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Abstract—Despite the recent success of deep reinforcement
learning (RL), the generalization ability of RL agents remains an
open problem for real-world applicability. RL agents trained on
pixels may completely be derailed from achieving their objectives
in unseen situations with different levels of visual changes.
However, numerous existing RL suites do not address this as
a primary objective or lack consistent level design of increased
complexity. In this paper, we introduce the LevDoom benchmark,
a suite containing semi-realistic 3D simulation environments with
coherent levels of difficulty in the renowned video game Doom,
designed to benchmark generalization in vision-based RL. We
demonstrate how our benchmark reveals weaknesses of some
popular Deep RL algorithms, which fail to prevail in modified
environments. We further establish how our difficulty level design
presents increasing complexity to these algorithms.

Index Terms—reinforcement learning, generalization, vizdoom

I. INTRODUCTION

Though deep reinforcement learning has made immense
leaps forward over the past decade in the domain of video
games [1]–[5], robotics [6]–[9], and a lot of other applications
[10]–[13], generalization remains one of the most fundamental
challenges for RL [14]. Modern algorithms require large
amounts of collected experience to function in the applicable
domain [15]. However, this may be unavailable or expensive.
Generalizing to unseen scenarios thus proves challenging for
embodied AI, as the effective strategies learned in the training
environment may not later be adequate. It has previously been
shown that slight visual modifications on pixel-based observa-
tions from Atari games may completely disrupt a well trained
policy [16]. Whereas humans are able to seamlessly generalize
across similar tasks, this competence is still predominantly
absent in RL agents, who tend to instead become exceedingly
specialized to the environments which they encounter during
training [17]. The lack of generalizability makes self-learning
systems unreliable for real-world applications (e.g., robotics,
automation, healthcare and finance) where robustness is crucial
[18]. Targeting generalization is thus particularly vital as it
endorses the AI to thrive in unencountered conditions, which
is much desired for artificial general intelligence, rather than
just solving individual problems.

Proper generalization benchmarks are vital for RL research,
as they provide means of comparing the performance of meth-
ods and techniques on unseen environments with little effort.
Some such recently proposed platforms are repurposed on 3-
dimensional game engines such as ViZDoom [19], DeepMind

Lab [20], and MineRL [4], and are thus able to facilitate a
realistic perspective from a first-person point of view, which
pave the way to more lifelike means of applicability. However,
numerous existing RL suites like ALE [1], OpenAI Gym [21],
RL-Lab [22], ViZDoom [19], and DeepMind Lab [20] do
not implicitly regard generalization as a primary focus or
lack a broad and consistent difficulty level design [23]–[26].
Other related benchmarks for generalization research [25]–
[29] primarily define difficulty as an implicit property of the
game’s mechanics (e.g., stronger enemies or more complex
goals), which is generally employed to increase the challenge
for human players, but may be inadequate for measuring
generalization of RL agents.

In this paper, we present the LevDoom Benchmark1 , a suite
containing over 50 semi-realistic simulation environments in
four scenarios, adhering to a coherent notion of difficulty
across multiple levels, designed to research and evaluate gener-
alization in vision-based RL. LevDoom is based on ViZDoom
[30], a semi-realistic 3D world offering virtual embodiment
and egocentric perception. Real-world applications are subject
to constant environmental changes, presenting a great variety
of visual input to RL agents. This raises the demand for
a policy which is able to generalize across such instability.
To this end, we visually modify each environment within a
scenario by changing e.g., surface textures, entity types, shapes
and sizes, and modes or rendering. Compared to existing
benchmarks oriented towards generalization, LevDoom explic-
itly distinguishes between individual modifications to enable
researchers to discern how RL agents respond to particu-
lar unencountered environment alterations. Unlike previous
benchmarks [25], [26], [28], [29], [31], we propose to express
difficulty in terms of the number of visual modification types
within the environment. We posit that this approach creates a
coherent concept of difficulty, which enables to better quantify
generalizability.

The contributions of our work are three-fold:

1) We introduce the LevDoom benchmark, comprised of
four scenarios with environments of increasing difficulty,
to meet the growing needs for proper evaluation mech-
anisms for generalizable RL agents.

2) We employ three well-known algorithms (DQN [32],
Rainbow [33], and PPO [6]) to train baseline models

1All environments and code are open-source and can be found at
https://github.com/TTomilin/LevDoom.

https://github.com/TTomilin/LevDoom


TABLE I: Scenario properties

Scenario Success Metric Action Space Episode Timeout Enemies Weapon

Defend the Center Frames Alive ATTACK, TURN_LEFT, TURN_RIGHT 1300 3 3
Health Gathering Frames Alive MOVE_FORWARD, TURN_LEFT, TURN_RIGHT 2100 7 7
Seek and Slay Kill Count ATTACK, MOVE_FORWARD, TURN_LEFT, TURN_RIGHT 1250 3 3
Dodge Projectiles Frames Alive MOVE_LEFT, MOVE_RIGHT, SPEED 2100 3 7

on lower level environments of each of the scenarios,
and compare their performance on more challenging
environments of higher difficulty.

3) We establish how our proposed mechanism of level
difficulty indeed poses an increasing challenge, and
demonstrate to what degree the popular algorithms fail
to perform on slightly modified environments of our
benchmark.

II. RELATED WORK

A. Benchmarks in RL

Rapid progress has been made in both the 2D and immersive
3D simulation environment domain [1], [2], [14], [21]–[23],
[31], [34]–[37]. Multiple research platforms and benchmarks
have been based on existing repurposed game engines. Deep-
Mind Lab [20] is built upon Quake III Arena [38], facilitating
creative tasks, navigational challenges, and intelligence tests
on visual cues. Project Malmo [39] is based on Minecraft,
challenging the agent with navigation, survival, collaboration
and problem solving. ViZDoom [30] is based on the classical
FPS video game Doom, facilitating learning from raw visual
information in a semi-realistic world. These platforms do not,
however, address generalization as the primary objective or
lack difficulty levels.

Several benchmarks in RL address generalization [23]–[25],
[40], [40]. The Sonic Benchmark [23] measures generaliz-
ability by separating a very limited number of levels of the
Sonic the Hedgehog™video game for training and evaluation.
The General Video Game Artificial Intelligence (GVGAI)
[40] competition framework poses the problem of training
agents that can play a wide and unlimited range of games.
The DeepMind Memory Task Suite [24] is comprised of
a diverse set of memory tasks to evaluate the memory and
generalization of agents. Meta-World [25] explores how meta-
learning algorithms can quickly learn new tasks when meta-
trained on a task distribution of continuous control envi-
ronments. The Procgen Benchmark [26] measures sample
efficiency and generalization across 16 environments, enabling
the algorithmic creation of a near-infinite supply of highly
randomized levels and content with procedurally generated
content PCG [41]. MazeExplorer [42] assesses generalization
in navigation and exploration. CRLMaze [43] presents a non-
stationary object-picking task, subject to constant environmen-
tal changes. Compared to previous generalization benchmarks,
LevDoom particularly targets visual modifications. This is
crucial when learning from pixel data to better distinguish the
impact of particular variations.

B. Difficulty Levels

A benchmark with levels of difficulty is anything but new.
The BabyAI platform [31] comprises a suite of 19 scenarios
of increasing difficulty for grounded language learning, mea-
suring difficulty in the combination of competencies required
for solving a task. The improved version of ALE [28] supports
combinations of game mode and difficulty level pairs called
flavors. Obstacle Tower [29] consists of 100 PCG environ-
ments of increasing difficulty in the third-person perspective
in, with low-level control and high-level planning problems.
We take inspiration from these works in designing difficulty
levels by combining visual modification types. This enables to
determine which visual alterations are most impactful and pro-
vides a broader evaluation mechanism. Previous benchmarks
mainly increase implicit difficulty, which only impacts game
dynamics which we posit to be less vital for generalization of
embodied agents that learn from pixels.

III. LEVDOOM BENCHMARK

We introduce the scenarios and environments of the Lev-
Doom benchmark in detail, and explain the corresponding
difficulty levels, evaluation protocols and limitations.

A. Environments

With LevDoom we aim to build a benchmark, that facili-
tates evaluating generalizability in modified semi-realistic 3D
simulation environments. The initial version of the benchmark
consists of four manually designed scenarios (Defend the Cen-
ter, Health Gathering, Seek and Slay, and Dodge Projectiles),
each with environments of progressing difficulty levels. Every
scenario is designed with a particular narrow objective, but
nevertheless establishing high skill requirements.

Each environment in the benchmark is a modified version
of an original map from ViZDoom [19], a flexible RL research
platform for learning from raw visual information, based on
the classical FPS video game Doom. We design new environ-
ments by modifying the Internal WAD2 of the original sce-
nario. The environments are of pseudorandom nature, which
manifests in the randomized behaviour of enemies, fluctuating
damage inflicted by attacks, and spawning locations of items,
enemies, and the agent. All enemies have 1 health. The Doom
environments is run at a frame rate of 35 FPS. The weapon3

and heads-up display (HUD) are visually rendered, whereas
the crosshair, particles, and decals (materials projected onto

2A WAD file is a game data file used by FPS games running on the original
Doom engine.

3The weapon is only rendered in environments in which the agent is granted
one.



TABLE II: Example environments per difficulty level of each scenario.

Scenario Environments

Level 0 Level 1 Level 2 Level 3 Level 4

D
ef

en
d

th
e

C
en

te
r

Default Gore Stone Wall + Flying
Enemies

Resized Flying Enemies
+ Mossy Bricks

Complete

H
ea

lth
G

at
he

ri
ng

Default Resized Kits Slime + Obstacles Lava + Supreme +
Resized Agent

Complete

Se
ek

an
d

Sl
ay

Default Shadows Obstacles + Resized
Enemies

Red + Obstacles +
Invulnerable

Complete

D
od

ge
Pr

oj
ec

til
es

Default Barons Revenants Flames + Flaming Skulls
+ Mancubus

Complete

existing surfaces) are not. Each episode is terminated after a
predetermined number of frames (see Table I).

To provide an evident recognition of environments in lit-
erature, we adopt an evidently discernible nomenclature, in
which the name of an environment represents the modified at-
tribute(s) it incorporates. The names of environments may thus
overlap across scenarios. We consider this naming convention
feasible for the initial iteration of the benchmark, which
does not require naming environments with more than three
combined modifications, therefore not excessively lengthening
the names.

1) Observation Space: Doom is by far not a complete
information game, since at a single point in time, the agent can
spatially occupy only one location of the entire environment
and observe a portion of its surroundings. We use a 4:3 in-
game resolution, which grants a 90 degree field of view (FoV).
The observation space S is an image of the environment from
the first person perspective. This image is rendered in a 160
× 120 resolution with 3-channels of 8-bit values in RGB.

2) Action Space: We use a multi-discrete action space
A which varies across scenarios, but remains fixed among
environments within a scenario. Similarly to ViZDoom [19],
we do not use the full set of actions from the Doom game for
simplicity. The available actions per scenario are presented in
Table I.

3) Rewards: We design two base rewards R for each
environment E, closely dependent on the success metric of the
scenario S. The reward rt at every time step t is calculated
as follows:

• Defend the Center & Seek and Slay

rt = kt, (1)

where k is the number of enemies eliminated.
• Health Gathering & Dodge Projectiles

rt = F, (2)

where F is the base reward for surviving a frame.



TABLE III: Comparison of existing generalization benchmarks with LevDoom.

Benchmark 3D Input Dim. Environments Modifications

Alchemy [44] 3 96x72x3 (Generated) Shapes, colors, topologies, game logic
Sonic [23] 7 320x224x3 11 Levels from multiple Sonic video games
Distracting Control [45] 7 448x448x3 14 Textures, camera pose, video backgrounds
Obstacle Tower [46] 3 168x168x3 (Generated) Lighting, textures, floor plan, room layout
Procgen [26] 7 64x64x3 16 Level layout, game assets, entity spawns
MazeExplorer [42] 3 320x240x3 (Generated) Multiple maps, spawns, textures, keys
CRLMaze [43] 3 320x240x3 28 Light, textures, object shapes, colors

LevDoom 3 160x120x3 53 Textures, rendering modes, entity types & sizes, view height

B. Difficulty Levels

We assign a difficulty level d ∈ {0, . . . , 4} to each environ-
ment E based on the number of modifications. The unmodified
default environment of every scenario is level d = 0. The
level of an environment is in accordance with the number of
difficulty attributes it incorporates (e.g., a level 3 environment
is comprised of three modification types), with the exception
of the complete environments (level d = 4), which includes
all scenario specific difficulty attributes. We further define the
set of all environments of difficulty d in a scenario S as
Ed ⊂ E . Apart from levels 0 and 4, there is no fixed number
of environments per level. We depict one environment of each
level per scenario in Table II. We take Defend the Center
as an example to illustrate in Table IV how difficulty levels
are determined by combining modifications. The modification
types of other scenarios may differ.

We modify the environment characteristics with the goal
of changing their visual appearance. Most of the variations
we introduce (e.g., textures, entity size, agent height, render-
ing mode) would not increase difficulty for human players.
However, some modifications (e.g., entity type, obstacles) may
have a subtle effect on the game mechanics. The proposed
modifications include the following:

• Introducing new enemy and item types.
• Rendering enemies and items in a different shape, size,

or style.
• Applying noisier textures, which increase the challenge

of distinguishing the relevant enemies or items from the
background.

• Adding decorations to the environment, which either act
as obstacles by hindering the navigation of the agent, or
confuse the agent as being potential relevant targets.

• Varying the height of the agent, which vertically shifts
the plain of view.

Doom additionally incorporates a configurable in-game dif-
ficulty setting, which determines the speed and aggressiveness
of enemies, the factor of damage taken by the player, and
further characteristics, which are not relevant to our environ-
ments. We set this parameter to a value of 3 from the range
of 1-5 for all environments.

C. Evaluation Protocol

An agent is trained in a multi-task setting on a scenario S on
all environments of lower levels dtr = {0, 1}. We thus define

the training environment set as Etr = E0 ∪ E1. The agent is
then evaluated on higher difficulty levels dte = {2, 3, 4}. We
hence define the set of test environments as Ete = E2∪E3∪E4.

D. Limitations

Some environment modifications in our benchmark may
affect game dynamics in addition to visual disparity. For
example, among the modifications outlined in Table IV, Ob-
stacles and Entity Type have such and impact. Hence, two
environments with the same modification types from a scenario
might have different game dynamics.

The benchmark only consists of four scenarios, thus merely
addressing a few competencies, whereas there are numerous
possibilities for designing additional scenarios, which may
target navigation, memory, spatial reasoning, or exploration.
This leaves the door open for expanding the benchmark.

For simplicity and ease of training, we restricted the action
spaces of scenarios, mainly keeping only actions which are
crucial for accomplishing the established objective. Allowing
the agent to perform more actions may increase overall per-
formance when employing more powerful methods.

IV. EXPERIMENTS

In this section we evaluate the generalizability of agents
on environments with different levels of difficulty using the
LevDoom benchmark. We describe the agent models we used
for running the generalization experiments. We outline the ex-
perimental protocols and present the results of the experiments.

A. Setup

We use five seeds per experiment to control the pseudo-
random nature of the environments. We train each model
for 10M environment iterations, and evaluate it after every
100K iterations for 30 episodes on each holdout environment.
We select a total of seven test environments per scenario:
three environments from levels d = 2 and d = 3 each,
and the single final level d = 4 environment complete. The
performance on a test environment is determined by the mean
of the score across the five runs, according to the scenario
specific metric. During preprocessing we downscale the input
to a 84 × 84 pixel grayscale image. Neglecting RGB channels
as input to the model is computationally cheaper and we
hypothesize that grayscale images is more advantageous for
generalization, since a great number of visual modifications
in our environments incorporate color.



TABLE IV: Combining environment modifications of the Defend the Center scenario.

Level Environment Textures Obstacles Entity
Size

Entity
Rendering

Entity
Type

Entity
Speed

0 Default

1

Gore 3
Mossy Bricks 3

Stone Wall 3
Fuzzy Enemies 3

Resized Enemies 3
Fast Enemies 3

Flying Enemies 3

2
Gore + Mossy Bricks 3 3

Resized Fuzzy Enemies 3 3
Stone Wall + Flying Enemies 3 3

3
Resized Flying Enemies + Mossy Bricks 3 3 3

Gore + Stone Wall + Fuzzy Enemies 3 3 3
Fast Resized Enemies + Gore 3 3 3

4 Complete 3 3 3 3 3 3

1) Agent Models: We use three popular algorithms for re-
inforcement learning in high-dimensional environments: DQN
[32], Rainbow [33], and PPO [6]. We use the algorithm
implementations from the RL platform Tianshou [47]. For off-
policy methods we use a replay buffer of size 100K instead
of 1M to lower the algorithm’s memory consumption.

2) Reward Shaping: In addition to the base rewards out-
lined in Equations 1 and 2, we heuristically extend the reward
functions by including additional components to enhance the
feedback to the agent. We thus calculate the reward rt at every
time step t per scenario as follows:

• Defend the Center

rt = kt −mt − ht, (3)

where k = 1.0 indicates the number of enemies elimi-
nated, m = 0.1 marks using ammo, and h = 0.1 signals
taking damage from enemy attacks.

• Health Gathering

rt = F − pt + ht, (4)

where F = 0.01 is the base reward for surviving a frame,
p = 1.0 stands for picking up poison, and h = 1.0
indicates acquiring a health item.

• Seek and Slay

rt = st + c
∥∥lt − lt−k

∥∥2
2
, (5)

where s = 1.0 indicates the number of enemies slayed,
l marks the coordinates of the agent’s location in the
environment, and k = 5 determines the number of time
frames in the past from which the covered distance
is calculated. Note that the distance component is not
considered before k iterations of an episode have passed.

• Dodge Projectiles

rt = F − ht, (6)

where F = 0.01 is the base reward for surviving a frame
and h = 0.1 indicates the penalty of taking damage from
enemy attacks.

3) Hardware: The GPU used for running our experiments
is an MSI GeForce GTX 1080 Ti, with 11GB of RAM, 3584
CUDA cores, and a compute capability of 6.1. The CPU is
an Intel i7-7700 CPU with 8 hyperthreads, and a processing
speed of 3.60GHz. There is 32GB of RAM.

B. Results on Generalization

In Figure 1, we present the evaluation curves of DQN, Rain-
bow and PPO on the LevDoom benchmark, and in Table V
we display the averaged scores of the final ten evaluations. We
can observe that PPO had the best performance in the Dodge
Projectiles scenario, whereas Rainbow emerged superior in all
the rest. Out of the 28 evaluated environments, our DQN agent
outperformed other algorithms in only 2 environments, whilst
PPO surmounted in 10, and Rainbow in 16. It can be noticed
that PPO had very poor performance on the Seek and Slay
scenario. We hypothesize that the reason for this is the lack
of a replay buffer to reuse collected experience, which would
be beneficial in this scenario.

In Figure 2, we further establish how our difficulty level
design presents increasing complexity. To this end we select
the Rainbow agent, as it reaped the best performance, and
display its aggregated evaluation results per level. We can
indeed observe that the performance in all scenarios drops
as the difficulty level increases. It can be noticed that the
between-level performance gaps are similar across scenarios,
which indicates a coherent difficulty level design, on which
LevDoom particularly emphasizes. The curve of the level 4
complete environment appears rather flat for most scenarios,
which suggests that training on lower level environments did
not provide the Rainbow agent with sufficient generalization
capability to prevail the hardest environment.

V. CONCLUSION

Training proficient agents, who are able to generalize across
environments, currently remains one of the greatest challenges
in reinforcement learning. To aid the community in grap-
pling with this challenge, in this paper, we introduced and
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Fig. 1: A comparison between DQN, Rainbow and PPO. We train the agents on all environments of levels 0 and 1, and evaluate
them on environments of higher levels. The success metrics (Score) of scenarios are outlined in Table I. The solid line is the
median value across five seeds. The upper bound and lower bound are the 25th and 75th percentile, respectively.



TABLE V: Quantitative comparison between DQN, Rainbow and PPO. We train the agents on all environments of levels 0
and 1, and evaluate them on environments of higher levels. The success metrics (Score) of scenarios are outlined in Table I.
The results are shown as the mean value ± standard deviation of the last 10 evaluation epochs across five seeds. The highest
scores are in bold.
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Fig. 2: Performance of Rainbow on unseen evaluation environments of increasing difficulty. The agent is trained on all
environments of levels 0 and 1, and evaluated on environments of higher levels. The solid line is the median value across five
seeds. The upper bound and lower bound are the 25th and 75th percentile, respectively.

openly released LevDoom, a novel benchmark for assess-
ing generalization on visually modified environments with
levels of difficulty, and used it to evaluate and compare
popular RL algorithms. Experimental results on four different
scenarios demonstrate that our level design of combining
visual modifications increasingly hampers the performance of
three popular RL algorithms on unseen environments. We
have demonstrated that unseen environments including all
modification types of textures, in-game entities and further
attributes completely derail the agents from achieving the
limited established objectives. This design of level difficulty
makes the benchmark essential for evaluating generalization
in RL. We expect this benchmark to facilitate the design of
more generalizable algorithms and methods.
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