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Abstract—Game consists of multiple types of content, while the
harmony of different content types play an essential role in game
design. However, most works on procedural content generation
consider only one type of content at a time. In this paper, we
propose and formulate online level generation from music, in
a way of matching a level feature to a music feature in real-
time, while adapting to players’ play speed. A generic framework
named online player-adaptive procedural content generation
via reinforcement learning, OPARL for short, is built upon
the experience-driven reinforcement learning and controllable
reinforcement learning, to enable online level generation from
music. Furthermore, a novel control policy based on local search
and k-nearest neighbours is proposed and integrated into OPARL
to control the level generator considering the play data collected
online. Results of simulation-based experiments show that our
implementation of OPARL is competent to generate playable
levels with difficulty degree matched to the “energy” dynamic of
music for different artificial players in an online fashion.

Index Terms—Procedural content generation, online level gen-
eration, player-adaptive, EDPCG, EDRL

I. INTRODUCTION

Human perception is multi-modal. Digital games, as an
emerging creation field, lies in the intersection of multiple
types of content that meet different aspects of human percep-
tion, has the ability of expressing stories, emotions or aesthet-
ics, and satisfying human’s natural entertainment demand [1],
[2]. A successful game should guarantee the harmony of dif-
ferent types of content. Procedural content generation (PCG)
[3]–[6], aiming at the automated or mixed-initiative creation
of game contents, such as levels, maps, musics, rules and
narratives, has shown its potential to reduce game development
costs, augment the creativity of individual human creators,
and provide personalised game contents [2], [6]. There have
been extensive researches in generating a single type of game
content [2], [6], while only a few works considered generating
one type of content driven by another [7]–[9]. Procedurally
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Fig. 1: Illustration of online level generation from music.
Widths of interval between grey dashed lines correspond to
the time consumed to play through a segment. This figure is
plotted based on the data of simulation-based experiments of
this paper (detailed in Section V). The segment-wise difficulty
degrees are closed to the ideal difficulty curve in black colour,
which is converted from the input music’s energy. Moreover,
the level generation is adapted to the specific player’s play
speed in real-time.

generating a complete game of several content types is an
emerging topic [6], [10]. For instance, AudioInSpace [10]
generated game rules, visuals and audio in a mix-initiative
way. The aforementioned works [1], [7]–[10] mainly focused
on puzzle games, shooting games and rhythm games.

In this work, we focus on platformer games, in which levels
and music together affect the player experience. We investigate
into level generation from music, ideally to be achieved in an



online fashion for some games, assuming that the play experi-
ence should be consistent with the current music. For example,
if the music in a platformer game is intense or nervous, the
appeared level segments should be more difficult to match
the atmosphere created by music. Some commercial games,
such as Dance Dance Revolution (Konami, 1998), Guitar Hero
(RedOctane, 2005) and Muse Dash (PeroPeroGames, 2018),
directly force the gameplay to be consistent with music by
designing specific game rules. However, for most games of
other genres, it’s hard to generate levels from music because
the rhythm of playing a level depends on the player’s play
speed and thus not fixed, which will result in the failure of
matching a level to music in an offline or player-unaware
way. Fig. 1 illustrates why the play speed affects the online
generation of level from music. The level segments on top
and bottom are played by different artificial players at the
same time window but have different length as the players
played the levels in different speed. Moreover, the generation
system should determine the difficulty degree of the next level
segment in real-time to make sure that the segment will be
played at the best-matched time slice. Therefore, online and
player-adaptive level generation from music is desired.

In this paper, a framework for online level generation
from music named online player-adaptive procedural content
generation via reinforcement learning, OPARL for short, is
proposed. OPARL follows a controller-generator architecture.
The generator takes the current level segment and a music
feature as input and outputs a new level segment with fea-
ture matched to the input at each iteration. When OPARL
generates a level segment from music, the generator is con-
trolled by a novel policy named local search with k-nearest
neighbours based estimation (LS-KNN) which takes historical
play data into account to produce the targeted feature value
that minimises an inner error respect to an ideal feature
sequence derived from the given music’s temporal feature
sequence (detailed in section III). The controllable generator
is extended from the experience-driven procedural content
generation via reinforcement learning (EDRL) [11] framework
by leveraging controllable reinforcement learning [12], [13].
The proposed OPARL framework is implemented and verified
on the benchmark game for level generation, Super Mario
Bros. (SMB). Experimental results show that the resulted
system can generate playable SMB levels that are consistent
with the given music1.

Our framework requires no expert knowledge expect for the
content representation, a few training examples for training a
generative adversarial network (GAN) [14], [15] and the CNet-
assisted repairer [16] for determining and repairing broken
pipes. Although our proposed approach is verified in gener-
ating SMB levels from music, applying it to other platformer
games, such as Megaman (CAPCOM, 1987), Electronic Super
Joy (Michael Todd, 2014) and Celeste (Matt Makes Games
Inc., 2018), is straightforward.

1Code, experimental data and demo of this paper are available on GitHub:
https://github.com/PneuC/OPARL.

The remainder of this paper is organised as follows. Section
II presents some related work. Section III formulates the
problem of online level generation from music and addresses
its challenges. Then, our OPARL framework and its techni-
cal details are presented in Section IV. In Section V, the
effectiveness and robustness of OPARL to different players
and music are verified through its implementation for SMB
and simulation-based experiments. Section VI concludes and
discusses some future directions.

II. BACKGROUND

This section discusses related work that involves multiple
types of content and online player-adaptive approach.

A. PCG that Involves Multiple Content Types

Liapis et al. proposed the concept of orchestrating game
generation, which aims at generating different types of game
content jointly and harmoniously [1]. One representative or-
chestrating game generation system, AudioInSpace [10], gen-
erates game rules, visuals and audio in a mix-initiative way.
Plans and Morelli proposed an experience-driven generator to
generate music that reacts to the “excitement” of the game
using search-based algorithms [7]. Naushad and Muhammad
introduced a conditional music generation framework to enable
adaptive music generation for games [8]. Engels et al. devel-
oped an hierarchical Markov model-based music generation
system to produce music pieces in real-time [9].

The aforementioned works mainly focus on generating cos-
metic content from functional content [5], while there are also
research works that explored the reversed way. For instance,
some works concentrated on learning to generate rhythms
game charts from music via supervised learning [17], [18].
Jordan et al. introduced a mobile game named BeatTheBeat
which applied self-organising maps method to create game
levels that match some music features [19]. In the work of
[20], a mixed-initiative PCG system is presented by Karavolos
et al. to generate game levels from mission or space provided
by human designers. Atmaja et al. proposed a top-down PCG
framework to “translate” platformer games from storyline [21].
To our best knowledge, no work has ever generated platformer
game levels from music in real-time.

B. Online Player-Adaptive Level Generation

A popular research topic related to online player-adaptive
level generation is dynamic difficult adjustment (DDA), aiming
at adjusting levels’ difficulty degree considering the abilities or
skills of players for desired player experience or aesthetic goal
[22]. Shi and Chen proposed a DDA policy based on Thomp-
son sampling, and embedded it into an online level generation
framework [23]. Stammer et al. applied a conditional player
experience model considering different play styles to generate
player-adaptive Spelunky levels with DDA [24].

Some works built on experience-driven procedural content
generation [25]. For instance, Shaker et al. applied player
modelling and grammar evolution to generate online levels that
optimise player experience [26]. Blom et al. generated online



personalised SMB levels with facial expression recognition
[27]. Shu et al. introduced the EDRL framework to enable
real-time level generation with experience-driven reward func-
tions as content quality measurements [11].

III. MUSIC-DRIVEN ONLINE LEVEL FEATURE CONTROL

To generate level segments that are consistent to a given
piece of music in real-time, we consider ensuring the consis-
tency or harmony by matching a feature of level segments
to a feature of the given piece of music, referred to as
music-driven online level feature control in this paper. The
problem of finding online the optimal value of level feature
that matches the given music is formulated in Section III-A).
Then, the challenges of achieving online music-driven level
feature control are discussed in Section III-B.

A. Problem Formulation

Given a piece of music, an ideal feature sequence of a level
can be derived in some fine-grained time unit, denoted as
F∗ = (f∗

1 , · · · , f∗
t , · · · ). Let f̂i and δi denote the target feature

produced by the controller at the ith iteration and the duration
of playing the ith segment, Si, respectively. The objective is
to minimise the error defined as follows:

εinner =
1

T (fmax − fmin)

N∑
i=1

(
bi+δi∑
t=bi

|f∗
t − f̂i|

)
, (1)

where N is the number of segments and bi =
∑i−1

k=0 δk
indicates the starting time of playing the level segment Si with
δ0 = 0. fmax and fmin are the upper bound and lower bound
of the level feature, respectively. T =

∑N
i=1 δi is the total time

spent to play through the whole level. The decision space of
online music-driven level feature control is [fmin, fmax].

This error εinner is called an inner error because Eq. (1)
evaluates the distance between the the targeted feature values
and the ideal feature sequence, and cannot be eliminated as δi
is always larger than the time unit. In a controller-generator
architecture, there can be an additional outer error between
the targeted feature value and the one of an actually generated
segment. Hence, the overall error does not equal to inner
error. An outer error, εouter, and an overall error, εall, are
formulated in Eqs. (2) and (3), respectively.

εouter =
1

T (fmax − fmin)

N∑
i=1

δi|f̂i − fi|. (2)

εall =
1

T (fmax − fmin)

N∑
i=1

(
bi+δi∑
t=bi

|f∗
t − fi|

)
. (3)

The notation fi in Eq (2) denotes the real feature value of Si.
As shown in Eqs. (1), (2) and (3), those errors are normalised
linearly to the range of [0, 1]. Fig. 2 illustrates the relationship
between those errors.

Although only one level feature is considered as a case study
in this work, our formulation can be easily extended to the case
of using multiple level features.

playing duration of Si playing duration of Si+1
playing duration of Si+2

real-time

Fig. 2: Illustration of the inner error, outer error and overall
error formulated in Eqs. (1), (2) and (3), respectively.

B. Challenges of Music-driven Online Level Feature Control

There are at least two challenges of music-driven online
level feature control, the uncertainty of play duration and the
dilemma of granularity. The time consumed to play through
a segment depends on the player’s skill and play style.
Therefore, generating level segment from music should be
achieved in a player-adaptive way. Online level generation
usually generates a level segment by segment. Using segments
of smaller size is expected to control features more accurately.
However, online level generation also requires high generation
speed. Using smaller segments will lead to a lower generation
speed due to the higher frequency of making control decision.
Moreover, extracting features from very small segments does
not always make sense. Generating small yet reasonable
segments in real-time is not trivial. To overcome the above
challenges, a music-driven online level feature controller is
designed and detailed in Section IV-C.

IV. ONLINE PLAYER-ADAPTIVE PROCEDURAL CONTENT
GENERATION VIA REINFORCEMENT LEARNING

We propose a framework named online player-adaptive
procedural content generation via reinforcement learning
(OPARL) for online level generation from music. An overview
of OPARL is given in Fig. 3. OPARL is composed of a
feature controller and a segment generator. At each iteration,
the controller receives players’ play data on the most recent
segment and determines the control signal, which directs
the generator to generate appropriate segments for a specific
player. The generator takes a number of previous segments
and the control signal as input, and then outputs a new
segment. This section explains the framework of OPARL, its
implementation and parameter setting used in the experimental
studies. More technical details are available in the released
project1.

A. Controllable EDRL with Archive

A controllable experience-driven reinforcement learning
with archive (CEDRL-A) architecture, extended from the
EDRL framework [11], is designed as the generator of
OPARL. It models the task of online level generation as a
Markov decision process so that a designer (known as “agent”
in [11]) can be trained to generate rapidly level segments
of high quality. A booster (known as “generator” in [11])
based on GAN is applied to tackle the high-dimensionality of
designer’s action space. The booster maps a low-dimensional
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Fig. 3: Overview of OPARL. hi, oi and zi refer to the
historical latent vectors, observation of designer and latent
vector at the ith iteration, respectively. Archive is a ring queue
of latent vectors with capacity mG.

vector (e.g., latent vector of GAN) to a high-dimensional level
segment representation. The observation and action of the
designer are the latent vectors of the most recently generated
segment and the segment to be generated, respectively. The
action space of CEDRL-A is the latent space of the booster.

Different to EDRL, the designer in CEDRL-A takes addi-
tional control signal that describes the desired feature value
of the next segment as input, and outputs a segment with a
feature value closed to what the input control signal described.
This ability of generating segments with a desired feature
value is achieved by employing a controllability reward while
training the generator. Moreover, an archive XG = {zj | j =
i−mG, · · · , i−1} of mG previous latent vectors is introduced
in CEDRL-A to guarantee the Markov property. Since some
reward functions can depend on more than one previous
segments, it is necessary to make sure that mG is larger than or
equal to the maximum number of previous segments to be used
in any reward function. Let hi = zi−mG

⊕· · ·⊕zi−1
2 represent

the concatenated historical latent vectors that a controller can
observe and gi represent the vector of the control signal, the
controllable designer takes oi = hi ⊕ gi as its observation at
the ith iteration.

Similar to EDRL, CEDRL-A applies a CNet-assisted evo-
lutionary repairer to repair the broken pipes appeared in the
generate levels [16] and a resampling strategy to ensure the
playability [11], referred to as Repairer in Fig. 3.

B. Training Controllable Designer

1) Reward function: To make the designer generate seg-
ments with feature values closed to the desired ones at each
iteration, a controllability reward is introduced during designer

2⊕ represents vector concatenating.

training. Let f(·) be the function of computing level feature,
the controllability reward is formulated as

C(Si) = 1− |f(Si)− f̂i|
fmax − fmin

.

In the implementation of OPARL in this paper, the difficulty
degree of a level segments is considered as the feature of a
level segment, quantified as the summation of the number of
enemies and the number of empty ground tiles divided by the
width of segment, as formulated as

difficulty =
#enemies + #empty grounds

width
. (4)

The lower bound and upper bound of difficulty degree are set
as fmin = 0 and fmax = 1, respectively.

As the targeted feature (difficulty degree in the implemen-
tation) directly influences the next segment, the method of
sampling features can affect other rewards in some unpre-
dictable way. In some primary attempts, we observe that the
difficulty degree usually does not change fast in the online
generation phase. Therefore, the feature is sampled uniformly
in [fmin, fmax], and then a Gaussian mutation is applied to the
current feature value to get the next feature value recursively.
Formally, the feature values sampled during a training epoch
are f̂1 ∼ U(fmin, fmax) and f̂i = f̂i−1+ξ with ξ ∼ N(0, σ2),
∀i > 1. In this work, σ is arbitrarily set as 0.05.

We also employ fun and playability introduced in the work
of [11] as additional reward terms so that the generated levels
are fun and playable. The playability of segment Si is checked
by simulating Si−1 + Si with an A∗ agent that won the 2009
Mario AI Competition [28]. In our work, the playability is set
as 0 if the newly generated segment is playable, otherwise −1.

2) Training Designer with Soft Actor-critic: Among the
reward terms, controllability does not depend on previous
segments, and playability depends on no more than one
previous segment. However, in our setting, computing fun
requires 2 previous segments (Si−1 and Si). Thus, the capacity
of the generator’s archive mG is 2. The designer uses a multi-
layer perception (MLP) model. The booster uses a latent space
of R20. The targeted difficulty degree is duplicated by 12 times
to increase the number of connections in the MLP on the
inputted targeted difficulty. As a result, the control signal gi

has a dimensionality of 12 and the designer’s observation oi

is a 52-dimensional vector. The action space is [−1, 1]20.
We implement a parallel-environment version of soft actor-

critic (SAC) [29], [30] as an OpenAI Gym interface [31] with
50 synchronous sub-environments to train the designer for 1
million time steps in total. The actor and critics use MLP
model with 3 hidden layers of 256 neurons. Our implemen-
tation of SAC updates the models 10 times using randomly
sampled batches of size 384 every time 100 transitions are
collected. The automating entropy adjustment [30] is used with
a targeted entropy H̄ = −20, as recommended in [30]. The
smoothing coefficient τ is set as 0.005. The discounted factor
γ greatly affects the performance of reinforcement learning
algorithms. Empirically, a smaller γ (comparing with γ = 0.99



in many baselines) is better. In all the experiments reported in
this paper, γ = 0.7. Each epoch terminates after 50 segments
are generated. For the last transition, the target Q-value is
computed as r + γQ(s′, ã′) rather than r since the training
aims at endless online generation.

C. Online Player-Adaptive Level Generation with Controller
Given a piece of music, our music-driven feature controller

will first compute the ideal feature sequence F∗ during initial-
isation, and then store it. In addition to F∗, the control policy
keeps an archive XC = {⟨f̂j , δj⟩ | j = i−mC−1, · · · , i−2} to
keep at most mC entries of the previous segments. Each entry
is composed of the targeted feature value and play duration of
a segment. The last entry of XC is about the (i−2)th segment
at the ith iteration because δi−1 is unknown when determining
f̂i.

Algorithm 1 LS-KNN. In the experiments, #trial = 50, k =
5 and σc = 0.02.

Require: f̂i−1, bi−1, F∗, XC ▷ Inputs
Require: #trials, k, σc ▷ Hyper-parameters
Ensure: f̂i

1: b̃i ← bi−1 + Estimate(f̂i−1;XC) ▷ Estimate beginning
time

2: f̂i ← f̂i−1

3: δ̃i ← Estimate(f̂i;XC)

4: ε̃← Evaluate(f̂i; b̃i, δ̃i,F∗) ▷ Least estimated error
found

5: repeat
6: f̂ ′

i ← f̂i + ξ, ξ ∼ N(0, σ2
c ) ▷ Do local search

7: δ̃i ← Estimate(f̂i;XC)

8: ε̃′ ← Evaluate(f̂i; b̃i, δ̃i,F∗)

9: if ε̃′ < ε̃ then
10: f̂i ← f̂ ′

i

11: ε̃← ε̃′

12: end if
13: until has looped for #trials times
14: return f̂i

A simple algorithm named local search with KNN-based
estimation (LS-KNN, Algorithm 1) is designed as the online
control policy for determining targeted feature values. When
determining a targeted feature value for the ith segment, LS-
KNN executes local search for #trails generations starting
from the last one f̂i−1, and picks up the best value of f̂i
found according to the estimated individual inner error using
KNN-based prediction of play duration for the (i − 1)th and
ith segments. In our case, an individual is mutated by adding
a Gaussian noise with a standard deviation of σc. The play
duration is estimated with:

Estimate(f̂ ;XC) =
1

k

∑
j∈J

δj ,

where J is the set of k nearest neighbours in terms of |f̂j− f̂ |
within XC . With Estimate(f̂ ;XC), we can further estimate

the time that the ith segment b̃i starts to be played. With δ̃i,
the estimated play duration respected to f̂i, a feature can be
evaluated using:

Evaluate(f̂i; b̃i, δ̃i,F∗) =
1

δ̃i

∑b̃i+δ̃i

t=b̃
|f∗

t − f̂i|.

Algorithm 1 details the implementation of the control policy.
LS-KNN is proposed with two assumptions: (i) an ideal
feature sequence won’t change fast, thus the “optimal” f̂i
should not be far from f̂i−1; (ii) the difficulty implies the
play duration, which is true for many platformer games. The
former is somehow generic in online level generation because
fast changes of features may be harmful to the coherence of
levels. It is the reason of starting the local search from f̂i−1

in Algorithm 1. The latter motivates the estimation of play
duration according to the records organised by ⟨f̂j , δj⟩.

LS-KNN is easy to implement and can always be used
directly without training or other preparation. Furthermore,
though not explicit, LS-KNN is well player-adaptive since the
KNN-based estimation is applied based on the specific player’s
play data collected online. Our implementation with LS-KNN
policy achieves significant performance in the simulation-
based experiments detailed in Section V.

D. Implementation of Booster

Our booster is a variation of MarioGAN [15]. Differ
from the original neural network architecture, our GAN
model uses fractional-convolutional layers [32] with kernel
size, stride and padding of ⟨(4, 4), (1, 1), 0⟩, ⟨(3, 3), (2, 2), 1⟩,
⟨(4, 4), (2, 2), 1⟩ and ⟨(3, 4), (1, 2), 1⟩, respectively, to directly
obtain an output of size 14 × 28 without clipping. Besides,
latent vectors of length 20 are used. The generator and dis-
criminator are trained for 5 times and 1 time at each iteration,
respectively, on the 13 human-designed levels without bullet
bills provided in the Video Game Level Corpus [33].

V. EXPERIMENTAL STUDY

To evaluate the effectiveness of our approach and im-
plemented algorithms in optimising different objectives, the
designer is trained with all the possible combinations of the
three reward terms presented in Section IV-B1 with the same
weights, and evaluated with training environments and online
generation environments, respectively.

To test the robustness of our method, five different agents
in the 2009 Mario AI Competition [28], namely Baumgarten’s
(the aforementioned A∗ agent), Sloane’s, Hartmann’s, Po-
likarpov’s and Schumann’s agents, are used as the simulated
player, and two different pieces of music, Ginseng3 (EnV,
2014) and Farewell4 (Raine, 2019), are used. Fig. 4. shows
the five agents’ play duration on each segments of an level
generated online by OPARL using a designer trained with the
summation of controllability, fun and playability. Those agents

3From the original sound track of commercial platformer game Electronic
Super Joy: Groove City (Michael Todd, 2014).

4From the original sound track of commercial platformer game Celeste
(Matt Makes Games Inc., 2018).



Fig. 4: Cumulative play duration of each agent on levels
generated from the same initial segment, averaged over 30
independent trails. Shadows indicate the standard deviation.

actually play levels with different speeds. Our experiments are
simulated based on the Mario-AI-Framework5.

Root-mean-square energy features of music are extracted
throughout time and mapped to difficulty degrees as follows.
First, the degrees are re-scaled by taking logarithm based
on 10, then clipped within [−2.5, 0] and mapped into [0, 1]
linearly, finally, smoothed through computing mean values in
an 1-stride sliding window of size 100. The music feature
extraction is done through Librosa library [34], with a default
time unit of 0.02322s. Parts of the resulted ideal difficulty
sequences are illustrated in Fig. 5. Demos of levels generated
from different music are available in the released project1.

Fig. 5: Parts of converted ideal difficulty sequences extracted
from the music used in our experiments.

A. Evaluation of Effectiveness

The trained designers are evaluated with three metrics,√
−F , the mean distance of D(Si) out of the range [l, u],
−P , the negative number of playability to indicate the ratio
of unplayable segments, and 1−C to indicate the mean error
between level feature and targeted feature value in training
environment. Those metrics are averaged over all iterations
(time steps) and normalised in a similar scale.

To further evaluate the performance of online generation,
the designer is tested using Baumgarten’s agent as simulated
player and Ginseng as input music. The values of

√
−F , −P ,

εinner, εouter, εall, and an additional metric Div, which is
used to measure the diversity of levels generated in different
runs, are reported in Table I. Div is computed as the mean
ratio of tiles that are different in pairs of levels generated
in different runs. The values of

√
−F and −P in the online

evaluation may be different to the ones in the offline evaluation
due to resampling and different targeted feature values.

5https://github.com/amidos2006/Mario-AI-Framework

Table I shows the experimental results. The designers
trained with controllability generally achieve very low overall
error in the online generation tests. The main source of overall
error is the outer error, i.e., the error between the targeted
feature value produced by controller and the feature of actually
generated segment. The value of 1−C closed to εouter means
that our method of sampling targeted features is effective. The
designer trained with only fun reward achieves a great score on√
−F . However, when controllability is employed, the score

of fun deteriorates a lot. This phenomenon indicates that the
objective of fun and controllability conflict. Moreover, the
controllability deteriorates less comparing with the designer
trained with controllability only. It is probably because the
reward of fun uses a quadratic form while controllability uses
a linear form. That means designer finds it better to optimise
controllability to get a higher summation of reward terms.

All the designers trained with playability well ensure the
playabiltiy of generated levels, while designers generally as-
sure better playability with the help of resampling. A merit
attention finding is that the designer trained with F and the
designer trained with C + F + P do not get notable better
P value in the online generation tests. A possible reason is
that those designers lack of randomness when taking actions.
That means if they generate an unplayable segment, no matter
how many times the re-generation is executed, they will still
generate unplayable segments. A future work is finding out
why the phenomenon only appears on those two designers.

As a conclusion, our implemented framework optimises the
reward functions effectively. The designer trained with C +
F +P balances different objectives and can be a good choice
for online level generation from music.

B. Evaluation of Robustness

Fig. 6 plots the overall error, fun and diversity evaluated on
the designer trained with C + F + P as reward for the five
agents and two different pieces of music. The overall error and
fun are plotted as 1−ϵall and 1−

√
−F for better intelligibility.

According to Figs. 6(a) and 6(b), our method achieves very
similar and high performances of overall error and fun, and
is robust for players with different play speed. The diversity
scores of levels generated for different players and musics
vary significantly. According to Figs. 4 and 5, the diversity
of levels generated by OPARL may be positively correlated
with the fluctuation degree of music and the variance of play
duration.

Fig. 7 presents segments captured from the levels generated
with the same S0 (i.e., initial segment) for different agents
and different music. Fig. 1 uses an illustration to explain
how OPARL generates different levels for different players.
It is shown in Fig. 7 that levels generated from Ginseng are
generally harder than the ones generated from Farewell, as the
ideal difficulty sequence derived from Ginseng is generally
larger than the one from Farewell (cf. Fig. 5). The levels
generated for different agents with the same music are similar.
It may be explained by using the same starting segment to



TABLE I: Evaluation of designers trained with different reward functions. All values are averaged over 100 independent trials.
Div is to be maximised, all the other metrics are to be minimised with strict lower bound of 0. Cells filled with −/− are
meaningless. The best and worst results are highlighted with bold and italic, respectively.

Designer Training Environment Online Generation√
−F (10−2) −P (10−2) 1− C(10−2)

√
−F (10−2) −P (10−2) εinner(10

−2) εouter(10−2) εall(10−2) Div

F 1.08 ± 0.34 9.12 ± 4.03 −/− 1.06 ± 0.35 9.06 ± 4.22 −/− −/− 43.6 ± 1.76 0.066
P 11.2 ± 1.81 0.22 ± 0.63 −/− 11.2 ± 1.90 0.00 ± 0.00 −/− −/− 48.2 ± 1.01 0.066

F+P 2.06 ± 0.58 0.42 ± 0.82 −/− 2.29 ± 0.58 0.00 ± 0.00 −/− −/− 49.9 ± 0.92 0.046

C 16.8 ± 3.27 46.7 ± 21.2 1.90 ± 0.23 19.2 ± 0.99 29.4 ± 5.49 1.16 ± 0.10 1.59 ± 0.22 2.24 ± 0.19 0.056
C+F 4.48 ± 2.13 15.3 ± 6.76 2.88 ± 0.49 1.83 ± 0.52 5.66 ± 3.12 0.89 ± 0.04 2.69 ± 0.26 2.95 ± 0.24 0.057
C+P 11.9 ± 3.41 0.40 ± 0.85 3.77 ± 0.70 17.5 ± 1.59 0.44 ± 0.96 0.89 ± 0.04 4.82 ± 0.73 4.99 ± 0.80 0.062

C+F+P 6.81 ± 1.31 0.40 ± 0.94 4.36 ± 0.56 7.86 ± 0.97 0.02 ± 0.20 0.87 ± 0.03 4.74 ± 0.54 4.93 ± 0.51 0.035

(a) Evaluation scores of 1− εall for different simulated players.

(b) Evaluation scores of 1−
√
−F for different simulated players.

(c) Evaluation scores of Div for different simulated players.

Fig. 6: Values of fun, controllability, diversity evaluated on
designers trained with different agents as player and different
musics. Each value is averaged over 30 independent trials.

generate those levels. To summarise, our method can adapt
well different players and is robust to different music.

VI. CONCLUSION

This paper formulates the problem of online level generation
from music, and proposes an online player-adaptive procedural
content generation via reinforcement learning (OPARL) frame-
work composed of a novel CEDRL-A generator and a novel
LS-KNN controller to achieve online level generation from
music. Experimental results show that the implementation of
OPARL can generate in real-time SMB levels with segment-
wise features closed to an ideal difficulty sequence derived
from a piece of music. The resulted generation system can also
guarantee the playability. The training algorithm implemented
in this paper achieves considerable performance and can be
used as a baseline in further studies. Moreover, our framework

is flexible since the controller and the generator are decoupled.
The CEDRL-A generator in our framework can be integrated
with other controllers like DDA controller for different aspects
of player-adaptation.

In this paper, our proposed approaches are verified with
simulation-based studies. One of the future work is conducting
human tests. As another future work, new ways of mapping
multiple features of both levels and music can be studied
for the purpose of achieving better consistence between play
experience and music.
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