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Abstract—This paper describes an AI agent that plays the
modern first-person-shooter (FPS) video game ‘Counter-Strike;
Global Offensive’ (CSGO) from pixel input. The agent, a deep
neural network, matches the performance of a casual human
gamer on the deathmatch game mode whilst adopting a human-
like play style. Much previous research has focused on games with
convenient APIs and low-resolution graphics, allowing them to be
run cheaply at scale. This is not the case for CSGO, with system
requirements orders of magnitude higher than previously studied
FPS games. This limits the quantity of on-policy data that can be
generated, precluding pure reward-driven reinforcement learning
(RL) algorithms. Our solution uses a two-stage behavioural
cloning methodology; 1) Pre-train on a large dataset scraped from
human play on public servers (5.5 million frames or 95 hours)
where actions are labelled in an automated way. 2) Fine-tune
on a small dataset of clean expert demonstrations (190 thousand
frames or 3 hours). This scale is an order of magnitude larger
than prior work on imitation learning in FPS games, whilst being
far more data efficient than pure RL algorithms.

Index Terms—AI, behavioural cloning, reinforcement learning

Video introduction: https://youtu.be/rnz3lmfSHv0
Code, model & datasets: https://github.com/TeaPearce

I. INTRODUCTION

Deep neural networks have achieved strong performance
in a variety of video games; from 1970’s Atari classics, to
1990’s first-person-shooter (FPS) titles Doom and Quake III,
and modern real-time-strategy games Dota 2 and Starcraft II
[4, 17, 20, 24, 32]. Such systems typically succeed by running
deep reinforcement learning (RL) algorithms at a massive scale
– for instance, an actor-critic algorithm used 10,000 years of
experience to master Dota 2.

Games without convenient APIs, that can’t be run easily at
scale, have received less research attention. Without access to
mass-scale simulations, one is forced to explore more efficient
algorithms. In this paper we take on such a challenge; building
an agent for Counter-Strike: Global Offensive (CSGO), with
no pre-existing API, and modest compute resources (4×GPUs
for training, 1×GPU at test time, and a single game terminal).

Released in 2012, CSGO is one of the world’s most popu-
lar games in player numbers and audience viewing figures.
The computational requirements of CSGO are an order of
magnitude higher than the FPS games previously studied. For
instance, while Doom can be run at 7000 frames-per-second
on a single CPU [33], CSGO runs at 200 frames-per-second
on a modern GPU.

CSGO’s constraints preclude mass-scale on-policy rollouts,
and demand an algorithm efficient in both data and compute,

which leads us to consider behavioural cloning. Whilst prior
work has applied this to various games, demonstration data is
usually limited to what authors provide themselves. Playing
repetitive game modes at low resolution means these datasets
remain small (one to five hours – section II), producing agents
of limited skill-level.

Our work takes advantage of CSGO’s popularity to record
data from other people’s play – by joining games as a spectator
and scraping screenshots and inferring actions. This allows
us to collect a dataset an order of magnitude larger than in
previous FPS works, 5.5 million frames or 95 hours. We use
a two-stage approach; initially training a deep neural network
on this large noisy dataset, then fine-tuning it on smaller clean
expert demonstrations. The resulting agent can play the game
with a skill-level around that of the medium-difficulty built-
in bot (the rules-based AI available as part of CSGO), or
equivalently, a casual human FPS gamer.

Whilst RL research often aims to maximise reward, we
emphasise that this is not the exclusive objective of this paper –
perfect aim can be achieved through simple geometry and ex-
tracting enemy locations (hacks and built-in bots exploit this).
Rather, we aim to produce an agent that plays in a humanlike
fashion, that is fun and challenging to play with and against.

This paper makes several contributions: 1) Provides a
blueprint for building data and compute efficient agents for
modern games. 2) Proposes a two-stage behavioural cloning
approach. 3) First major work on a modern FPS game,
and largest-scale behavioural cloning effort in this genre. 4)
Introduces the CSGO environment to the AI community.

Fig. 1. Overview of the agent’s architecture. Deathmatch mode shown.



II. RELATED WORK

FPS games have proven to be useful environments for
RL research [26]. Two 1990’s games have been packaged in
convenient APIs. Beattie et al. [3] released DeepMind Lab,
built around Quake 3 (originally 1999), and Kempka et al.
[19] introduced VizDoom (originally 1993). These environ-
ments are basic in comparison to CSGO (originally 2012 and
continuously updated), using low resolution textures, a smaller
action space, and orders of magnitude less compute – e.g.
VizDoom allows simulation at 7000 frames-per-second on a
single CPU core [33], whilst CSGO runs at around 200 frames-
per-second on a modern GPU.

These FPS environments have attracted much research,
many applying standard reward-based learning such as actor-
critic methods or Q-learning, e.g. [17, 20]. Several efforts have
trialled behavioural cloning, with demonstration datasets of
around one hour [9, 13, 18] (table I). There have also been
explicit efforts toward building humanlike agents [10, 15]. Our
work stands out both as the first to tackle a modern FPS, and
as the largest-scale effort in behavioural cloning.

Imitation learning has been explored in other genres most
often at small scale (1-5 hours – table I), with authors
recording demonstration data themselves. There are several
notable exceptions; Go (30 million frames) [30], Starcraft II
(971,000 replays) [32], and Minecraft [11] (500 hours). Using
these larger datasets reasonable performance could be achieved
(e.g. Vinyals et al.’s agent acheived a rank in the top 16% of
human players), and they have inspired much follow up work.
We hope the dataset we contribute in the CSGO environment
will be valued similarly.

The computational difficulty of generating on-policy data
for CSGO makes the blossoming field of offline RL [22]
very relevant, where there has been recognition that leveraging
existing datasets for tasks typically tackled through pure RL
could greatly improve efficiency. Benchmarks and datasets in
offline RL are often algorithmically generated [8] – this has
found particular favour in Atari games [1]. We hope our large-
scale human demonstration dataset might find use in this field.

Relatively little research effort has been applied to Counter-
Strike, likely due to there being no API to conveniently
interface with the game, and difficulty in mass roll-outs.
Relevant machine learning works include predicting enemy
player positions using Markov models [16], predicting the
winner of match ups [23], and tuning bot hyperparameters
using genetic algorithms [7]. It has also been studied from
various societal and cultural perspectives, e.g. [12, 27]. Ours
is the first work to build an AI from pixels for CSGO.

III. BACKGROUND

This section describes the CSGO environment, and briefly
outlines behavioural cloning.

A. CSGO Environment

CSGO is played from a first person perspective,
with mechanics and controls that are standard across
FPS games – the keyboard is used to move the player

TABLE I
COMPARISON WITH PRIOR WORK USING IMITATION LEARNING IN GAMES.

Citation Game FPS? Dataset size From pixels?

[13] In-house game 3 0.75 hours 3
[9] Quake 2 3 1 hour 7
[18] Various incl. Doom 3 0.75 hours 3
[6] Super Mario Smash Bros 7 5 hours 3
[14] Atari 7 1 hour 3
[5] NecroDancer 7 1.5 hours 3
[32] Starcraft II 7 4,000 hours 7
[30] Go 7 30 million frames 7
[11] Minecraft 7 500 hours 3
Our work CSGO 3 95+3 hrs 3

left/right/forward/backwards, while mouse movement turns
the player horizontally and vertically, serving both to look
around and aim weapons. In CSGO’s full ‘competitive
mode’, two teams of five players win by eliminating the
opposing team, or completing an assigned objective. Success
requires mastery of behaviour at three time horizons; In the
short term an agent must control its aim and movement,
reacting to enemies. Over the medium term the agent must
navigate across map regions, manage ammunition and react
to its health level. In the long term an agent should manage
its economy, plan strategies, adapt to opponents’ strengths
and weaknesses and cooperate with teammates.

As the first attempt to play CSGO from pixel input, we do
not consider the full competitive mode. Instead we focus on
two simpler modes, summarised in table II. All CSGO game
modes are partially observable, stochastic environments.

‘Aim training mode’ provides a controlled environment for
players to improve their aim, recoil control and reaction speed.
The player stands fixed in the centre of a visually uncluttered
map, while unarmed enemies run toward them. Players cannot
take damage, and ammunition is unlimited. This constitutes
our simplest environment.

‘Deathmatch mode’ rewards players for eliminating any
enemy on the opposing team (two teams, ‘terrorists’ and
‘counter-terrorists’). After dying a player revives at a random
location. Whilst it does not require the long-term strategies of
competitive mode, other elements are intact. It is played on the
same maps, with the full variety of weapons available. Am-
munition must be managed, and the agent should distinguish
between teammates and enemies.

We consider three difficulty settings of deathmatch mode,
all on ‘dust2’ map, the agent on the terrorist team and ‘AK47’
equipped. 1) Easy – built-in bots on easy mode, bots use
pistols, reloading not required, 12 vs 12. 2) Medium – built-
in bots on medium difficulty, any weapon, reloading required,
12 vs 12. 3) Human – human players, any weapon, reloading
required, 10 vs 10.

B. Behavioural Cloning

In behavioural cloning (a form of ‘imitation learning’) an
agent learns to mimic the action, a ∈ A, a demonstrator
would take given some observed state, o ∈ O. Typically the



TABLE II
TIME HORIZON REQUIRED FOR SUCCESS IN EACH GAME MODE.

Short-term Medium-term Long-term
Game mode Reactive & control Navigation & ammo Strategy & cooperation

Aim training 3 7 7
Deathmatch 3 3 7
Competitive 3 3 3

agent, parameterised by θ, outputs a probability distribution
over possible actions, πθ(â|o).

Learning is based on a dataset of the demonstrator’s be-
haviour. For N such pairs, D = {{o1,a1} . . . {oN ,aN}}. In
its vanilla form, behavioural cloning uses some loss function,
l : A × A → R (e.g. cross-entropy or mean squared error),
measuring the distance between predicted and demonstrated
actions, and a model is trained to optimise,

θ = argminθ

N∑
i

l (ai, πθ (âi|oi)) .

(Though either oi or πθ could be modified to use more
information than just the current timestep.)

Behavioural cloning reduces learning a sequential decision
making process to a supervised learning task. This can be a
highly efficient method for learning [2], since an agent is told
exactly how to behave, removing the challenge of exploration
– in reward-based learning an agent experiments to learn
strategies by itself.

One drawback is that the learnt policy can only perform as
well as the demonstrator (and in practise may be worse since
it is only an approximation of it). A second is that often only
a small portion of the state space will have been visited in
the demonstration dataset, but due to compounding errors, the
agent may find itself far outside of this [21, 28] – there is a
distribution mismatch at test time, pD(o) 6= pπθ

(o).

IV. AGENT DESIGN

This section details the major design decisions of the agent.

A. Observation Space

CSGO is typically run at a resolution of 1920×1080, which
is larger than most GPUs can process at a reasonable frame
rate. There is a trade-off between resolution, field-of-view,
size of neural network, frames-per-second, GPU requirements
and training dataset size. For instance, a lower resolution
compromises the agent’s skill in longer-range firefights but
might allow a deeper neural network to run at more frames-
per-second.

In this work the game is run at 1024×768 resolution, and the
agent crops a central region of 824×498, then downsamples it
to 280×150. This allows state-of-the-art network architectures
to run at 16 frames-per-second on an average gaming GPU.

Auxiliary Information. The cropped pixel region usefully
excludes several visual artefacts which appear in spectator
mode but not when actively playing. It also excludes the
radar map, score feed, clock, health level and ammunition.

We experimented providing some of these in vector form to
the network, but found they were not critical to performance,
and excluded them to simplify the design. As such, the agent
has no direct knowledge about its health or ammo level.

B. Action Space

We simplify the agent’s actions space to those essential for
a reasonable level of play as per figure 1. It excludes other
actions such as the ‘walk’ key. We faced two main design
challenges:

1) How to model the continuous mouse space. The
agent parametrises mouse movement by changes in x & y
coordinates. If treated as continuous targets and combined with
a mean squared error loss, this led to undesirable behaviour
(given a choice of two pathways, the agent outputs a point
midway between the two) [25]. Discretising the mouse space
and framing it as a classification task was more successful.

The discretisation itself required tuning and experimentation
– a finer grid allows more precise control but requires
more data to train. The agent uses an innovative
unevenly discretised grid, finer in the middle, and
coarser at the edges – 19 options for mouse x
∈ {−300,−200, ...,−10,−4,−2, 0, 2, 4, 10, .., 200, 300},
and 13 options for mouse y ∈
{−50, ...,−10,−4,−2, 0, 2, 4, 10, .., 50}. This reflects
that it’s more important for a player to be able to make
fine adjusments when aiming, compared to when turning
large angles, and also that vertical movements tend to be of
lower magnitude than horizontal movement. Histograms of
mouse movements in human play in figure 2 also justify this
choice, since the majority of mouse adjustments are of low
magnitude.

2) How to model actions that are mutually inclusive.
It’s possible that a player might reload, jump and turn left
simultaneously. To allow this, independent losses are used
for each action – binary cross entropy losses for keys and
clicks, and multinomial cross entropy losses for each mouse
axis. As such the agent outputs the marginal distribution of
each action rather than the joint distribution, i.e. it assumes
that each action is independent of all others. This simplifying
assumption worked adequately well empirically, though in
specific situations it may be harmful – for instance if choosing
to step left and reload behind cover, or remain static and fire.
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Fig. 2. Mouse movement histograms in the online dataset. Note mouse x has
a larger variance than mouse y. Dashed lines overlaid show discrete options
output by the agent.



C. Neural Network Architecture

The agent’s architecture is summarised in figure 1. An
EfficientNetB0 [31] forms the trunk of the network, ini-
tialised with ImageNet weights. We use only the first six
residual stages to avoid losing too much spatial information
about the input via additional pooling layers. For an input
of 280×150×3, a feature map of dimension 18×10×112 is
output.

To allow the agent to sense motion of itself and others,
we employ a convolutional LSTM layer [29]. Initial exper-
iments indicated that a stacked sequence of inputs was a
less promising approach. A linear layer connects the output
layer, followed by either a softmax (for mouse x, mouse y) or
sigmoid (for w, a, s, d, fire, reload, jump).

D. Test Time

The agent parameterises a probability distribution over each
action independently. Combinations of actions may be applied
at every time step. At test time, each action can either be
selected probabilisitically ã ∼ πθ(â|o), or according to the
highest probability, ã = argmaxâπθ(â|o).

Selecting movement keys and mouse movement probabil-
isitically produced jerky, unnatural movement, so are selected
via argmax. Certain actions – reload, jump, fire – seldom
exceed the 0.5 threshold required to be chosen by argmax,
so are selected probabilistically.

With actions being applied 16 times a second, mouse
movement can appear stilted. This can be artificially increased
to 32 by halving the mouse input magnitude and applying
twice with a short delay.

V. METHODS & DATA

This section introduces the methodology used for training
the agent, describes collection of the demonstration datasets,
and summarises some training details.

A. Two-Stage Methodology

One of the difficulties of using behavioural cloning in many
applications is that sourcing a large dataset of demonstrations
is generally time-consuming and/or costly. Much of the lit-
erature in video games manually records demonstrations by
using a specially set up machine to log key presses and mouse
movements, but this results in small datasets (repetitive game
modes in low resolution are no fun!) and systems of limited
performance (table I).

Prior work in Starcraft II showed that reasonable perfor-
mance can be achieved through behavioural cloning, provided
one has access to a dataset of sufficient size [32]. Whilst
Vinyals et al. worked alongside game developer Blizzard,
having access to a large dataset of logged states and actions,
for many games such access is not possible.

In lieu of such privileges, we developed a two stage method.
In stage one, we scrape a large dataset of human play from
public online servers. We do not have access to the ground
truth actions applied by the player, and instead build an inverse
dynamics model to estimate these actions from metadata. This

is used for pre-training a neural network. In stage two, we
manually create small clean datasets that the network is fine-
tuned on. The clean datasets have several advantages that
drastically boost performance.
• Recording gameplay allows clean labelling of the actions.
• We restrict the demonstrator’s action and observation

space to match that of the agent.
• There are minor differences in the visuals rendered by the

game when viewing players in spectator mode, compared
to actively playing, e.g. red damage bar indicators are not
displayed in the former.

• The online dataset contains a large variety of play styles
and equipment choices. The clean dataset allows the
network to specialise to a single high-skill policy.

Combining two datasets in this way allows the agent to
learn from the broad state-space coverage in the online dataset,
without compromising on the quality of the final policy. The
quantity of manual demonstrations required is an order of
magnitude smaller than if exclusively trained on.

Note that we have taken steps to anonymise datasets, exclud-
ing player handles from the metadata. We have communicated
directly with CSGO’s developer Valve about the sharing of the
datasets and code from this paper, which has been approved
in a research context.

B. Large-Scale Online Demonstrations

This dataset was scraped from official Valve servers by
joining in spectator mode, and running a script both to capture
screenshots (processed as in section IV) and metadata at 16
frames-per-second. In total the dataset was 680GB / 95 hours
/ 5,500,000 frames. Note the naming of this dataset as ‘online’
refers to the source being online Valve game servers, and not
to the offline/online learning paradigms in RL. We defer details
around interfacing with the game to the code repository.

The script tracked the current best performing player in the
server to collect higher-skill demonstrations. Periods of player
immobility were filtered out in post-processing.

Metadata does not contain the actions that were applied
by the player. Rather, it contains information about the
player state (e.g. weapon selected, available ammunition,
health, score), position on map (x, y, z coordinates), ve-
locities, and orientation (roll and yaw). Letting m repre-
sent this metadata, the dataset can be denoted, Donline =
{{o1,m1} . . . {oN ,mN}}.

We developed a rules-based algorithm for the inverse dy-
namics model, āi = f(mi−1,mi,mi+1). Whilst some actions
were straightforward to infer (e.g. firing is detected if am-
munition decreased between two time steps). Others required
testing and tuning. For instance, inferring keys moving a player
forward/backwards/left/right, is an ill-posed problem – there
can be many other reasons for a change in velocity, such
as weapon switching (heavy weapons makes players move
slowly), bumping into objects, or taking damage. There were
also inconsistent time lags between an action’s application, its
manifestation in the metadata, and observing the change on
screen. See dm infer actions.py for the full algorithm.



We tuned the inverse dynamics model until it was able to
infer actions in most scenarios tested. Whilst this required
a significant reverse-engineering effort, the value was in its
scalability – once written it could scrape gameplay continu-
ously for days at a time, providing a quantity and variety of
demonstrations that we couldn’t produce manually.

C. Clean Expert Demonstrations

We created two clean datasets using a terminal set up
to precisely log actions and take screenshots, one for the
deathmatch game mode and one for the aim train mode. These
datasets were 24GB / 3.3 hours / 190,000 frames and 0.8 hours
/ 6GB / 45,000 frames respectively.

We used a strong human player to provide the data (top
10% of CSGO players, ‘DMG’ rank). This player was only
allowed to use actions the agent can output. The game was
run at 1024×768 resolution. The audio was muted and radar
covered up to mimic the agent’s observation space. For some
of the demonstrations in easy and medium mode, we slowed
the game to half speed (dropping the capture rate accordingly)
to further improve the quality of the demonstrations.

D. Training Details

The agent is initially trained on the online dataset (val-
idating on medium deathmatch mode every two epochs).
From this pre-trained checkpoint, fine-tuned versions were
created by further training on one of the the clean expert
datasets (validating on the relevant map and mode every four
epochs). A batchsize of 4 and sequence length of 96 frames
(6 seconds) were used (LSTM states are reset between each
sequence). Data augmentation was applied to image brightness
and contrast, but not to spatial transformations, since this
would invalidate mouse labels.

In addition to the losses discussed, the agent outputs and
optimises a value function estimate (vt = rt + γvt+1, where,
rt = 1.0 killst−0.5 deathst−0.02 shoott, for binary indicator
variables, killst, deathst, shoott). This may have the effect of
providing extra supervision as an auxiliary task. In this paper
the value function estimate is not used for any further purpose.

Ten different models were trained on the online dataset un-
der various hyperparameter settings. Training for each model
used 4× Titan X GPUs – time for one epoch on the online
dataset varied from 1 to 8 hours, dependent on the data subset
and architecture used. Models trained for between 10 and 30
epochs. Fine-tuning on the clean deathmatch dataset took 15
minutes per epoch, typically requiring 12 to 32 epochs.

VI. EVALUATION

This section evaluates the agent in two ways: 1) Measuring
the score it achieves relative to both human players and the
built-in rules-based bot. 2) Assessing the ‘humanlike-ness’ of
the agent’s play style, done both qualitatively and also by
quantitatively analysing its map coverage.

Gameplay examples are shared at: https://youtu.be/
KTY7UhjIMm4. Clips were selected by running the strongest
agent on each game mode and setting for five minutes, and

selecting a one minute segment from each which showcases
the agent’s skill. The video further includes: illustrations of
the the agent’s common failures, a longer unedited clip of the
agent on the medium setting, a longer unedited clip of the
agent navigating in an empty map. Code to run the agent is
provided in the repo.

A. Hyperparameter Search
We trained multiple versions of the agent on the online

dataset varying several hyperparameters: 1) Adding an extra
LSTM layer (256 units) after the convolutional LSTM. 2)
Applying dropout to recurrent connections. 3) Training on
different subsets of the data; as well as training over the full
dataset, we also considered only sequences where the AK47
was equipped, and only sequences where the AK47 or M4A1
was equipped. 4) We optionally undersampled sequences
where a player did not score a kill (‘non-scoring’).

B. Agents & Baselines
The best performing agent trained only on AK47 data,

undersampled non-scoring sequences with a probability of 0.4,
used recurrent dropout, and had no extra LSTM layer. This is
termed ‘online agent’. This online agent was then fine-tuned
on the clean datasets, producing ‘fine-tuned dm agent’ and
‘fine-tuned aim agent’.

We include several baselines. 1) Built-in Bot (easy) – the
bots played against in the deathmatch easy setting. 2) Built-in
Bot (medium) – the bots played against in the deathmatch
medium setting. 3) Human (Non-gamer) – someone with
little experience playing games. 4) Human (Casual gamer) –
a regular player of video games, with a small amount (<100
hours) of CSGO experience. 5) Human (Strong) – a player
ranked in the top 10% of regular CSGO players (‘DMG’
rank). All humans play at full 1920×1080 resolution, and
are assessed over 5 minutes (aim train mode) and 10 minutes
(deathmatch modes) of play. Longer periods resulted in fatigue
and decreased performance.

C. Main Results
Table III displays results of the best performing agents. We

report two metrics; kills-per-minute (KPM) and kill/death ratio
(K/D) – higher is better for both. For each game mode and
setting we report the mean and one standard error over eight
episodes of 10 minutes, restarting the game at least three times
within these eight episodes to randomise the opponents.

Aim train mode: The fine-tuned aim agent’s performance
is in line with the casual gamer’s (note K/D is not applicable
to this mode since the agent cannot take damage). The agent
demonstrated good accuracy and recoil control, prioritising
enemy targets sensibly, and anticipating their motion. Aim
train mode required less clean training data than deathmatch
for good performance (45 minutes vs 190 minutes) – this
is because it is a visually simpler environment and requires
behaviour over short time horizons only (table II). The online
agent was able to somewhat generalise to the new environ-
ment, although it was unfamiliar with the specific movement
patterns of enemies.



TABLE III
MAIN RESULTS. METRICS ARE KILLS-PER-MINUTE (KPM) AND KILLS/DEATH RATIO (K/D). HIGHER IS BETTER. MEAN ± ONE STD. ERROR.

————————————— Deathmatch —————————————
Aim Train —– Easy —– —– Medium —– —– Human —–

KPM KPM K/D KPM K/D KPM K/D

Dataset used
Online dm 4.31 ± 0.20 3.47 ± 0.12 2.70 ± 0.26 2.23 ± 0.26 1.04 ± 0.06 0.68 ± 0.13 0.22 ± 0.03
Online dm + Clean aim/dm 26.86 ± 0.39 5.06 ± 0.31 3.87 ± 0.24 3.72 ± 0.25 2.09 ± 0.19 1.43 ± 0.17 0.59 ± 0.09
Baselines
Built-in Bot (easy) – 2.11 1.00 – – – –
Built-in Bot (medium) – – – 2.41 1.00 – –
Human (Non-gamer) 14.32 4.25 1.80 2.38 0.90 0.75 0.27
Human (Casual gamer) 26.21 4.20 4.20 3.51 2.48 1.64 0.64
Human (Strong CSGO player) 33.21 14.00 11.67 7.80 4.33 4.27 2.34

Deathmatch mode: The fine-tuned dm agent outperforms
the built-in bot, both on easy and medium settings, roughly
matching the performance of the casual gamer. The agent
navigates around the majority of the map well, identifying
and reacting to enemies reliably, and distinguishing them
from teammates. It also chooses sensible moments to reload.
Moving from the online agent to the fine-tuned agent improves
KPM by around 45%, showing the importance of converging
on a single high-skill policy. However, a performance gap
remains between the agent and strong human.

D. Humanlike Assessment

This paper is not exclusively interested in the score-based
performance of the agent. Another key goal of agent design
in video games it to build humanlike agents. One of the
advantages of using behavioural cloning is that the agent natu-
rally adopts humanlike traits. Measurement of this humanlike
quality is less straightforward, and we qualitatively discuss
traits observed during testing – behaviours that are common
to human players, but not seen in the built-in bots. The agent’s
map coverage is then quantitatively analysed. Future work
might provide further analysis through Turing-style tests with
human observers and players.

Humanlike traits: The agent’s mouse movement mimics
that of a human, pausing mid-turn as if the mouse had
reached the edge of the mouse pad. The agent’s navigation is
quite humanlike, often running along ledges or jumping over
obstacles. In certain areas it will jump to spot an occluded area.
The online agent sometimes exhibits playful quirks, such as
firing at chickens or ‘bunny-hopping’. The fine-tuned dm agent
occasionally employs higher-skill behaviours, such as moving
behind cover when reloading, or strafing during fire-fights.

Non-humanlike traits: The agent makes several mistakes
humans do not. It’s memory is poor – if an enemy disappears
behind cover it quickly forgets about it. (This still occurred
after adding an extra LSTM layer.) It also does not pick up
on ‘second-order clues’ about where enemies may be (e.g.
teammates firing in some direction). It is poor at aiming
vertically. In one region of the map that is rarely visited
by human players (bottom left in figure 3) its navigation is
poor. Occasionally (once in 10 minutes) the agent gets into a
position it can’t recover from.

There are several more understandable limitations. The
agent only receives the image as input, so has no audio clues
that humans react to (shots being fired, or enemy footsteps).
It also rarely reacts to red damage bar indicators.

Quantitative Map Coverage Analysis. To quantitatively
assess the similarity of the agent to human play, we track
the x & y coordinates of the agent playing on the medium
deathmatch mode for 100 minutes. We discretise the map on
a 60×60 grid, and count the amount of time spent in each box.
This distribution is compared to human play in the online and
clean datasets, as well as the built-in bot.

We consider two versions of the agent; one trained over
the full dataset and one subsequently fine-tuned on the clean
dm dataset. Figure 3 shows map coverage heatmaps for each
policy. One first observes that the agent’s histograms mimic the
routes taken by human players more closely than the built-in
bots. Secondly, the online dm agent’s coverage is most similar
to that of the online dataset, while the coverage of the agent
fine-tuned on the clean dataset is most similar to the clean dm
dataset. These observations are quantified in table IV, where
similarity between pairs of distributions is computed via the
Earth mover’s distance.

Online dataset Online dm agent Medium built-in bot

Clean dm dataset Fine-tuned dm agent Medium built-in bot

Fig. 3. Map coverage heatmap for agent, built-in bot, and human datasets.
Note the agent’s coverage mimics the data it’s trained on. Quantitatively this
is captured by the ‘Earth mover’s distance’ between each distribution as in
table IV.



TABLE IV
DIFFERENCE BETWEEN DISTRIBUTIONS SHOWN IN FIGURE 3. EARTH

MOVER’S DISTANCE, LOWER IS MORE SIMILAR.

Online dm Clean dm Online agent (full) Fine-tuned agent Built-in Bot

Vs. Online dm 0.000 0.977 0.447 0.941 0.624
Vs. Clean dm 0.970 0.000 0.533 0.349 0.643

E. Ablations on Data Size and Pre-training

Ablations were run to study the benefit of pre-training on the
online dataset, compared with training models from scratch on
the clean deathmatch dataset. These experiments were applied
to the agent trained over the full online dataset. Using three
choices of weight initialisation, {random, ImageNet, online
dataset pre-training}, we fine-tuned on varying amounts of
clean demonstration data; {1, 2, 3} hours. Results are shown
in figure 4.

Whilst using the weights from ImageNet improved over
random initialisations, there is a large benefit to using weights
pre-trained on the online dataset – extrapolating the curves in
the figure suggest around 20 hours of clean expert data would
be needed to match the performance of the pre-trained model
fine-tuned on just 2 hours of clean expert data.

VII. DISCUSSION & CONCLUSION

This paper presented an AI agent that plays the video game
CSGO from pixels, matching the skill-level of a casual human
gamer. It is the first effort to tackle a modern FPS game, and
is amongst the largest-scale works in behavioural cloning in
any genre to date.

Whilst the AI community has historically focused on real-
time-strategy games such as Starcraft, we see CSGO as an
equally worthy test-bed, providing its own unique mix of
control, navigation, teamwork, and strategy. Its large and
long-lasting player base, as well as similarity to other FPS
titles, means AI progress in CSGO is likely to attract broad
interest, and also suggests tangible value in developing strong,
humanlike agents.

Although an inconvenience to researchers, CSGO’s inability
to be simulated at scale arguably creates a challenge more
representative of those in the real-world, where RL algorithms
can’t always be run from a blank state, and even evaluating
agents can be a costly process. This paper has defined several
game modes of varying difficulty, and had a first attempt at
solving them with behavioural cloning. We share our code
and datasets to encourage other researchers to partake in this
environment’s challenges.

There are many directions in which our research might
be extended, such as applying more advanced methods from
imitation learning or offline RL, or integrating with reward-
based learning. More ambitiously, there’s the challenge of
taking on CSGO’s full competitive mode – we see our paper
as a step toward that AI milestone.
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Fig. 4. Ablation of initialisation point and amount of clean expert data.
Medium difficulty deathmatch over 10 episodes of 10 minutes. Mean ± one
standard error.
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