.
The original goal is to create a tile with a value of 2048, but
it has already been trivialized using intelligent agents. The
current goal is to reach as high score as possible before the
game ends.

2048 agents mainly use N-Tuple Networks and DNNs to
evaluate board states. So far, The best DNN-based 2048
agents [5] have not been able to outperform the state-of-the-
art agent based on N-Tuple Networks [6]. Given the success
of DNNs in other games, we expect that it is still possible to
improve their performance in 2048.

In most board games, a game state consists of:

« pieces (in 2048, each piece is a tile with a value), and

o meta information (in 2048, this includes the turn number

and the score).

Matsuzaki Kiminori
School of Information
Kochi University of Technology
Kami, Japan
matsuzaki.kiminori @kochi-tech.ac.jp

The pieces are usually encoded as arrays of piece values
that are fed to neural networks. Convolution layers in neural
networks are good at capturing local features in their input.
Then, positional relationships between pieces over the board
are implicitly captured through multiple layers.

The success of Transformer networks [7] in Natural Lan-
guage Processing (NLP) inspired us to design networks so
that they explicitly handle the relationships of pieces. The
Transformer networks are based on two main techniques:
attention and position embedding. Both of these techniques
allow a neural network to capture and handle relationships
over the entire input.

In this paper, we focus on position embedding techniques
applied to 2048. Starting with one of the best CNN (CNN22
[8]) as a baseline, we extend the network to explicitly take
the information of piece (tile) positions.! We encode the tile
positions with one-hot vectors (we call them position vectors).
The position vectors are concatenated with the array of tile
values and fed directly or indirectly to the CNN22 network.

The main contributions of the paper are summarized as
follows.?

o We designed three networks that take tile values and tile
positions as inputs (Section III). In all cases, we kept
the baseline CNN22 structure and extended it to handle
position vectors.

o To test our concept, we first evaluated the three proposed
networks and the baseline with a short-term training
session (about one day with a commodity GPU) (Section
IV-A). The results showed that our proposed networks
play better than the baseline with the help of position
vectors.

o We further conducted a long-term training experiment
(about ten days) for the best two networks and our
baseline method (Section IV-B). In this experiment, we
evaluated the networks using greedy (1-ply lookahead)
and expectimax (3-ply lookahead) search, and compared
them with the baseline DNN agent. Our best agent
achieved an average score of 226,171 with greedy play

'We consider that 2048’s board size is too small to benefit from the power
of the attention mechanism.

2Programs are available at https:/github.com/wwk1397/Improving-DNN-
based-2048-Players-with-Global-Embedding

and 389,288 with expectimax (3-ply) search. These two
results in long-term training are 51,961 and 9,374 better
than the best method in [8].

II. CNN22: BASELINE NEURAL NETWORK

CNN22 [8] is a 5-layer convolutional neural network trained
using TD-learning with some game-specific tricks. The input
of CNN22 is an array of size (4,4,16) consisting of 4x4
one-hot vectors encoding tile values. CNN22 applies two
convolution layers with 2 x 2 kernels followed by three fully-
connected layers as shown in Fig. 1(a). The network’s output
is an evaluation value of the input state, where the value is
trained to be an expected score from the state.

The training in [8] used the following settings and tricks:

o 5 generator threads: Training data is generated with 5
computational threads that perform game plays with the
latest neural network.

o Batch1024: Afterstates (states after moving tiles and
before a random tile appearing) are sampled in groups
of 1024.

e S-jump: Initial boards may have tiles with bigger value
than rules dictate upon termination.

o Restart: Instead of resetting, a generator thread rewinds
an episode by a half and resumes playing from there.

III. NEURAL NETWORK STRUCTURES

As discussed in Introduction, convolution layers capture
local spatial relationships effectively and find global relation-
ships over multiple layers.

In 2048, as in other games, tile positions are important. One
major heuristic in 2048 focuses on keeping the tile with the
largest value in a board corner. Knowing explicitly the position
of a tile can thus be useful to understand and learn this kind
of strategy effectively.

A. Extended Input

We develop three networks by extending CNN22. The
input of the network is extended to the global input with a
value array and position array, which will be detailed in the
following subsections.

Here is the definition of value array and position array. Parts
of these arrays are shown in Fig. 2.

o Value array: Size (4, 4, 16). Includes 4 x 4 one-hot
vectors of tile values.
o Position array: Size (4, 4, 4 + 4). Includes:

— 4 x 4 one-hot vectors of row coordinates (4, 4, 4).

— 4 x 4 one-hot vectors of column coordinates (4, 4,
4).

B. Direct Encoding of Positions

This input part directly feeds the concat array to the CNN22
network. Instead of only using the value array as the input,
we add the position array into the input part by bypassing
it. Therefore, we call this modified version the Bypass-CNN
(BP-CNN). It is illustrated in Fig. 1(b).

TABLE I
NEURAL NETWORKS USED IN THE PAPER

Network number of weights speed (pos./hour)
CNN22 2,902,273 2.41 x 10%
BP-CNN 2,910,465 2.21 x 108
FC-CNN 2,927,009 2.22 x 108
CNN-CNN 2,930,577 2.00 x 109

We keep the number of channels after the convolution
layers, and thus only the first convolution layer has more
weights. Since the number of channels after the first layer
is small, the number of weights has increased by 0.28%, as
shown in Table 1.

C. Extended Encoding of Board Information

We extend the idea of providing global information as input
to a CNN network by adding different submodels, which
mean learnable network structures of analyzing the global
information, to the CNN22’s input.

We create two networks with different submodules:

e FC-CNN: This network’s submodule consists of two
fully connected layers with 32 and 128 neurons respec-
tively. The output of the second layer is reshaped to a
4 x 4 x 8 array, concatenated with the Index input, and
fed to CNN22. The structure of FC-CNN is presented in
Fig. 1(c).

o CNN-CNN: This network’s submodule contains two con-
volution layers using 2 x 2 kernels with 16 filters and 3 x 3
kernels with 128 filters respectively. As with FC-CNN,
the submodule’s output is then reshaped, concatenated,
and fed to the CNN22 part of the network. The structure
of CNN-CNN is presented in Fig. 1(d).

IV. EVALUATION
A. Short Training Experiment

We first train each network for 5 x 107 actions. The progress
is measured with greedy play.

During the training part, we use computers with an Intel
Core 17-9800X CPU and two NVIDIA GeForce RTX 2080Ti
GPUs. Each program in this study uses only one GPU.

The networks are trained using the S-jump and restart
methods (introduced in section II). The speed of training and
the number of weights of each network are shown in table I.
To test the effect of adding position embedding, we do not
increase the number of parameters of the original model more
than 1%.

The snapshots with the network weights were taken for
every 108 training actions. After training 50 x 10° actions,
we got 50 snapshots for each network. For each snapshot,
100 greedy games are played for the evaluation.

Figure 3 shows training progress for four networks plotted
with respect to the number of training actions.

FC-CNN and CNN-CNN get a better average score than
CNN22. BP-CNN, however, only performs similarly to
CNN22. This shows that adding the global input directly

(a) CNN22:

_, conv (2x2) 256 |(33256) | cony (2x2) 12 [(22512)| FC 1024 |(1024) FC 256 (256) (1)
value (4,4,16) Rely RelU (zofas) RelLU RelLU FC 1
®)BPCNN:
value (4, 4, 16 ! }
U - VY
position (4, 4, 8) i ;
(c) FC-CNN:
value(4,4,16) =— wazny [T
— CNN22 —(_
position(4, 4,8) —! (4420 FC 32 (32) FC 128 (128)
Y (384) RelLU Sigmoid (4.48)
(d) CNN-CNN:
value (4,4,16) — e 1
(4,4,24) (3,3,16) (1,1,128) I CNN22 —
L] 2x2) 16 , 3, 3x3) 128 » by i i
position (4,4,8) — com &%) comy (33) _,,_(4 i .

Fig. 1. Structures of (a) CNN22, (b) BP-CNN, (c) FC-CNN, and (d) CNN-CNN. “//” means the operation of tensor reshaping. The red dotted parts have
the same structure. The additional blue dotted parts analyze global information.

(0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0)

(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

64 | 32 8

2 128 | 512 ||256 (0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0)

(0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1)

(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0)

64 | 32 8

512 | 1256 (0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0)

Fig. 2. Parts of the value arrays and the arrays concat with both value and
position at (0,3), (1,1), and (3,2). The blue characters consist of row and
column position one-hot vectors.

may not make the DNNs-based model analyze the global
information effectively.

B. Long Training Experiment

Based on the short training experiment, we select the two
best networks and the baseline network to be further trained
for a total of 5x 10® actions. The snapshots with the weights of
the networks were taken every 107 training actions. Besides
the number of training actions, we keep the same training
parameters as for the short training.

We measure training progress with greedy (1-ply search),
and expectimax (3-ply search) plays. In the greedy play, we

12

—— FC-CNN
CNN-CNN
—— BP-CNN

101

Score (x10%)
[=)]

20 30 40 50

Training actions (x10°)

Fig. 3. Experiment 1. Average scores for different networks in greedy play.

play 300 games for each snapshot. In the expectimax play, we
play 15 games for each snapshot.

As we can see in Table II and Fig. 4, with the expectimax (3-
ply search) play, FC-CNN achieves its highest average score
389,288 at 400 x 10% actions. CNN-CNN gets its highest
average score 375,794 at 450 x 105 actions. CNN22 gets its
highest average score 379,914 at 450 x 106 actions.

With the greedy play, FC-CNN achieves its highest average
score 226,171 at 500 x 10° actions. CNN-CNN gets its highest
average score 195,816 at 450 x 105 actions. CNN22 gets its
highest average score 174,210 at 450 x 105 actions.

Compared with our baseline model CNN22, the best av-
erage score of FC-CNN increased by 51,961 with greedy
play, however, only 9,374 with expectimax (3-ply search) play.
This may be caused by the greedy training method. In the
training part, the data is generated by the neural network with

IN
o

Score (x10%)
NN W w
S & 8 &

n
o

o
o
\
\
\

—— FC-CNN (Expectimax)
CNN-CNN (Expectimax)
—— CNN22 (Expectimax)
~=- FC-CNN (Greedy)
CNN-CNN (Greedy)
--- CNN22 (Greedy)

v

0 100 200 300 400 500
Training actions (x10°)

Fig. 4. Experiment 2. Average scores of greedy (1-ply) and expectimax (3-
ply) play.

the greedy method. Therefore, the improvement of the neural
network’s effect may be more reflected in the greedy play
result than the expectimax (3-ply search) play result.

V. CONCLUSION

In this paper, we focused on explicitly providing global
information to CNN networks rather than implicitly. To do
so, we created BP-CNN, FC-CNN, and CNN-CNN to utilize
this extended information and added it to the input of CNN22,
the previously established DNN-based 2048 player.

Using this method, we improved the results of the previous
agent in both short and long term training. FC-CNN achieved
the best performance with an average score of 389,288 with
expectimax (3-ply) play and 226,171 with greedy play.

The highest average score of expectimax (3-ply) play of
FC-CNN is higher than that of our baseline method CNN22 at
9,374, which is much smaller than the improvement of greedy
play at 51,961. We speculate that changing training methods
could yield improvements. It is also possible that different
methods of encoding global information could deliver better
results in the future.

Acknowledgment: Part of this work was supported by JSPS
KAKENHI Grant Number 20K12124.

REFERENCES

[1] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis,
“Mastering the game of Go without human knowledge,” Nature, vol. 550,
pp. 354-359, 2017.

[2] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan,
and D. Hassabis, “Mastering Chess and Shogi by self-play with a general
reinforcement learning algorithm,” arXiv, vol. 1712.01815, 2017.

[3] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev et al., “Grand-
master level in starcraft ii using multi-agent reinforcement learning,”
Nature, vol. 575, no. 7782, pp. 350-354, 2019.

[4] M. Moravcik, M. Schmid, N. Burch, V. Lisy, D. Morrill, N. Bard,
T. Davis, K. Waugh, M. Johanson, and M. H. Bowling, “Deepstack:
Expert-level artificial intelligence in heads-up no-limit poker,” Science,
vol. 356, no. 6337, pp. 508-513, 2017.

TABLE II
RESULT OF EXPERIMENT 2. THE COLUMN OF THE AVERAGE SCORE
SHOWS THE MEAN (BEFORE %) AND THE STANDARD DEVIATION (AFTER
+) OF AVERAGE SCORES FOR FOUR RUNS AFTER 300 X 105 ACTIONS.

average achievement ratio

score 2,048 4,096 8,192 16,384 32,768
Greedy play for FC-CNN
300 x 10° actions | 154,443+ 18,465 90.8% 82.8% 62.5% 258% 1.3%
350 x 10 actions | 160,329+ 23,366 90.8% 81.5% 61.4% 29.7% 1.4%
400 x 10° actions | 202,613+ 20,547 959% 89.7% 14.1% 42.8% 3.1%
450 x 10° actions | 203,3714 10,555 94.8% 89.1% 752% 413% 3.8%
500 x 10° actions 226,171+ 9,747 96.0% 92.3% 80.8% 50.7% 3.7%
Expectimax 3-ply play for FC-CNN
300 x 10° actions | 365,134+ 28,463 | 100.0% 100.0% 100.0% 83.3% 16.7%

350 x 10° actions
400 x 10° actions

376,312+ 24,369
389,288+ 27,789

100.0% 100.0% 95.0% 86.7% 23.3%
100.0% 100.0% 100.0% 88.3% 25.0%

450 x 10° actions 367,742+ 9,486 100.0% 98.3% 98.3% 83.3% 18.3%
500 x 10° actions 343,985+ 45,077 100.0% 98.3% 95.0% 83.3% 11.7%
Greedy play for CNN-CNN

300 x 10° actions 184,937+ 15,461 94.6% 89.2% 73.1% 37.1% 1.1%
350 x 10° actions 158,651+ 31,244 92.7% 86.8% 66.8% 273% 1.3%
400 x 10° actions 194,519+ 30,559 94.5% 89.9% 75.8% 40.0% 2.5%
450 x 10° actions 195,816+ 11,764 933% 88.3% 73.5% 40.3% 2.4%
500 x 10° actions 169,130+ 30,870 923% 82.7% 659% 31.0% 1.9%
Expectimax 3-ply play for CNN-CNN

300 x 10° actions | 341,023+ 48,990 | 100.0% 98.3% 95.0% 81.7% 15.0%
350 x 10° actions 331,047+ 31,102 100.0% 100.0% 98.3% 85.0% 6.7%
400 x 10° actions 340,149+ 28,935 100.0% 100.0% 98.3% 71.7% 15.0%

450 x 10° actions | 375,794+ 28,195 100.0% 100.0% 96.7% 80.0% 21.7%

500 x 10° actions | 339,600+ 15,638 | 100.0% 98.3% 98.3% 78.3% 13.3%
Greedy play for CNN22

300 x 10° actions 151,469+ 3,926 93.8% 839% 632% 249% 0.7%
350 x 10° actions 161,216+ 6,163 95.5% 88.7% 68.7% 21.6% 0.6%
400 x 10° actions 157,426+ 8,645 95.1% 882% 662% 26.1% 0.1%
450 x 10 actions | 174,210+ 21,724 94.7% 85.8% 67.3% 33.6% 1.7%
500 x 10° actions | 157,528+ 31,473 91.4% 82.3% 63.9% 28.7% 1.4%

Expectimax 3-ply play for CNN22

300 x 10° actions | 351,799+ 38,013 100.0% 100.0% 98.3% 80.0% 15.0 %

350 x 10 actions | 366,480+ 41,653 100.0% 100.0% 100.0% 91.7% 13.3%
400 x 10° actions | 328,556+ 21,488 100.0% 96.7% 96.7% 76.7% 11.7%
450 x 10° actions | 379,914+ 40,432 100.0% 100.0% 100.0% 90.0% 18.3%

500 x 10° actions | 349,683+ 25,745 100.0% 100.0% 98.3% 83.3% 11.7%

[5] 1. Antonoglou, J. Schrittwieser, S. Ozair, T. K. Hubert, and D. Silver,
“Planning in stochastic environments with a learned model,” in Interna-
tional Conference on Learning Representations, 2021.

[6] H. Guei, L.-P. Chen, and L.-C. Wu, “Optimistic temporal difference
learning for 2048,” IEEE Transactions on Games, 2021.

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[8] K. Matsuzaki, “Developing value networks for game 2048 with reinforce-
ment learning,” Journal of Information Processing, vol. 29, pp. 336-346,
2021.

