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Abstract—Esports are complex computer games that are
played competitively. DOTA 2 is one of the most popular esports
titles worldwide. Commentators, audiences, and players face
tremendous challenges to keep up with events happening during
live matches due to a rapidly evolving gameplay across a
large virtual arena. This complexity leads to the question of
whether esports analytics could detect important events and their
subsequent impact on the match. One such important event is
team fights, which can often determine the outcome of a match.
Despite their significance across strategy, gameplay, and audience
experience, team fights remain relatively unexplored in the
literature. Their role and potential to support match prediction
models are not well understood. This paper presents a novel
definition of team fights in DOTA 2 and proposes an algorithm
to extract and quantify them for use in match prediction.

Index Terms—Esports, Deep Learning, DOTA 2, Game Ana-
lytics, Recurrent Neural Networks, Prediction

I. INTRODUCTION

Esports is a term used to describe video games that are
played competitively [1], [2]. Esports are varied in their form
and gameplay, and today attract audiences and players in the
hundreds of millions worldwide [3]. Uniquely for esports, as
compared with traditional sports, there is a large degree of
overlap between audiences and players. As a sub-sector of the
games industry, esports has grown immensely in recent years,
and today comprise a multi-billion dollar sector [4]. Due to
the high degree of innovation and technology adoption in the
sector, and the detailed data available from many titles, esports
has become a test bed for research across many domains, not
the least data science [1], [5]-[7].

In recent years, esports has also become a focus for research
on how to enhance sports broadcasting in the future, and how
to utilize data to enhance the viewing experience, or provide
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interactivity [2], [7]. One of the most popular genre of esports
games, in terms of audience numbers and academic research,
is the Multi-Player Online Battle Arena (MOBA). This genre
includes titles such as DOTA 2 and League of Legends, each
with major tournaments sporting price pools in the dozens of
millions, often driven fully or partly by the community [8].

Similar to traditional sports, the tacit collaborations within
each team are always the highlight of the game and at times
can be the turning point for the match. For example, each team
fight in MOBA game such as DOTA 2 is significant since
it might determine the landscape for the rest of the match
[9]. The commentators could easily tell whether a team fight
happens, but it requires years of experience to understand the
impact of each team fight and convey it clearly to audiences
[2]. Furthermore, although previous studies have focused on
player encounter interactions [1], no detailed analysis exists
that explores whether team fights can predict match outcome.

Previous research within esports analytics tends to focus
on the whole game as a unit of analysis, as compared to
investigating events occurring within matches [6]. The work
here builds on previous analyses and extends it by focusing on
the impact of team fights on match outcome prediction. With
DOTA 2 as the case study, a team fight detection algorithm is
deployed, and match outcome predictions are made.

This paper analyzes the impact of individual team fights
in a DOTA 2 match to the match outcome. The purpose is
not to build the most accurate real-time match predicting
model, but to explore if team fights on their own provide
a foundation for prediction models. These models will then
contribute towards integrating machine learning and audience
engagement, allowing for a context grounded approach to
match outcome commentary and analysis.



II. BACKGROUND: DOTA 2 GAME-PLAY

In DOTA 2, there are two opposing teams, named Radiant
and Dire. These two teams fight against each other in a
virtual arena, seeking to destroy the opposing teams’ base
(called the “ancient”), and protect their own ancient at the
same time. Each team consists of five players and each player
controls a different hero with unique abilities and skills to fight
within this closed environment. The bases of both teams are
distributed diagonally and the map is divided into different
sections for each team!. There are three major lanes across
the map and are designated as safe lane, mid lane, and off
lane. Except for the three major lanes, there are jungle areas,
including various properties (outposts, shops, effigy buildings),
as well as neutral enemies, often referred to as neutral creeps
or neutral monsters. There are also multiple towers protecting
each team’s ancients and lanes. Each team has to take down
some of the towers in order to eventually destroy the base
of the enemy team. At the home base of each team, there is
a fountain where heroes would revive after being killed and
waiting for the revive countdown.

At the time of writing, there are 121 heroes for players to
choose from. Each hero possesses distinct abilities and skills.
Different combinations of heroes would build a team with
unique strengths and weaknesses. Each player would control
their respective hero/units to engage in combat until the enemy
ancient is exposed and destroyed. During the match, heroes
would kill enemy creeps, heroes, or units to gain gold and
experience. The gold enables players to buy more powerful
items and the experience enables players to level up or learn
new abilities so that they could outperform the enemy team.

In a typical DOTA 2 match, each player would “farm”
by collecting gold and gaining experience by killing enemy
creeps in their respective lane in the early game. As the game
progresses, players tend to gather together and fight against
the enemy team in a group. We call this type of group fight
a team fight. Team fights are always the highlights for both
players and audiences since the effects of group spell casting
are splendid and the winning team in the team fight would gain
huge advantages, especially in the late game. This is one of the
reasons we chose to focus this research on team fights. Most of
the time, team fights would have a tremendous impact on the
game and the result of a team fight might change the landscape
of the entire match [9]. While team fights are one of the most
important game events, they are not the only event that can
lead to teams gaining a large advantage. Other engagements
such as small skirmishes (2-on-1 or 1-on-1 trades) or health
trades that send an opponent from the lane, can be significant
and be the start of one team gaining an advantage (i.e a
snowballing event). Although significant we decided to scope
our work to start with team fights, with a plan to explore
the impact of other game events on overall match outcome in
future work.

IDOTA 2 Map - https://dota2.fandom.com/wiki/Map

ITII. RELATED WORK: ESPORTS ANALYTICS

The domain of esports analytics emerged over the past
decade, and has expanded rapidly since. The literature contains
a broad area of work and has seen an accelerating pace of
publications in recent years [10]. Esports analytics was defined
by Schubert et al. [1] as: “the process of using esports related
data, ... to find meaningful patterns and trends in said data,
and the communication of these patterns using visualization
techniques to assist with decision-making processes.” The
definition of Schubert et al. [1] highlights a fundamental
challenge in esports, namely making complex and fast-paced
games comprehensible to players and audiences alike.

Thanks to the readily available data of esports games from
public API systems provided by game publishers, esports
analytics has become a fertile ground for research in ma-
chine learning, Al, and sports, with high-dimensional and
high-volume data across amateur to professional levels being
utilized [6], [11], [12].

Predicting the result of esports matches has emerged as a
key topic in esports analytics. Not only does such predictions
provide interesting material for broadcasting and audience
engagement [2], [7], but are also of use to inform players
and teams for the purpose of training.

Prior studies demonstrated the application of machine learn-
ing algorithms in DOTA 2 match analysis. Demediuk et al.
[11] utilized an unsupervised machine learning algorithm to
classify the role of players in DOTA 2 games, while Eggert et
al. [9] used supervised learning algorithms instead to identify
player roles in DOTA 2. Sifa et al. [13] detected outliers oc-
curring during a game for improving the commentator-driven
storytelling experience. Drachen et al. [14] investigated the
relationship between team skill and spatio-temporal behavior
of the team using time series clustering. Katona et al. [10]
utilized a feedforward neural network with shared weights to
predict the probability of a player hero being killed within a
five second window. Yang et al. [15] modeled DOTA 2 games
using graphs and constructed Decision Trees using extracted
patterns to predict the match outcome with 80% accuracy.
Semenov et al. [12] experimented with the possibility of
predicting DOTA 2 match outcome from draft picks using
Factorization Machines (0.66 AUC) and XGBoost classifier
(0.65 AUC).

More relevant to our research, Yang et al. [16] performed
real-time match outcome prediction using individual players’
match history and real-time features. Hodge et al. [6] also
examined real-time game result prediction for DOTA 2 using
standard machine learning models.

Past literature has dealt with different aspects of an esports
match. Although various researches focus on match prediction
and analysis [6], [12], none have dealt with the influence of
team fights directly, which are important events that could
drastically alter the outcome of an entire match [9]. Our work
aims to bridge this gap in the existing literature and does so by
focusing on real-time game outcome prediction for DOTA 2.
However, different from prior research, our prediction models



are based on the concept of team fights adapted from encounter
components defined by Schubert et al. [1]. The goal of our
work is to provide an innovative way of retaining spectator
engagement by providing match outcome predictions after
each team fight. This framework would generate data-driven
insights to assist commentators and augment the audience
experience [7].

IV. DATA COLLECTION AND PREPROCESSING

In this study, a dataset comprising a total of 1,493
professional-level DOTA 2 matches, from patch 7.27, were
gathered using the OpenDota API [17]. The data contains all
behavioral telemetry of each player during the matches, the
replay files are detailed enough for the game client to provide
a full replay of the matches, providing highly granular data.
The Clarity Analyzer Library was used to parse match replay
files into JSON format [18]. Spatio-temporal information was
extracted on a per-second level.

We first parsed the raw JSON data using SQL queries into
a tabular format and removed games that were only partially
recorded. The remaining data consisted of 1,456 games with
747 won by the Radiant and 709 won by the Dire. Each row
consisted of a hero action and/or performance at a certain time
within the game. This data was then fed into our team fight
detection algorithm.

V. FEATURE ENGINEERING FOR GAME PREDICTION

We detected all team fights in our data, using the team fight
detection algorithm defined and explained in Section VI-B,
and created an output table. We then joined the processed data
with the output table to label each row of the data based on
the following rules: First, if the data entry is during a team
fight, label it with a team fight number in the order the fight
happened in that specific game. For example, if it is the first
team fight that occurred in a game, label it as 1. Second, if the
data entry is not during a team fight, the label will be Null.
Once we have successfully labeled the entire data set with the
appropriate team fight number, we filtered out the rows that
were labeled as Null because we only need team fight relevant
data for our subsequent use.

Next, we aggregated the data set by team fight for each
of the 1,456 unique DOTA 2 games and summarized team
fight statistics. To build predictive models that can predict the
final winner of the game (the Radiant team or the Dire team),
we performed another level of aggregation to summarize
team fight statistics by faction. More specifically, for each
team fight, we calculated the number of hero kills, assists,
deaths, total damage dealt during a team fight, total gold
obtained during a team fight, and the number of players who
participated in the team fight for both the Radiant and the Dire
teams [19]. Besides these general statistics, we also generated
additional features from the data, that can be helpful for our
predictive models:

1) Total Crowd Control Time: The total time effects that
cause affected players to partially or fully lose control of their
heroes?.

2) Total Spell Damage: The total amount of damage that
is caused by player spells for each team.

3) Total Auto Attack Damage: The total amount of damage
that is caused by player auto attacks for each team.

4) Total Item Damage: The total amount of damage that is
caused by player items for each team.

5) Total Distance Traveled: The total displacement of each
hero in the DOTA 2 arena for each team during a team fight.

6) Number of Buildings Destroyed: The number of build-
ings on the map that deplete to zero health during a team
fight.

As we discussed in Section II Background: DOTA 2 Game-
play, players have to destroy the ancients of the opposing
team as well as the buildings protecting the ancients to win
the game. One of the goals when engaging in a large scale
team fight in a DOTA 2 match is to destroy one or more of
the enemy buildings. Thus, the number of destroyed enemy
buildings during a team fight has a strategic influence on the
final match outcome and therefore we want to include this
feature in our predictive models.

VI. METHODOLOGY

This research aims to create a model that is capable of
predicting a DOTA 2 match outcome using only features within
team fights. To achieve this goal, we first developed a team
fight detection algorithm to identify team fights. We then
utilized this algorithm to extract and aggregate features used in
our supervised prediction modeling. This section describes our
team fight detection algorithm and match outcome predictions.

A. Team Fights

Although the specific details vary across definitions, team
fights occur when players from opposing teams meet within
the arena of DOTA 2. Team fights are viewed as important to
determining the outcome of matches [9] and also form central
components of the narrative developed by commentators and
casters [2]. However, while team fights have been utilized
conceptually in multiple esports research publications [9],
[20], a formal definition has not been widely agreed upon
in the esports community [1]. In this section, we attempt to
provide a flexible, broadly applicable definition and model of
team fights that takes into account the spatio-temporal nature
of DOTA 2 as highlighted by previous work, e.g. Schubert et
al. [1] and Eggert et al. [9].

Past research utilized rules based algorithms to detect hero
encounters within DOTA 2 [1]. In our research, we referenced
this paper’s definition of encounter as the basis for our team
fight definition and constructed our approach for identifying
team fights by further enhancing the encounter detection
algorithm as described in Section VI-B Team Fight Definition.

2DOTA 2 Crowd Control - https://dota2.fandom.com/wiki/Disable



B. Team Fight Definition

We define a team fight as an encounter of player units from
both teams with one side of the encounter having at least two
players from the same team, and at least one Kkilling event
happened during the encounter. This definition filters out 1-
on-1 and 2-on-1 trades, while focusing on fights that have a
more significant impact on both teams.

We first define the two teams are 77 and 75, each with
five player units, which are represented as u;. We also define
a function called D(u;,u;) to calculate the distance of two
player units. In addition, we define a player link L(u;,u; ) to
describe the player units relationships. There are three kinds
of player links we think are essential in defining a team fight,
which are combat link, support link, and kill link.

1) Combat Link: We define a combat link as a player units
relationship where the two player units are from different
teams and the distance between them are within the general
attack range €, (700 units) of player units in DOTA 2. It is
represented as a Lc(ui7uj) where u; € T} and u; € T3 and
D(u;,uj) <= €.

2) Support Link: We define a support link as a player units
relationship where the two player units are from the same
team and the distance between them are within the general
healing range € (400 units) of player units in DOTA 2. It is
represented as a L (u;, u;) where u; € Ty and u; € Ty and
D(u;,uj) <= €.

3) Kill Link: We define a kill link as a player units
relationship where the two player units are from different
teams and one player unit kills the other player unit. It is
represented as a Ly(u;,u;) where u; € T1 and u; € T5 and
u; has killed us.

4) Encounter Component: We define an encounter com-
ponent EC; as a subset of player units where each player
unit is connected to all other units via a path that consists of
combat and support links. For an encounter component, there
should be at least one combat link and one support link, which
indicates that there are at least two player units from the same
team and at least two player units from different teams, shown
in Figure 1. An Encounter Component depicts a kind of cross-
team interaction of player units at a specific time tick ¢. We
represent an encounter component as a graph called G(U, E)
where U is a set of nodes or player units and F is a set of
edges or player links. For player units, there Ju; € U from
Ty and Ju; € U from Ty; for player links, there Je; € E is
L. and there de; € E is L.

5) Successor: We define a successor ECyia; as a sub-
sequent encounter component to a sequence of encounter
components whose last component is £'C;. The time differ-
ence between the successor and the last previous encounter
component At should not exceed a time threshold 7. And an
additional requirement is that there should Ju; € EC} from
Ty such that u; € ECiya¢ and Ju; € ECy from T5 such that
U4 S ECt+At-

6) Encounter: We define an encounter as a sequence of
encounter components where each encounter component at
time tick ¢ is a successor of a previous encounter component.

Fig. 1: Ilustration of Combat Link (red) and Support Link
(blue) during Encounter. When there exists at least one Combat
Link and at least one Support Link, the algorithm detects it
as one encounter Component [21].

An encounter is dynamic in terms of its components, since
player units can join and leave during the entire time span of
an encounter.

7) Team Fight: Finally, we define a team fight as an
encounter which contains at least one kill link, or to say
a team fight should be a special form of encounter which
involves killing activity. The reason for making this definition
is that team fights with kills are more consequential than non-
kill team fights. If someone dies in a fight, there is a clear
punishment to the team — gold and experience (XP) gain to
the other team as the most direct consequence. While there can
be many “encounters”, we believe the ones that involve killing
have a more tangible impact on the game and can provide us
with useful information for making predictions on game result.

C. Algorithm Design

After defining team fights, we followed and implemented
an algorithm outlined in the paper Esports Analytics Through
Encounter Detection [1] to automatically detect encounter
components from raw game data. We then added an extra
constraint of requiring a kill event to happen during the
encounter to classify it as a team fight.

The algorithm works by reading in a stream of player
unit positions, and at each tick, we constantly updated the
position and the distance, and identified the possible combat
components. Then, we identified the possible predecessors of
the combat components, and try to link components together
as encounters based on specific conditions described above.
Finally, we filtered out the encounters that contain one or more
kill links and identified them as team fights. A list of team fight
encounters is outputted by the algorithm.

D. Team Fight Detection Results

The output of our team fight detection algorithm given a
single DOTA 2 game is a list of team fight encounters as
defined in Section VI-C Algorithm Design. This list is a
homogeneous list of Encounter objects, i.e. the team fight
encounters that we detected from a given DOTA 2 game.
We can convert the list of team fights into an output table



as comma-separated values. The output table has N number
of rows with respect to the total number of team fights we
detected from the input DOTA 2 game. Each row has the
following attributes: team fight number (first team fight of
the game, second team fight of the game, etc.), team fight
start time and end time, a list of players who participated
in the team fight, and whether there is any death during the
team fight. We can then use the generated output table for our
predictive models.

The cleaned data were further aggregated by game, team
fight number, and team faction. The resulting data containing
the generated features discussed previously were then used
to classify the overall outcome of the match. Our approach
detected around 20 to 25 team fights in most games, with the
majority of the fights falling within the first 30 minutes.

E. Recurrent Neural Networks

We first investigated the ability of DOTA 2 team fights
in predicting match outcome through simple models: logistic
regression and random forest. However, the sequential nature
of team fights and their non-linear relationship with the overall
match outcome makes these non-deep learning models less
suitable for our purposes. Accuracy from these models did
not surpass 66%.

We then investigated the use of Recurrent neural networks
(RNN). RNN’s are a type of deep learning model that retains
the memory of previous inputs within the network’s internal
state [22]-[24]. This construction allows past inputs or contex-
tual information to influence the model’s output. This makes
RNNs some of the best deep learning algorithms to model
sequential data [25].

However, RNN models suffer from the problem of vanishing
gradients. The influence of an input would decay or explode
exponentially as the RNN model trains. To address this issue,
we have chosen to utilize two different algorithms that extend
the simple RNN model [22], [23].

1) Bidirectional RNNs: Bidirectional RNNs are a type of
RNN that allows the model to access both past and future
context. The input data sequence is fed to two separate
recurrent hidden layers that are connected to the same output
layer [22]. In terms of DOTA 2, the use of a bidirectional
construction allows the model to utilize team fight information
in the past and future. Bidirectional model constructions also
work with RNN extensions such as LSTM and GRU.

2) Long Short-Term Memory: Long Short-Term Memory
(LSTM) is a neural network that is similar to an RNN, but
replaces summation units in the hidden layers with memory
blocks, which are a type of recurrently connected subnets.
Multiplicative gates within LSTM memory cells allow the
algorithm to store and utilize information over long periods
of time [22]. LSTM is able to decide whether the content
derived from an input should be overwritten at each time step.
Thus, it is better able to retain important features over a long
distance [23].

3) Gated Recurrent Unit Networks: A gated recurrent unit
(GRU) is a recurrent unit that can adapt and capture dependen-

TABLE I: RNN model performance with all available team
fight data in training and test set

Model Type GRU1 GRU2 LSTM 1 LSTM 2
Regular 0.712 0.759 0.711 0.753
Bidirectional ~ 0.734 0.792 0.738 0.742

Note: Training sample size: 2,622. Test sample size: 290. Value
shown are the average test accuracies over 10 runs.

cies from different time scales. GRUs also have gating units
similar to LSTM, but they do not have separate memory cells.
Thus, GRUs do not control the exposure of hidden memory
content. Other units in the network can use the full content
within the memory. GRUs are simpler in design compared
to LSTM without sacrificing model performance [23]. Past
research has also revealed that GRUs require less time to train
compared to LSTM [26].

VII. RESULTS

We applied four different RNN models to our data: LSTM,
GRU, bidirectional LSTM, and bidirectional GRU. These
four models were also tested using two different architecture
variants with either one layer or two layers. All features were
standardized to between O and 1 before modeling. The model
consisted of an initial layer with 256 nodes. If the architecture
tested had two layers, the output of the first layer was then
fed into a second layer with 128 nodes. This was followed
by a fully connected layer with softmax activation. Loss was
calculated using categorical entropy with an Adam learning
rate optimizer. Early stopping was applied if the model’s
validation accuracy did not improve in 10 epochs. All models
were trained up to a maximum of 60 epochs using a batch
size of 256. Ten percent of the entire data was used as the
holdout test set. The remaining training data was further split
into training and validation sets (90:10).

We first tested all models using the complete training and
test data. Results can be seen in Table I. All eight models
were re-trained 10 times and their performance on the hold
out test set was calculated. It can be seen that the bidirectional
GRU model with two layers outperformed all other models
with an average test set accuracy of 79.2%. However, this
accuracy is achieved only with the complete training and test
data available.

DOTA 2 games can vary widely with some games filled with
frequent but inconsequential skirmishes, and others dominated
by a few game changing team fights. To ensure that our
models are not dominated by outliers, we also trained each
model on either a filtered training set or the entire training
set. All models were then compared using the holdout test set
accuracy. The holdout test set was also filtered accordingly to
simulate incomplete real time match data. This allows us to
analyze the performance of each model when limited by only
using data up to a certain point in the match. In the first part of
each analysis, we trained models using the complete training
data set, but tested them using a hold out test set that has



been filtered according to different criteria. We then trained
the same models again, but this time also using incomplete
training data filtered according to the same criteria as the
test set. The goal of this evaluation is to identify weaknesses
within the models if they were given incomplete match data
to train with. This is especially important for predicting match
outcomes immediately after patch changes to DOTA 2.

We start with the number of team fights as the filter/cut-off
criteria. In Figure 2a test data sets were filtered according to
the number of team fights. Only matches that have at least the
corresponding number of team fights will be included in the
model predictions. The eight lines within the figure are the
prediction accuracy for the test set by various RNN models.
The y-axis indicates model accuracy on the test set. X-axis
values indicate the cutoff for each model’s train and/or test
datasets, using either minutes of game time or the number
of team fights. Each model is trained and evaluated at every
data cutoff. Results revealed that by ensuring only games with
two or more team fights are used in the holdout test, the
accuracy for all models would be increased to 69% or higher.
Howeyver, this benefit does not increase if we were to limit our
predictions to only games with a high number of team fights.

In Figure 2b both training and test data sets were filtered
according to the number of team fights. Only matches that
have at least the corresponding number of team fights will
be included in the model predictions. Results revealed that
by ensuring only games with two or more team fights are
used in the holdout test, the accuracy for all models would
be increased to 73% or higher. However, this benefit did not
result in large increases if we were to limit our predictions to
only games with a high number of team fights.

Next, we evaluated each model using game time as the
cut-off criteria. Performances of the eight models tested using
team fights that started before a certain game time are shown
in Figure 2c. Performances for all eight models increased
drastically as the number of minutes increased. As more team
fight data is added into model training, accuracy changes from
lower than 50% to over 70%. Most model performances were
similar, although the two layer bidirectional GRU model had
the highest performance when all team fights up to the 32
minute mark are included for the test data. The 32 minute
mark was selected as the approximate average match time of
DOTA 2 is between 30-35 minutes.

Performances of the eight models trained and tested using
team fights that started before a certain game time are shown
in Figure 2d. Similar to the models trained using the full data
set, performances for all eight models increased drastically as
the number of minutes increased. As more team fight data is
added into model training, accuracy changes from lower than
50% to slightly over 70%. Most model performances were
also similar, but the two layer bidirectional GRU model had
the highest overall performance when team fights up to the 20
minute mark are included for both the training and test data.

Results in Figures 2a and 2c indicated that having both a
team fight number cutoff combined with a game time cutoff
would result in a model that is best able to generalize to future

matches. Thus, we conducted additional tests using test data
filtered by game time and containing at least two team fights.
Although the addition of the two team fight filter reduced the
number of available samples, this resulted in stronger initial
performance compared to Figure 2c, but similar performance
afterward until the 20 minute game time cutoff with the
requirement of also having at least two team fights. Best model
performances at 32 minutes of game time increased to over
72%. The same is also true when filtering both training and test
data by game time and by having at least two team fights. We
also tested the same model configurations but with data filtered
by game time and containing at least three team fights. The
resulting model performances were almost identical to when
the data was filtered by game time and containing at least two
team fights.

Overall, results in Figure 2 indicate that single layer models
tend to achieve higher accuracy with less data. However, two
layer models are able to provide better results as more training
and/or test data becomes available.

VIII. DISCUSSION

Match outcome prediction results revealed that RNN models
were able to predict the outcome of an ongoing DOTA 2 match.
Our results indicate that it is possible to utilize deep learn-
ing models in predicting the outcome of real-time ongoing
matches. Accurate predictions also do not necessitate the use
of all game related data, but only features related to team
fights. By leveraging only team fight performance in the first 5
minutes of a match, our models were able to achieve over 50%
accuracy in predicting final match outcome. If an additional
filter requiring a specific number of team fights to be included
were added, the model’s accuracy would improve to over 50%
using only the first 5 minutes of data.

The performance of all eight models was similar in terms
of accuracy. No model performed best in all scenarios. GRU
models, especially two layer bidirectional GRUs were able
to achieve slightly higher performance when there were more
data due to game time cutoffs. This is especially evident when
both training and test data were filtered according to game
time. However, all eight models had less than 1% difference
in accuracy when only 5 minutes of data were included. This
indicates that if ample computation resources are available,
all eight models could be used to create a more accurate
prediction. Different models should be deployed for different
stages of the game to maximize the advantages of each given
limited data. Based on our results, to achieve the highest
possible prediction accuracy, both a one layer model and a two
layer model should be employed. The one layer model would
be used to predict match outcome if less than 10 minutes
of data is available. Once the match has progressed beyond
10 minutes a two layer model, preferably a two layer bi-
directional GRU model, should be used.

The implications of our results are twofold. First, we have
established that it is possible to build a real-time prediction
system for ongoing DOTA 2 matches using RNN models only
trained on team fight data. The accuracy improves as the
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match unfolds and more team fights occur, similar to the result
obtained by Hodge et al. [6]. Although our models did not
achieve better accuracy compared to past research [6], these
results do indicate that team fights serve as an important data
point for predicting overall match outcomes.

The model presented could be repeatedly updated in real
time to provide an esports audience and/or commentator with
progressively more accurate predictions of the overall match
outcome, similar to models proposed by others, e.g. Hodge et
al. [6] and Schubert et al. [1].

Due to the varied nature of DOTA 2 matches, restricting
the model to only utilize games with up to a certain number
of team fights would result in overfitting, due to the smaller
sample size. Restricting the model to only using the features
within a certain number of fights would also result in lower
accuracy. This implies that it does not matter how many team
fights a match contains, what matters are the features within
the fights, the match time at which they are fought, and the
order they are in.

A limitation of our research is the exclusive use of aggre-
gated data. By aggregating all team fight performance data
to the faction and team fight level, we were able to ensure
that our models were trained efficiently. However, a more
granular approach to the modeling, by focusing on player level

performance could potentially increase the overall accuracy of
our model [6], [11], [12], [19].

Previous prediction models, to the best knowledge of the
authors, did not integrate team fights as a factor. As shown
here, team fights alone provide a signal for match prediction,
and therefore appear to be a contender for inclusion in match
prediction models as a novel feature. Therefore, to improve
match prediction models in esports analytics, a potential venue
for future exploration could be the integration of both in-game
player team fight performance with traditional performance
statistics [6]. Another area that could be explored to enhance
prediction systems are player physiological characteristics
[27]. This could be further expanded upon through the use of
identification of players/heroes with exceptional contributions
within team fights. By leveraging player role identification and
individual player performance to enhance our existing models
[11]. The influence of team hero combinations could also be
added to enhance the performance of our models [12].

IX. CONCLUSION AND FUTURE WORK

In this research, we identified and defined the core concept
of team fights in DOTA 2 esports, and show that team fights
are an important element of an esports match that can be a
decisive factor of match outcome. We utilized data from team
fights in the esports game DOTA 2 to explore the potential



use of team fight information in real-time match prediction
models in such multi-player online battle arena games. We
then employed the resulting data to train eight different types
of RNN models to predict overall match outcome. Our models
were able to achieve an accuracy of over 70% when including
all team fight data up to 32 minutes into a match. Model
performances were over 50% when trained on the first 5
minutes of each match and the game having at least 2 team
fights. These results indicate that team fights alone contain
a signal useful for predicting match winners. As would be
expected, model performance in a team fight-based prediction
model increases as more match time elapses. By adding our
team fight model to existing prediction models, such as Hodge
et al. [6] it is possible to further increase performance and
accuracy. Future studies could thus extend previous work, and
the work presented here, by integrating team fights data with
player level performance features [6], [12], [27], hero role
identification [11], and individual player performance [19].
Furthermore, the deep learning models presented here can
be utilized in real-time, allowing commentators to note the
impact of each team fight on the overall match outcome. To
implement this approach for real-time use, we could embed
the team fight prediction model to existing platforms such
as Echo [2], a production tool that can monitor data from
a live match. Esports commentators can easily tell whether
a team fight happens, but it requires years of experience
to understand the impact of each team fight and convey it
clearly to audiences [2]. Integrating the team fight prediction
model with production tool like Echo allows the commentators
to display the potential consequences of each team fight to
the audience directly. Currently, there is no quantitative way
for measuring the influence each team fight has over the
whole match. Our models, by solely leveraging team fight
information, allow any prediction updates in live matches
to be a direct reflection of the last team fight. Hence, the
focus on only team fight information allows the RNN model
predictions to be intimately tied to game context, which makes
any changes to the predicted overall match outcome easily
interpretable by commentators and audiences alike.
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