
Space segmentation and multiple autonomous
agents: a Minecraft settlement generator
1st Sebastian S. Christiansen
University of Southern Denmark

Odense, Denmark
sebac17@student.sdu.dk

2nd Marco Scirea
Game Development and Learning Technology Lab

University of Southern Denmark
Odense, Denmark
msc@mmmi.sdu.dk

Abstract—This paper describes and illustrates a system de-
signed as part of a submission to the Generative Design in
Minecraft (GDMC) competition. It introduces an approach to
partitioning of a three-dimensional game space novel to the
domain of Minecraft settlement generation: traversal segmen-
tation. Moreover, the paper introduces a novel implementation
of a two-system brain model for autonomous agent simulation.
Traversal segmentation is used in conjunction with a grid-wise
segmentation method to produce a contextual representation of
the game space. This is used as input for the settlement generation
using autonomous agents, where each agent is controlled by
their system 1 impulses, and their system 2 reasoning-action
brain model. The two-system brain model is novel to autonomous
agent simulation and is described both theoretically and by its
implementation. The resulting settlements, generated by settlers
upon grid-wise segmentation of the traversable space, boasts
the properties; organic settlement evolution, and adaptability to
its surrounding terrain, though not realism when compared to
settlements procedurally generated by Minecraft.

Index Terms—Generative design, space segmentation, parti-
tioning, autonomous agent, two-system brain model, procedural
content generation, simulation.

I. INTRODUCTION

This paper introduces a joint set of space segmentation algo-
rithms and simulated set of autonomous agents as a submission
for the Generative Design in Minecraft (GDMC) Competition.
Minecraft is a voxel-based video game, in which the world is
made up of blocks with which the player interacts. All blocks
are placed in three-dimensional space, with a unique identifier
for its block type. The focal point of the GDMC competition
is to procedurally generate settlements within the game of
Minecraft. Algorithms can be applied to a Minecraft world
using the McEdit1 software, which supports Python scripts as
filters.

GDMC entries are graded based upon four categories:
adaptability, functionality, narrative, and aesthetics. The so-
lution proposed in this paper focuses on only the first two
categories of grading – adaptability and functionality – via
meaningful space segmentations and an approach to simulated
autonomous agents. The grading category of narrative remains
largely implicit through the placement of the settlement and
shelter clumping. Though implicit in the generated settlements,
our system proposes a pseudo-narrative that can be extracted
from every agent at any point during simulation.

1https://github.com/mcedit/mcedit

The goal of the GDMC competition is for AI (Artificial
Intelligence) to eventually rival the settlement generation
capabilities and believability of humans. Furthermore, all
implementations must finish settlement generation within 10
minutes for a 256x256 block region.

This paper will answer the following research question by
use of theory, technological descriptions and examples.

RQ: ”How can a sequence of space segmentation algo-
rithms be used as input for multiple autonomous agents
to generate a Minecraft settlement with realistic properties
inherent to its location?”

II. RELATED WORKS

This section discusses theories used within the described
system and examples of similar research.

A. AgentCraft

The paper ”AgentCraft: An Agent-Based Minecraft Set-
tlement Generator” [1] proposes a multi-agent simulation
approach to settlement generation which proves to lend itself
well, to fulfilling the third category of grading - Narrative
- as each agent lives a simulated life in real time while
cooperatively generating a settlement. Each simulated agent
can generate logs of actions and motivations which can then
be converted into a human-readable format and be included
as part of the settlement. A similar implementation of agent
Chronicles is utilised for the implementation of settlers in this
project, though settler logs for this project contain every action
with its reasons for all settlers, as opposed to only occasionally
entering agent actions into the town chronicle as done for
AgentCraft.

B. Traversal segmentation

In the paper ”Autonomous, Monocular, Vision-Based Snake
Robot Navigation and Traversal of Cluttered Environments
using Rectilinear Gait Motion” [4], the authors introduce a
snake-like robot to navigate obstructed and complex three-
dimensional environments using traversal segmentation to seg-
ment the space into traversable and non-traversable segments,
based on depth sensing. The concept of traversability segmen-
tation as described in the paper is directly applied to the target
domain of Minecraft, where the segmentation agent traverses
the Minecraft world assuming the movement set of a human



player and segments the game world into sections of cohesive
and traversable segments.

C. Procedural content generation

In the book ”Artificial and computational intelligence in
games” [7], the authors describe the goal of Procedural content
generation (PCG); the ability of systems to generate quality
content at multiple levels of granularity, while taking game
design constraints into account. While the authors describe
numerous challenges of PCG, one of which will be addressed
by this project; the challenge of search space construction.
This challenge is defined as the problem of defining the space
within which content is to be generated. The search space
construction must retain features of the underlying game space
with representations of reasonable structures. Both traversal
segmentation [4] and the grid segmentation briefly introduced
in AgentCraft [1] may lead to a reasonable representation of
the search space for PCG.

D. Agent brain model

In the book ”Thinking, fast and slow” [2], Daniel Kah-
neman describes a two-system representation (simplification)
of the human brain: system 1, and system 2. The system 1
brain is described as unconscious and automatic, a system in
which the agent (human) has no control, it is influenced by
natural desires which makes it impulsive in nature. System
2 represents the opposite and is described as conscious and
capable of reasoning, system 2 is the problem solver for the
problems identified by system 1. The book further details sys-
tem 1 and 2 behaviours more applicable in real-time systems,
such as priming, contextual analysis of events, and causality
analysis of events. In real-time systems these behaviours would
amplify the power of system 2, and would allow for further
analysis as compared to simplified stepwise simulation upon
a predetermined environment, as done in this project.

E. Multi-agent systems

In their book ”Handbook of Knowledge Representation”
[8, Chapter 24], the authors describe Multi-Agent Systems
(MAS) as a solution for knowledge representation, with agents
(usually software agents) reasoning about the environment.
Agents must be capable of reasoning about other agents in
the multi-agent system wherein agents may share a common
purpose. The authors further describe cognitive models of
rational agents, which entails formalised rational agents with
predictable transitions from beliefs and desires to actions.
This idea of cognitive models for rational agents fits perfectly
with the two system brain model described by Kahnemann
[2], wherein system 1 produces impulses (desires) which are
translated to actionable steps by system 2 (actions).

F. Decision trees

Finally, this project includes the use of a decision tree, the
book ”Data Mining and Knowledge Discovery Handbook” [5,
Chapter 9] describes decision trees as a classifier, expressed as
a recursive partition of the instance space. It is thus a directed
tree, with a ”root” node with no incoming edges, while all

subsequent nodes will have incoming edges. All paths through
the directed tree will terminate in a ”leaf” node containing
singular values. This is a straightforward method to formalise
an agent’s decision-making process in game development; in
this domain leaves usually represent behaviours rather than
values.

III. IMPLEMENTATION

The implementation of this project follows a pattern of
sequential operation, upon the underlying game space; Surface
detection, Traversal segmentation, grid-wise segmentation,
multi-agent simulation. Figure 1 visualises the sequence of
operations of the implemented segmentation flow and multi-
agent simulation upon the defined game space.

Fig. 1. Sequence diagram depicting the sequence of operations for the
implementation described in the coming sections.

Firstly in the flow, we focus on splitting the surface of the
selected area in the Minecraft world into segments to identify
cohesive areas of walkable surface land. A surface block is
defined as a visibly solid block on which the player can stand,
above which decorative blocks may exist, whereby ’decorative
block’ we mean any block with which the player has no game-
state altering interaction or collision. Figure 2 illustrates the
complexity of defining the surface of the Minecraft worlds.

Fig. 2. Typical example of obstructions found on the Minecraft world surface



The process for finding surface blocks is analogous to
creating a heightmap of the terrain, while ignoring deco-
rative blocks. This means that the 3D voxel representation
of the Minecraft world is reduced to a 2D top-down view.
As such, there is a loss of information regarding possible
building spaces located underneath overhangs. Since this type
of situation is uncommon within most Minecraft biomes (types
of environments defined within the game), we believe it’s an
acceptable loss of information. Moreover, this representation
has the double advantage of ignoring possible space within
underground caves and lowering the processing time signifi-
cantly.

The second part of the flow aims to produce a grid of square
regions within the largest cohesive surface area. Lastly settlers
are created and simulated in a step-wise manner upon the grid
of squares.

IV. TRAVERSAL SEGMENTATION

When implemented efficiently, space segmentation algo-
rithms can:

• Produce contextual understanding of the in-game world
for agents,

• Perform the human task of categorisation and grouping
of in-game spaces, and

• Enable dynamic behaviours within the classification re-
gions

As described in the related works section, traversal seg-
mentation has already been applied in the studies of robotics,
but the principle could easily apply to segmentation of three-
dimensional game spaces. The technique with which the
segmentation is achieved in the robotics studies does not apply
to the game space, as depth sensing cannot adequately describe
traversable space in Minecraft.

The segmentation agent will assume the move-set of the
player and perform a breadth-first search upon the set of
floor blocks detected prior. McEdit applies filters in a square
region which is manually selected, thus when initialising
the segmentation at the lowest point in the two-dimensional
representation of floor blocks in the square region, the search
space never exceeds:

√
w2 + d2

Where w is the width of the region, and d the depth of
the region. This follows the Pythagorean theorem for right
triangles. Figure 3 illustrates the search space at a given time
for a square region, the green pixel shows the origin block, the
red shows the last block identified. The Pythagorean properties
of the search space are self-evident, as the search space is
ensured to be rectangular for all selections, with a constant
moveset for the segmentation agent of single-block steps
(excluding diagonal steps), using breadth-first exploration of
neighbouring blocks. As this proposed algorithm assumes the
lowest possible point as the origin of search and the player
move-set as the mechanism of traversal, the search space will

be traversed linearly, with a maximal open set of non-visited
blocks as described earlier.

Fig. 3. Search space illustration

A set of traversable blocks found by the player move-set de-
fines a segment. While not illustrated above, imperfections in
the Minecraft world space stems from the stringent definition
of floor blocks as described in the prior section. Traversable
segments consist of connected surface blocks, where each
surface block included in a section is removed from the search
space. It is thus ensured that a surface block belongs to exactly
one segment, with a segment possibly consisting of a singular
block. Figure 4 displays a selected region from an arbitrary
Minecraft world, segmented by Traversal segmentation. Each
segment is shown using coloured blocks, one colour is used
per segment.

Fig. 4. Traversal segmentation on region with two landmasses, traversable
and cohesive segments are coloured individually for illustrative purposes.

The result of Traversal segmentation is a shallow tree, the
root of which being the floor block list. Each leaf of the root
contains a fully traversable set of walkable floor blocks. The
largest traversable segment is used throughout the subsequent
segmentation and simulation steps, as this segment has the
greatest potential for a vast settlement to be generated.

V. GRID SEGMENTATION

Inspired by the briefly introduced idea of grid-wise seg-
mentation in the AgentCraft paper [1], the square region seg-
mentation splits a specific set of blocks in three-dimensional
space into square regions of 5x5 blocks. The prior step in
the segmentation flow resulted in a shallow tree structure
with walkable segments of the root node as leaves. Grid-wise
segmentation utilises the largest segment from the traversal



segmentation process as input, it produces a 5x5 block grid
representation of the three-dimensional game space.

The search space for this segmentation agent is the provided
set of cohesive surface blocks, where each block is matched to
a predefined definition of a square. The agent will overlay the
square template at the block location to compute a set of blocks
that must be found in the search space for the square to be
valid. If all blocks within the template overlay are found in the
search space, then a complete square segment has been found.
All blocks found within a square template of a valid square
region are removed from the search space to avoid overlap.
Likewise, a block in the search space which did not lead to
a valid square is removed from the search space, as it cannot
be part of another square while not resulting in a valid square
region itself. To ensure that the former assumption remains
true, each iteration of the segmentation process matches the
square template to the lowest remaining point in the largest
traversable segment. The result is a list of square segments
identified on the largest traversable segment of the selected
area.

Figure 5 shows the resulting grid, overlaid the region from
which it was created, each colour indicates a separate grid cell.

Fig. 5. Grid-wise segmentation of an island

The runtime of this agent is O(n) as the entire search space
needs to be matched with the square template, but with the
assurance that every block is only checked once. In practice,
the runtime can be lower than O(n) proportionally to the lack
of obstructions in the space. Each valid square region removes
all blocks within; thus, one block can lead to a search space
reduction of 25 blocks.

VI. AGENTS

To simulate a ’realistic’ settlement generation, we introduce
agents (settlers) to act upon the environment: place housing,
build farms, and reproduce. The actions and movements of
settlers are designed to simulate realistic behaviour of real-
world settlers.

Settler behaviours is modelled as a set of impulses by
system 1, with reasoning and interpretation by system 2.

This model leads to a reasoning-action pattern internal to
each settler agent. To efficiently generate realistic settlements
with settler agents, multi-agent simulation is utilised. For
this purpose, n settlers will act upon the environment with
a lifetime of s steps. The grid-wise segmentation upon the
largest traversable surface segment becomes important here,
as settler understand grid squares as visitable locations upon
which to perform actions. The environment of the settler is
thus perceived through a discrete set of fully observable grid
segments. Each grid segment can be seen as dynamic since
other agents can act upon its state.

Figure 6 illustrates how each settler receives impulses from
system 1 and acts upon those impulses using system 2.
Naturally, the settler will have no direct influence over which
impulses system 1 gives as input to system 2.

Fig. 6. The two-system brain inputs and outputs

System 1’s impulses are expressed as a dictionary of
weighted one-word representations of needs of the settler.
While initially configured to arbitrary values, these could
be configured in accordance with availability of food in the
environment. The set of impulses are hunger, sleep, shelter,
and children. These weights associated to impulses vary
through the simulation based on the actions of agents and the
passage of time. Moreover, some needs will take precedence
over others: hunger being the primary need, followed by
shelter, rest, and reproduction.

System 2 represents logic and problem-solving of the settler.
It evaluates the impulses from System 1 through a decision tree
(see Figure 7), translating the highest weighed impulse into an
actionable goal with reasoning consisting of optimisations and
comparisons. For example, the impulse ’shelter’ leads system
2 to evaluate cells upon which to build a shelter, and then to
perform the building action.



Fig. 7. Decision tree for impulses and their resulting actions

A. Initial conditions

Once a settlement is instantiated, n settlers are placed on
the centre cell of the grid (see Section V). Fertility of a settler
is derived from a random variable with a normal distribution
N(1.9, 0.5). Likewise, the standard deviation of the random
variable representing the number of children produced, is also
derived from a normally distributed N(0.8, 0.25).

There are two main reasons for using a random variable
for both the fertility and the standard deviation of the birth
distribution: i) the randomness of both properties simulates
the randomness of humans, which we believe leads to a more
natural simulation result, and ii) it introduces a measure of
randomness into the settlement generation which we believe
would minimise the predictability of the results.

The initial set of settlers is simulated for 25 steps, or until
they have children. The children of settlers will be simulated
for 90% of their parents’ original simulation steps, to disable
an otherwise potentially infinite simulation.

B. Building shelter

A settler can build a shelter (5x5x5 blue cube) on any
grid cell if the cell is not already claimed by another settler.
Grid cells can be considered plots of land, as they have been
identified to contain a complete square of surface blocks, they
can thus contain a simple shelter for a settler.

C. Simulation management

The settlement class instantiates the initial set of settlers, and
is used to simulate the settlement generation through stepwise
simulation of all settlers. The settlement class handles; creation
and removal of settlers, children of settlers, houses built, plots
claimed, and roads. With a dedicated settlement class for
simulation and for back-reference by settlers, it becomes trivial
to simulate the settlement with a dynamic number of settlers.
As settlers die after s steps and can have a random number of
children with other settlers, it becomes important to manage
the life-cycle of settlers, simulating only those still alive, while
keeping references to houses already built. As houses belong
to the settlement while only being represented as a Boolean
flag within a settler.

D. Reproduction

Settlers can reproduce as a response to an impulse generated
when the basic needs of the settler is met. If another settler
has a shelter, they are then considered suitable mates. Having a
shelter represents having basic needs met, if only temporarily.
For each suitable mate identified from the settlement, the
initiating settler has a 0.5 probability of consent, after which a
set of new settlers is instantiated. The number of new settlers
is based upon a random variable with a normal distribution
N(1.9, 0.5), resulting in a gradual decrease of the population.
The initiating settler and the mate are both removed from the
settlement after reproducing. This is due to the limited imple-
mentation of settler behaviour, once a settler has reproduced
there will be no more new actions to take. It is therefore more
convenient to remove the settler and save computational time.

E. Decisions as a tree

Though not explored in detail, all settlers store a linked list
of decisions where each decision contains; a human-readable
text representation of the decision, the impulse upon which
system 2 acted and the weighted set of impulses. Once a
settler has lived out their life, one can generate a narrative
by traversing the linked list of decisions made. The Decisions
class contains the root decision; their birth, from which one
can traverse the linked list. The example below shows the
printable decisions of a settler.
Settler life example: ”I’m alive! → Went to hunt, and found
nothing. → Went to hunt, and found 1 food! → Successfully
built a shelter. → Got no consent from suitable mates. → Had
1 child.”

VII. RESULTS

This section describes an analysis of runtime requirements
of the system and the results of a quantitative experiment.

A. Experiment

A survey was carried out to evaluate resulting settlements
by their adaptability, realism and organic evolution properties.
Minecraft settlements (such as are generated by the base game)
were used for comparison to the ones generated through our
system. Since our current systems focuses on the settlement
layout and does not create actual houses, all houses were
homogenised to blue cubes.

The experiment includes three different biomes, selected
at random from a random Minecraft world as to evaluate
the adaptability of the system: Plains, Desert, Savanna. For
each biome participants were asked comparative questions
regarding an image of a Minecraft village and one from our
system. Martinez and Yannakakis [3] suggest that ranking
produces more consistent and reliable data when annotating
affect information. The order in which in-game and in-place
generated settlements were displayed (A and B) was altered
throughout the survey. Participants in the survey were asked:

• To which degree does x conform to the environment?

(x being settlement A then B) 5-point Likert scale



Fig. 8. Leftmost is a homogenised version of a Minecraft settlement generated
by the game, while the rightmost image is a settlement generated by the
proposed segmentation and stepwise simulation approach.

• Which of the two settlements above looks like a real

city? ”A”/”B”
• Which of the two settlements above could you imagine

to have evolved organically over time? ”A”/”B”
The following sections discuss the results obtained through

the experiment. As a shorthand we will refer to the criteria
related to the above questions with the labels: adaptability,
realism, and organic. For the analysis of the adaptability
criterion we provide an additional analysis which only con-
sider definitive answers (i.e., where the participant expresses
a clear preference). Under the definite choice constraint, the
data becomes Boolean: the answers are either “user preferred
the first set-up” or “user preferred the second set-up”. To
analyse this data a two-tailed binomial test is used, with the
null hypothesis that both categories are equally likely to occur
and, as we have only two possible outcomes, that probability is
0.5. The Binomial Effect Size Display (BESD) [6] is another
way of looking on the effects of treatments by considering
the increase of successes through interventions. This is an
interesting measure, as it elucidates how much of an effect
is created, in our case, by the usage of our generative system.

Figure 8 shows an example of the images from which
participants would evaluate the properties of settlements.

1) Demographics

The data collected corresponds to 66 participants, of these
41 were male, 19 were female, 5 reported as ”other” gender,
and 1 preferred not to say. The participants’ age has an average
of ≈ 23 years (stdev ≈ 5.8). Regarding other demographic
features, expressed in 5-point Likert scale (0-4), most people
self-reported a considerable experience with Minecraft (avg ≈
3, 05,mode = 4). Regardless of population subdivisions, the
results are not significantly different, possibly because of the
participants’ relative homogeneity.

2) Adaptability

indicate that settler generated settlements were consistently
evaluated to be more adaptive to their surrounding environ-
ment. Figure 9 displays the survey results of the degree to
which each settlement adapts to its environment. We can ob-
serve that the participants gave a higher frequency of positive
ratings for the generated settlements for the Plains (32/66 vs.

TABLE I
PARTICIPANTS’ PREFERENCES OVER THE ”ADAPTABILITY” CRITERION.
ALSO SHOWN ARE THE p-VALUES, CALCULATED USING A TWO-TAILED
BINOMIAL TEST, AND THE BINOMIAL EFFECT SIZE DISPLAY. p-VALUES

UNDER 0.05 ARE HIGHLIGHTED IN BOLD.

Minecraft Generated Binomial test BESD
Biome: Plains 24 37 1,24E-01 21.3%
Biome: Desert 15 41 6,86E-04 46.4%
Biome: Savanna 16 32 2,93E-02 33.3%

22/66) and Savanna biomes (41/66 vs. 21/66). On the other
hand, the difference is less marked for the Desert settlements
(10/66 vs 11/66), this may be the result of inherent difficulties
of settlement generation upon the terrain of the given biome,
for both our system and in-game Minecraft settlements.

Fig. 9. Evaluated degree to which each settlements conform to their
environment, partitioned by biome. Note that ’generated’ settlements are the
evaluations of our settlements, and ’game’ settlements are the evaluations of
settlements generated by the game.

We also tried to categorise the answers to this question as a
preference: a preference was recognised if the participant had
given two distinct ratings to the two images. As can be seen
in Table I, a strong statistical significance can be observed for
the Desert and Savanna biomes, but not for the Plains biome
(although, there remains a preference towards our generator).
For those two biomes the null hypothesis can be refuted and
a difference in distribution can be inferred between preferring
the two generators. This shows how our system is clearly
perceived as having better adaptability to the environment in
two of the three biomes. The BESD values reflect what can
be inferred by the p-values, especially highlighting how, while
we do not have a strong significance for the Plains biome, a
moderate increase in successes can be observed. Finally, it’s
worth noting that we can observe a surprisingly large amount
of non-preferences for the Savanna biome (see Table II), which
might be a hint that the two systems do not produce a clearly
different result in that scenario.



TABLE II
NUMBER OF EQUAL ANSWERS FOR THE ADAPTABILITY CRITERION,

DETERMINED AS WHEN THE PARTICIPANT GAVE THEM THE SAME SCORE.

No preference
Biome: Plains 5
Biome: Desert 10
Biome: Savanna 18

TABLE III
PARTICIPANTS’ PREFERENCES OVER THE ”REALISM” CRITERION. ALSO

SHOWN ARE THE p-VALUES, CALCULATED USING A TWO-TAILED
BINOMIAL TEST, AND THE BINOMIAL EFFECT SIZE DISPLAY. p-VALUES

UNDER 0.05 ARE HIGHLIGHTED IN BOLD.

Minecraft Generated Binomial test BESD
Biome: Plains 52 14 2,82E-06 -57.6%
Biome: Desert 21 45 4,27E-03 36.4%
Biome: Savanna 48 18 2,87E-04 -45.5%

3) Realism

As can be observed in Table III, we found statistically
significant results for all biomes in regard to the realism
criterion. It appears that the Minecraft algorithm creates set-
tlements that are perceived as more realistic than our system
in the Plains and Savanna biomes. The situation is reversed
for the Desert biome where our system is perceived as more
realistic but, as previously mentioned, that might be an artefact
of the desert biome being generally more difficult to handle
for both algorithms. The BESD values highlight that there
is a significant decrease in preferences towards our system,
especially when in the Plains biome.

4) Organic evolution

Finally, we can observe from Table IV that our system is
consistently perceived as creating more organic settlements.
These results are corroborated by both the p-values and the
BESD, showing a significant increase in preferences for our
system

B. Settlements on varied terrains

Figure 10 shows how settlements can be generated around
difficult terrain; lakes, trees, hills, mountains and how the
settlement houses adhere to its environment by following
terrain features. The figures also illustrate how the traversal
segmentation ensures that the settlement is generated upon
the largest landmass (see lower right picture). The approach
of traversability segmentation ensures that all possible travel
paths through the region within which the settlement is to be
generated can be traversed for road generation.

TABLE IV
PARTICIPANTS’ PREFERENCES OVER THE ”ORGANIC” CRITERION. ALSO

SHOWN ARE THE p-VALUES, CALCULATED USING A TWO-TAILED
BINOMIAL TEST, AND THE BINOMIAL EFFECT SIZE DISPLAY. p-VALUES

UNDER 0.05 ARE HIGHLIGHTED IN BOLD.

Minecraft Generated Binomial test BESD
Biome: Plains 20 46 1,86E-03 39.4%
Biome: Desert 21 45 4,27E-03 36.4%
Biome: Savanna 21 45 4,27E-03 36.4%

Fig. 10. Sprawling cities evolved over multiple generations of settlers in
various biomes with different inherent challenges

VIII. CONCLUSION

Traversal segmentation has proven particularly useful for
identifying traversable block sets. Using the largest block
set as input for the grid segmentation supplies a useful grid
representation of the largest landmass.

Floor block detection runs for only seconds even for
large selections of an arbitrarily complex Minecraft world
and compresses the useful block data from three-dimensions
to two-dimensions. This means that the complexity of any
further searches is greatly decreased, while still allowing for
conversion between two- and three-dimensional space.

Traversal segmentation as input for grid segmentation
leading to simulation of autonomous agents upon the grid
space, has generated adaptable and organic looking settle-
ments. Adapting to the inherent properties of their placement;
hills and reachable spaces. The system described provides
an interestingly organic settlement layout patterns which are
recognised as being more adaptive to a given environment.

The usefulness of a grid representation stems from the
minimisation of choices for settlers during simulation. Settlers
move in unpredictable patterns when searching for food or
for a plot of land on which to place a shelter. When moving
between grid cells the possible search space for specific



actions associated with cells is greatly reduced. While grid-
wise segmentation produces a useful board-game like set of
cells, the static nature of 5x5 cell identification leads to many
blocks being discarded and removed from the search space. A
possible improvement would involve identification of optimal
polygons within the search space.

Settler agents currently lack actions to take after reproduc-
ing and internal goals which would motivate individualistic
action. Internal goals could be seen as an internal understand-
ing of specific jobs, e.g. being a blacksmith or a barkeep. Any
internal goal could lead to unique housing and the creation of
workplaces. As described in section VI-E, settlers can output
a readable set of actions with associated reasoning for each
action.

The experiment discussed in Section VII-A provided sta-
tistically significant quantitative evidence to the adaptability
of settler generated settlements to their environments when
compared to in-game generated villages.

A. Survey results

The survey results for realism favoured in-game generated
over settler generated settlements in all cases but for the Desert
biome, this was likely due to the in-game settlement producing
a house in water, whereas the settler village remained on
land. Realism was an assumed property resulting from organic
settlement evolution over time, likewise the property was
assumed to hold for the generated roads and their adherence
to and integration into the game world. The survey results
showed a clear pattern as to the lack of realistic properties of
our settlements. This result was surprising since we assumed
a correlation between being ”organic” and ”realistic”. Organic
evolution over time was achieved by settler generated settle-
ments with survey results showing a clear bias towards settler
generated over in-game generated settlements.

B. Future work

Future work could explore the possibilities of generating
thorough chronicles of individual settler lives and analysing
the emerging narratives. Further work could investigate the
possibility of the children of settlers to improve/expand their
parents’ shelter. We expect this could create more variety
and possibly lead to ”architectural narrative”. Moreover, the
current implementation of the settlement behaves like a closed
system. Future works could inspect the impacts external
events, like simulated disease or natural disasters upon settlers.

REFERENCES

[1] Kreminski M. Iramanesh, A. Agentcraft: An agent-based minecraft
settlement generator, 2021.

[2] D. Kahneman. Thinking, fast and slow. Farrar, Straus and Giroux, 2013.
[3] Hector P Martinez, Georgios N Yannakakis, and John Hallam. Don’t

classify ratings of affect; rank them! IEEE transactions on affective
computing, 5(3):314–326, 2014.

[4] Chang A.; Feng S.; Zhao Y.; Smith J.; Vela P. Autonomous, monocular,
vision-based snake robot navigation and traversal of cluttered environ-
ments using rectilinear gait motion, 2019.

[5] Lior Rokach and Oded Maimon. Decision Trees, pages 165–192. Springer
US, Boston, MA, 2005.

[6] Robert Rosenthal and Donald B Rubin. A simple, general purpose display
of magnitude of experimental effect. Journal of educational psychology,
74(2):166, 1982.

[7] Julian Togelius, Alex J. Champandard, Pier Luca Lanzi, Michael Mateas,
Ana Paiva, Mike Preuss, and Kenneth O. Stanley. Procedural Content
Generation: Goals, Challenges and Actionable Steps. In Simon M.
Lucas, Michael Mateas, Mike Preuss, Pieter Spronck, and Julian Togelius,
editors, Artificial and Computational Intelligence in Games, volume 6 of
Dagstuhl Follow-Ups, pages 61–75. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, 2013.

[8] Wiebe van der Hoek and Michael Wooldridge. Chapter 24 multi-
agent systems. In Frank van Harmelen, Vladimir Lifschitz, and Bruce
Porter, editors, Handbook of Knowledge Representation, volume 3 of
Foundations of Artificial Intelligence, pages 887–928. Elsevier, 2008.


