
DouZero+: Improving DouDizhu AI by Opponent
Modeling and Coach-guided Learning

1st Youpeng Zhao
University of Science and

Technology of China
Hefei, China

zyp123@mail.ustc.edu.cn

2nd Jian Zhao
University of Science and

Technology of China
Hefei, China

zj140@mail.ustc.edu.cn

3rd Xunhan Hu
University of Science and

Technology of China
Hefei, China

cathyhxh@mail.ustc.edu.cn

4th Wengang Zhou
Institute of Artificial Intelligence

Hefei Comprehensive Nation Science Center;
University of Science and Technology of China

Hefei, China
zhwg@ustc.edu.cn

5th Houqiang Li
Institute of Artificial Intelligence

Hefei Comprehensive Nation Science Center;
University of Science and Technology of China

Hefei, China
lihq@ustc.edu.cn

Abstract—Recent years have witnessed the great breakthrough
of deep reinforcement learning (DRL) in various perfect and
imperfect information games. Among these games, DouDizhu,
a popular card game in China, is very challenging due to the
imperfect information, large state and action space as well as
elements of collaboration. Recently, a DouDizhu AI system called
DouZero has been proposed. Trained using traditional Monte
Carlo method with deep neural networks and self-play procedure
without the abstraction of human prior knowledge, DouZero has
achieved the best performance among all the existing DouDizhu
AI programs. In this work, we propose to enhance DouZero
by introducing opponent modeling into DouZero. Besides, we
propose a novel coach network to further boost the performance
of DouZero and accelerate its training process. With the integra-
tion of the above two techniques into DouZero, our DouDizhu AI
system achieves better performance and ranks top in the Botzone
leaderboard among more than 400 AI agents, including DouZero.

Index Terms—DouDizhu, Reinforcement learning, Monte-Carl
Method, Opponent Modeling, Coach Network

I. INTRODUCTION

During the development of machine learning, games usually
serve as an important testbed as they are good abstraction of
many real-world problems, and more objective compared to
environments specially designed for testing AI since games are
developed for humans. In recent years, significant progress has
been made in perfect-information games such as Go [1]–[3],
Shogi (Japanese chess) [4] and even fighting game [5]. The
current research efforts are turning to more challenging imper-
fect information games (IIG) where agents may cooperate or
compete with each other under a partially observable environ-
ment. Encouraging achievements have been made from two-
player games, such as Texas Hold’em [6]–[8] to multi-player
games, including multi-player Texas Hold’em [9], StarCraft
[10], DOTA [11] and Japanese Mahjong [12].
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Fig. 1: A case example about cooperation in DouDizhu. If
the Peasants learn to cooperate with each other, current player
should play small Solo to let the teammate to win the game.

In this work, we are dedicated to designing an AI program
for DouDizhu, a.k.a, Fighting the Landlord, which is the
most popular card game in China. The two characteristics of
this game make it challenging for developing AI programs.
First, this game involves both cooperation and competition
simultaneously in a partially observable environment. To be
specific, the two Peasant agents play as a team to fight
against the Landlord agent. Taking Figure 1 as an example, it
demonstrates a typical case where the Peasant at the bottom
can play a small Solo card for the winning of his partner.
This property makes classical algorithms for Poker games,
such as Counterfactual Regret Minimization (CFR) [13] and
its variants not suitable in such a complex three-player setting.
Second, the state and action space in DouDizhu is large and
complex due to the combination of cards and the complex
rules compared to other card games. There are thousands of



Fig. 2: A hand and its corresponding legal moves.

possible combinations of cards where different subsets of these
combinations are legal to different hands. Figure 2 exhibits an
example of a hand that has 119 legal moves such as Solo,
Pair, Trio, Chain of Solo and so on. The performance of Deep
Q-Learning (DQN) [14] will be greatly affected due to the
overestimating issue in large action space [15] while policy
gradient methods such as A3C [16] fail to leverage the action
features, limiting the capability of generalizing over unseen
actions. In this way, previous work has shown that DQN and
A3C have a poor performance in DouDizhu, as AI programs
trained with these algorithms can not beat simple rule-based
agents even after long time of training [17].

Despite the challenges mentioned above, some achieve-
ments have been made in building DouDizhu AI. To deal
with the large action space in DouDizhu, Combinatorial Q-
Network (CQN) [17] decouples the actions into decomposition
selection and final move selection. However, this processing
technique relies on human prior knowledge and costs a lot of
time, which limits its performance. In fact, CQN does not have
preponderance over the heuristic rule-based model. DeltaDou
[18] is the first bot that manages to achieve top human-level
performance. It makes use of an AlphaZero-like algorithm,
which combines neural networks with Fictitious Play Monte
Carlo Tree Search (FPMCTS), and an inference algorithm in
a self-play procedure. However, DeltaDou requires to pre-
train a kicker network depending on heuristic rules to reduce
the action space size, which may affect its strength if the
output of the kicker network is not optimal. What’s more, the
inference and search are so computationally expensive that the
training of DeltaDou takes a lot of time. Recently, DouZero
[19] has attracted considerable attention due to its outstanding
performance in this complex game. It utilizes self-play deep
reinforcement learning without the abstraction of state/action
space and human knowledge. It combines classical Monte-
Carlo methods [20] with deep neutral networks to handle the
large state and action space, which opens another door for
such complex and large-scale games.

In this work, we improve DouZero by introducing opponent
modeling and coach-guided learning. Opponent modeling aims
to determine a likely probability distribution for the opponents’

hidden cards, which is motivated by the fact that human
players will try to predict the opponents’ cards to help them
determine the policy. Due to the complexity of DouDizhu, a
lot of actions may be appropriate when making the decision.
In this case, analyzing the opponents’ cards will be of great
importance because grasping this information helps the bot
choose the optimal move. On the other hand, we propose
coach-guided learning to fasten the training of the AI. Due to
the large information space in this game, the training of the AI
program for DouDizhu costs a lot of time. Considering the fact
that the outcome of DouDizhu depends heavily on the initial
cards of three players, quite a few games are of little value
for learning. To this end, we design a novel coach network to
pick matched openings so that the models can learn from more
valuable data without wasting time to play valueless games,
thus accelerating the training process. Through integrating
these techniques into DouZero, our DouDizhu AI program
achieves a better performance than the original DouZero and
ranks the first on the Botzone [21]–[23] leaderboard among
more than four hundred agents, including DouZero.

II. RELATED WORK

In this section, we briefly introduce the application of
reinforcement learning in imperfect-information games as well
as the works about opponent modeling.

A. Reinforcement Learning for Imperfect-Information Games

Recent years have witnessed the successful applica-
tion of reinforcement learning in some complex imperfect-
information games. For instance, there are lots of works about
reinforcement learning for poker games [6], [24]. Different
from Counterfactual Regret Minimization (CFR) [13] that
relies on game-tree traversals, RL grasps knowledge through
interactions with the environment so that it is also suitable
for large-scale games. OpenAI, DeepMind and Tencent have
utilized this technique to build their game AI in DOTA [11],
StarCraft [10] and Honor of Kings [25], respectively, and
acquired amazing achievements, proving the effectiveness of
reinforcement learning in imperfect-information games. More
recently, there are some research efforts that combine rein-
forcement learning with search and have shown its effective-
ness in poker games such as heads-up no-limit Texas Hold’em
poker and DouDizhu [18], [26].

However, due to the complexity of DouDizhu, classical
reinforcement learning methods such as DQN [14] and A3C
[16] exhibit poor performance in this game as discussed above.
Even improved methods such as Combinatorial Q-Network
(CQN) [17] and DelaDou [18] have limited performance as
they need some prior knowledge. To this end, DouZero [19]
utilizes Monte-Carlo methods [20] and manages to defeat all
DouDizhu AI programs by now. We note that this technique is
also adopted in some other game AIs, such as a modern board
game, Kingdomino, and a kind of new chess, Tibetan Jiuqi
[27], [28]. But unlike these environments, DouDizhu is more
complex due to its characteristics. The amazing performance
of DouZero reveals the good results of Monte-Carlo methods



(a) The overall framework (b) The details about prediction model

Fig. 3: An overview of the framework that combines opponent modeling with DouZero and the details about the prediction
model. The prediction model takes the state information as input and outputs the probability of the number of every card in
the hand of the next agent. The decision model is trained using deep Monte-Carlo algorithm like DouZero. The prediction
result is concatenated with the state features as well as action features and all these information is input to decision model
to decide which action to take. As for the prediction model, it can be viewed as a multi-head classifier, which consists of a
layer of LSTM to encode historical moves, five shared layers of MLP and multi-head FC layers to output the probability. The
LSTM layer is contained in the extraction of state information, so it is not shown in the Figures. We can extract “legal label”
from the state information, which represents how many cards of each kind the next player has at most. Figure (b) shows an
example where the next player has at most two Card 3. This information can be used as a mask to prevent the prediction
model from giving a wrong prediction that next player has more than two Card 3 in his hand.

in such large-scale complex card games, providing new insight
into future research on such problems.

B. Opponent Modeling for Games

In human practice, gaining an abstract description of the
opponent will give the player a clear advantage in games,
especially imperfect-information games. As a result, opponent
modeling has attracted substantial attention in game AI. For
example, Southey et al. [29] put forward a Bayesian proba-
bilistic model for poker games which infers a posterior over
opponent strategies and makes an appropriate response to that
distribution. In another complex imperfect-information game,
Mahjong, an AI bot is designed based on opponent modeling
and Monte Carlo simulation [30]. In this work, the opponent
models are trained with expert game records and the bot
decides the move using the prediction results and Monte-Carlo
simulation.

Recently, inspired by the success of reinforcement learning,
many researchers combine opponent modeling with reinforce-
ment learning and have made much progress. In combination
with deep Q-learning, opponent modeling achieves superior
performance over DQN and its variants in a simulated soc-
cer game and popular trivia game [31]. Knegt et al. [32]
introduces the opponent modeling technique into an arcade
video game using reinforcement learning, which helps the
agent predict opponents’ actions and significantly improves
the agent’s performance. In addition, opponent modeling can
be adopted in multi-agent reinforcement learning problems
where RL agents are designed to consider the learning of other
agents in the environment when updating their own policies
[33]. Another promising solution is to mimic human players

by combining opponent models used by expert players and
reinforcement learning [34]. All the above works demonstrate
that combining opponent modeling with reinforcement learn-
ing is beneficial to achieve performance gain in multi-agent
imperfect-information games, which also inspires this work.

III. PRELIMINARY

In this section, we first discuss the main algorithm of
DouZero, i.e. Deep Monte Carlo (DMC), which adopts deep
neural networks for function approximation in Monte Carlo
method. Then, we briefly describe the details of DouZero
system.

As a key technique in reinforcement learning, Monte Carlo
(MC) method learns value functions and optimal policies
from experience, namely, sampling sequences of states, actions
and rewards from actual or simulated interactions with the
environment [20]. This technique is designed for episodic
tasks, where experience can be divided into episodes that
eventually terminate, and it updates the value estimation and
policy only when an episode is completed. To be specific,
after each episode, the observed returns are used for policy
evaluation and then the policy can be improved at the visited
states in the episode. The optimization procedure of a policy
π in MC methods is intuitively described as follows:

1) Interact with the environment for an episode using π.
2) For each state-action pair (s, a) visited in the episode,

calculate and update Q(s, a) with the average return.
3) For each state s in the episode, update the policy:

π(s)← argmaxa∈AQ(s, a).
When putting MC methods into practice, epsilon-greedy

policy can be used to balance between exploration and ex-



ploitation in Step 1. Also, deep neural networks can be
naturally adopted in the above procedure, leading to Deep
Monte-Carlo (DMC). In this way, the Q-table Q(s, a) can
be replaced by neural networks which can be optimized with
mean-square-error (MSE) loss in Step 2.

As DouDizhu is a typical episodic task, MC is naturally
suitable for this problem. What’s more, DMC requires a large
amount of experience for training while it’s easy to generate
data efficiently in parallel, which can also alleviate the issue of
variance. In addition, adopting DMC in DouDizhu has some
clear advantages compared to other reinforcement learning
algorithms, such as policy gradient methods and deep Q-
learning, which can be referred to in DouZero [19]. Owing to
the advantages that DMC has in DouDizhu, DouZero adopts
this algorithm and achieves an outstanding performance.

In the implementation of DouZero system, it makes use of
a self-play procedure, where the actors play games to generate
samples and the learner updates the network using these data.
The input of the network consists of state features and action
features. The state feature represents the information that is
known to the player, while the action feature encodes the set
of all legal moves in current state. Specifically, the action in
action features is encoded with a one-hot 4×15 card matrix.
For the state features, they contain matrices that represent
information of card combinations and some one-hot vectors
that represent information about number in this game such
as the number of cards of other players, and the number of
bombs played so far. For the architecture, historical moves
are encoded by a layer of LSTM and this information is
concatenated with other features. Also, there are six layers
of MLP with a hidden size of 512 to output Q values, which
serves as the main body of models that makes decision.

Besides, to improve the training efficiency, the system
implement DMC in a parallel way with multiple actors and
one learner. Three global networks are maintained in learner
process for the three players. These networks are updated to
approximate the target values based on samples produced by
actors. And each actor keeps three local networks which are
synchronized with the global ones periodically. The commu-
nication between the learner and actors is realized with three
shared experience buffers. In this way, the system can be
trained in an effective self-play procedure.

IV. METHOD

In this section, we introduce opponent modeling and coach
network in our design and describe how they are applied.

A. Opponent Modeling

Opponent modeling studies how to construct models to
predict about various properties of the modeled agents, e.g.
actions, goals and so on. Classic methods such as policy
reconstruction [35] and plan recognition [36] tend to develop
parametric models for agent behaviours. These methods tend
to decouple the interactions between the modeled agent and
others to simplify the modeling process, which may introduce
bias when there exists coupling between agent interactions.

Fig. 4: The overview of the framework that utilizes coach
network. In this figure, we use the Cardinitial, Pwin and β to
represent generated initial hand cards, the predicted probability
of winning for Landlord and the threshold value, respectively.
The coach network is composed of one embedding layer and
several fully connected layers and the model takes Cardinitial
as input and outputs Pwin. If Pwin is in the range defined,
which is decided by β, the game with such Cardinitial will
be carried on and generates samples for training. Otherwise,
another initial hand cards will be generated.

In this way, executing opponent modeling when concurrently
training all the agents in a self-play procedure is more natural
[37] and suitable to the training procedure of DouDizhu AI
system. What’s more, concurrent learning helps opponent
modeling adapt to different levels of the agent as it has
witnessed the evolution of the agent’s skills during training.

When adopting opponent modeling in DouDizhu, we predict
the hand of the next player as knowing this information is
enough to grasp the hands of both other players in DouDizhu.
As for the implementation of opponent modeling, we can
naturally take advantage of deep neural networks to make
predictions. For clear description, we call the part of opponent
modeling as “prediction model” and the part that makes deci-
sions as “decision model”. Following the practice of DouZero
that trains three models for the three players in the game, we
also train three prediction models for opponent modeling. The
prediction model can be viewed as a multi-head classifier and
outputs the probability of the number of every kind of card
in the hand of the next agent. To be specific, it has to predict
how many Card 3, how many Card 4, etc, the next player has
in his hand. Since the environment of DouDizhu is easy to
realize, we can acquire the true hand of the next player and
use it as labels to train the prediction model. What’s more,
taking Card 3 as an example, we can also know how many
card 3 of one kind the next player has at most, which can be
calculated by the agent’s own hand and how many Card 3 has
been played. We call this information “legal label” and this
information can be utilized as a mask to prevent prediction
model from making impossible prediction.

As for other details, we make use of the same state features
as DouZero and the architecture of prediction models is also
similar to DouZero except for the final layer which works as
a multi-head classifier where each head outputs the prediction
of one kind of card. This model is trained using cross-entropy
loss function. As for the decision model, we concatenate the
prediction results of prediction model as well as original state



features for state input of decision models. To sum up, the
overview of the framework that combines opponent modeling
with DouZero is shown in Figure 3.

B. Coach-guided Learning

During the training of DouDizhu AI system, we discover
that the training process costs a lot of time. To this end, we
propose a method to help the agent master the skills faster. In
this work, our DouDizhu AI system does not have a bidding
phase as the bidding network in DouZero is trained with
supervised learning. In other words, the initial hand cards
of the three players are fixed at the beginning of the game.
However, the players aim to empty his own hand cards before
others in DouDizhu, making the quality of the initial hand
cards have a great impact on the result of this game. If one
player gets a very strong hand at the beginning, he can win
easily as long as he does not make serious mistakes. In this
way, such initial cards are of little value for learning as they
can hardly help the agent learn new knowledge. On the other
hand, if one player always plays matches where the initial hand
cards are relatively balanced, he can learn some skills faster
and better as he will lose and receive a negative reward if he
makes any unsuitable decision. In the setting of DouZero, we
uncover that the initial cards of the three players are generated
randomly so that quite a few samples may be not matched in
strength. However, the actors still have to play the game using
these initial cards that are heavily unbalanced, which also takes
much time. If we only allow the actors to generate samples
that are based on balanced initial hand cards, the agent can
learn faster and form policies that can deal with such situation.

Based on the above discussion, we propose a “coach net-
work” to identify whether the initial hand cards are balanced
in strength. It takes the initial hand cards of the three players
as input and outputs the predicted probability of winning for
the Landlord in one game, which we call Pwin. Then we can
set a threshold, which is represented with β, to filter out the
games whose Pwin is too small or too big, as is shown in
Figure 4. In this case, there is no need for the actors to play
with these initial hand cards, thus setting aside time to carry
on more valuable matches. It is noted that the threshold is set
to 0 at first and increases through the training process so that
the agent can learn necessary skills that are enough to deal
with unbalanced matches.

The input of coach network is the vectors of initial hand
cards for Landlord and Peasants, whose dimensions are 20
and 17, respectively. For the architecture of coach network, it
consists of an embedding layer to process the input vectors
and three layers of fully connected layers to extract represen-
tations and make predictions. As our DouDizhu AI system
is trained in a self-play manner, the coach network is also
concurrently trained with the decision models. The results of
self-play games can be used as labels for training the model.
What’s more, we only need to train one coach network for
prediction as this module has nothing to do with the positions
in DouDizhu. In other words, our coach network only works
at the beginning of one game to pick suitable initial data and
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Fig. 5: ADP of “maphack” models, which can see the hand
cards of the next player, and DouZero models. Both these
models are tested with DouZero baseline that is fully trained
with ADP. “Landlord” means that the models play as Landlord
against Peasants of DouZero baseline and the same goes for
the reverse. One training step means one update of networks
in learner.

does not influence the subsequent processes. Therefore such
idea can also be transferred into the development of other
similar game AIs and benefits the training.

V. EXPERIMENT

In this section, we conduct experiments to demonstrate
the effectiveness of the improvement that we introduce to
DouZero. To be specific, we first evaluate the performance of
opponent modeling and coach network, respectively, and then
combine them together. All experiments are conducted on a
server with 4 Intel(R) Xeon(R) Gold 6252 CPU @ 2.10GHz
and GeForce RTX 2080Ti GPU. Our codes are available at
https://github.com/submit-paper/Doudizhu.

A. Experiment Settings

In order to evaluate the performance of the model, we
follow what DouZero [19]and Deltadou do [18] and launch
tournaments that include both Landlord and Peasants. To be
specific, for two competing algorithms A and B, they will
first play as Landlord and Peasants, respectively, for a given
deck. Then the sides have to be switched, i.e. A plays the
role of Peasants and B takes Landlord position, and they play
the same deck again. To show the performance of the model
in the training process, we execute the test for 10000 games
every 30 minutes. As our DouDizhu AI is based on DouZero,
we just compare the performance between them. We make
use of the open-source models of DouZero as the opponent.
To demonstrate the improvement, we also train an original
DouZero to intuitively exhibit the performance difference.
As for the evaluation metrics, we follow DouZero and use
Average Difference in Points (ADP). This metric indicates
the average difference of points scored per game between
algorithm A and B. Specifically, if A wins a game, it will
be rewarded with 1 and its opponent will get a reward of -1.
In addition, every time one player plays a bomb in the game,
the point they get will double.
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Fig. 6: ADP of models, which combine opponent modeling
and DouZero, and DouZero models. Both these models are
tested with DouZero baseline that is fully trained with ADP.
“Landlord” means that the models play as Landlord against
Peasants of DouZero baseline and the same goes for the
reverse. One training step means one update of networks in
learner.

Our implementation is based on DouZero and training
schedules such as the number of actors and training hyper-
parameters are kept the same as the default ones. DouZero
provides a fully trained model which is trained using ADP.
We train our AI system and an original DouZero system
with ADP as objective and compare their performance with
the baseline model. For consistency, we use the metric of
ADP when evaluating the performance of the models. The
difference between the performances of these two AI systems
can demonstrate the effectiveness of our methods.

B. Evaluation on Opponent Modeling

In this part, we demonstrate the effectiveness of introducing
opponent modeling to DouDizhu. As the state features utilized
by DouZero contain all the information that can be known,
the information about the hand cards of the next player
is included implicitly while the idea of opponent modeling
is essentially making such information explicit. In order to
investigate whether such an idea helps the agents learn better,
we firstly make a pre-experiment where we add the hand
cards of the next player into state features directly, whose
result is shown in Figure 5. It can be observed that adding the
hand cards of the next player into state features indeed boosts
the performances of the agents, especially for Peasants. We
assume that the obvious improvement of Peasants is attributed
to the fact that knowing the hand cards of the next player helps
Peasants not only choose cards that the Landlord can’t afford
but also cooperate with the teammate better. Whereas for the
Landlord, knowing the hand cards of next player indeed helps
to make decisions, but if the hand is weak, even having such
information can not help a lot. To sum up, the result of the pre-
experiment illustrate that introducing explicit representations
of the next player’s hand cards improves the performance of
DouDizhu AI.

After verifying the validity of our idea, we concurrently
train the prediction models as well as the decision models
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Fig. 7: ADP of models, which combine coach network with
DouZero, and DouZero models. Both these models are tested
with DouZero baseline that is fully trained with ADP. “Land-
lord” means that the models play as Landlord against Peasants
of DouZero baseline and the same goes for the reverse. One
training step means one update of networks in learner.

as is discussed in Section IV-A and the result is shown
in Figure 6. It reveals that introducing opponent modeling
to DouZero mainly improves the performance of models
of Peasants, which is corresponding to the analysis above.
Although the models perform worse than DouZero at first
because the network has to take more features as input and has
more neurons, which will slow down learning, they manage
to grasp more knowledge after enough training and achieve a
performance better than DouZero.

C. Evaluation on Coach Network

Apart from the experiments above, we also conduct exper-
iments to show how coach network performs in DouDizhu
game. The training procedure is discussed in Section IV-B.
The threshold β starts from 0 and increases by 0.05 after
every 20000 training steps and its upper limit is set to be
0.3. The result of the experiment is shown in Figure 7 and
the significant improvement proves the effectiveness of this
method. It can be observed that the improvement of Peasants
is also greater than that of Landlord. Considering that Peasants
have an advantage in this game due to cooperation, this
phenomenon is acceptable as they can learn more skills in
balanced games. Besides, even coach-guided learning strategy
only controls the initial state of the game, the improvement it
can bring is significant. This fact reveals that the luck factor
plays an important role in such kind of imperfect-information
games. To this end, our method can be migrated into other
environments, helping game AI achieve better performance.

What’s more, we also show some cases about the prediction
of our coach network from games on Botzone platform, which
is illustrated in Table I. In case 1, it can be observed that the
Landlord is allocated with a very strong hand, which consists
of most cards of high rank and cards of low rank that can
compose other combinations so that the Landlord can win the
game easily. As for case 2, even Landlord has a bomb in his
hand, the hand cards of Peasants are also very good. What’s
worse, the Landlord also has quite a few cards of low rank



Landlord Landlord down Landlord up Prediction of Pwin for Landlord Actual result(Landlord)

Case1 3455677789JQKAAAA22R 334569TTTJJQQQKK2 344566788899TJK2B 0.9932 Win
Case2 45667788889TTTKKA22B 334567TJJJQQQQK22 33445567999JKAAAR 0.1726 Lose
Case3 3455556677799JJQKAAB 3467889TTQKKK222R 33446889TTJJQQAA2 0.5843 Lose

TABLE I: Case study to show the effect of coach network. It predicts the winning probability of Landlord based on the initial
hand cards of the three players. We pick some cases from games from Botzone to show the predicted results of coach network
and also show the actual result from the view of the Landlord. To be mentioned, T means 10, J means Jack, Q means Queen,
K means King, A means Ace, B means Black Joker, and R means Red Joker.

that are difficult to play out. In case 3, the initial hand cards
are relatively balanced. However, the Peasant win the game
finally, indicating the importance of cooperation. This example
illustrates that the balanced samples can indeed help the agents
learn cautious policy and cooperation better, thus proving the
correctness of our idea.

D. Combination of Two Methods

From the above discussion, it is known that both our
improvements can help enhance the performance of DouZero.
The result of combining these two methods is shown in
Figure 8. As the improvement of coach network is more
obvious than opponent modeling, to intuitively demonstrate
whether the combination of these two techniques brings further
improvement, we also add the result of just using coach
network in the figure. It can be observed the performance is
a little worse than just using coach network at first, which
is consistent with the discussion of just introducing opponent
modeling. To be mentioned, when the performance of the mod-
els reaches a certain level, achieving a little improvement is
very difficult so the progress that combining the two methods
makes is not that apparent. However, further improvement still
proves the effectiveness of combination of the two methods.

To comprehensively compare the performance of our
DouDizhu AI, we upload our final model to BotZone [22], an
online platform with DouDizhu competition. There more than
20 games apart from DouDizhu supported by the platform,
including Go, Mahjong, Chess and so on. More than 3500
users on this platform upload their bot programs to compete
with others. Botzone maintains a leaderboard for each game,
which ranks all the bots in the leaderboard by their Elo
rating scores. The evaluation of DouDizhu in Botzone Elo
system is also similar to the form of tournament introduced
above. Although Elo rating is generally considered as a stable
measurement of relative strength, the characteristic of high
variance of this game still makes the Elo ranking suffer from
fluidity. What’s more, due to the limit of server resources,
Elo rating games are not scheduled very frequently so that it
may take a lot of time to achieve a stable ranking. However,
keeping a high ranking can still prove the strength of one AI
system. Even if DouZero has obvious superiority over other
DouDizhu AI systems trained by reinforcement learning, it
has ranked about 20th so far on Botzone leaderboard as most
bots are realized by strong heuristic rules. Nonetheless, our
DouDizhu AI has always ranked top five, even ranked first for
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Fig. 8: ADP of models, which combine both improvements
with DouZero, and DouZero models. Both these models are
tested with DouZero baseline that is fully trained with ADP.
“Landlord” means that the models play as Landlord against
Peasants of DouZero baseline and the same goes for the
reverse. For comparison, the result of models improved by
coach network is also included.

several months, proving the effectiveness of the improvements
that we make.

VI. CONCLUSION AND FUTURE WORK

In this work, we put forward some improvements to the
state-of-the-art DouDizhu AI program, DouZero. Inspired by
the human player’s prediction about opponents’ hand cards
in practice, we introduce opponent modeling. Based on the
nature of high variance of this game, we originally propose
a coach network to pick valuable samples to accelerate the
training. The outstanding performance of our AI on the
Botzone platform proves the effectiveness of our improvement.

Although our DouDizhu AI performs well after adopting
these techniques, there is still room for improvement. First,
to show the effect of our improvement, we do not change the
architectures of neural networks in DouZero unless necessary.
We plan to try other neural networks such as ResNet [38].
Second, we find that there are still some cases where the model
can not make good decisions. We hope to combine search
with our AI to enhance the performance as search proves to
be effective in research about game AI [39], [40]. Finally, we
will investigate how to improve the sample efficiency with
experiment replay [41] as it still costs a lot of time even
utilizing our coach network. In addition, we will also try to
transfer our methods to other games for stronger game AIs.
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