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Abstract—The past decade has seen a rapid increase in the level
of research interest in procedural content generation (PCG) for
digital games, and there are now numerous research avenues
focused on new approaches for driving and applying PCG
systems. An area in which progress has been comparatively slow
is the development of generalisable approaches for comparing
alternative PCG systems, especially in terms of their generative
spaces. It is to this area that this paper aims to make a contribu-
tion, by exploring the utility of data compression algorithms in
compressing the generative spaces of PCG systems. We hope
that this approach could be the basis for developing useful
qualitative tools for comparing PCG systems to help designers
better understand and optimize their generators. In this work
we assess the efficacy of a selection of algorithms across sets
of levels for 2D tile-based games by investigating how much
their respective generative space compressions correlate with level
behavioral characteristics. We conclude that the approach looks
to be a promising one despite some inconsistency in efficacy in
alternative domains, and that of the algorithms tested Multiple
Correspondence Analysis appears to perform the most effectively.

I. INTRODUCTION

Procedural Content Generation (PCG) for games, the algo-
rithmic generation of digital artifacts, has in the past decade
developed into a lively and diverse research field, with a
proliferation of new works exploring novel implementations
and use-cases of PCG systems. As the volume of new work
has increased, it has become increasingly important to develop
methods for comparing alternative generators and their out-
puts. Without them it is hard to identify when a new approach
is a useful advance for the field, or for game designers to
select the best approach for their purposes. For some forms
of analysis this is more straightforward. PCG systems can be
deployed in settings with quantifiable goals such as providing
training material for Reinforcement Learning (RL) agents [1]
[2], or more niche ones like generating high-density weather
resistant cities [3]. For use-cases of PCG where the purpose of
the generated artifacts is to be consumed by players or design-
ers then comparing PCG systems is much more complex, as
the role the artifacts are playing is fundamentally a subjective
and artistic one. This makes it hard to assess the extent to
which a generator is achieving its intended purpose.

A central concept for when the goal is to compare PCG
systems in terms of their output, is that of ’generative space’.
This refers to the conceptual volume that represents ‘the
theoretical space of all possible output of a generator [4].

When the goal is to compare PCG systems in terms of
their output the underlying goal is to be able to draw useful
comparisons between their generative spaces, but this can be
extremely challenging. The total size of the spaces in terms of
the number of possible artifacts can be extremely large, such
as the over 18 quintillion procedurally generated planets that
No Man Sky boasted at launch [5]. The relationship between
the contents of a generative space and the parameterisation
of the generator can also be unpredictable, especially if there
are stochastic elements to the generation process. Furthermore,
the applicability of a given generative space to a given domain
can also be a subjective and artistic one. In some settings it
might be acceptable to have undesirable or even non-functional
artifacts in their generative space so long as the average output
is diverse and interesting enough, such as when a filtering
process is involved. For another, any unusable artifacts being
present may be unacceptable, for example in settings where
all generated content is ’necessary’ [6].

A common approach for aiding designers in understanding
generative spaces is to convert the extremely high dimensional
uninterpretable volume which contains the direct encodings
of the generated artifacts into something lower dimensional
and human understandable. The most common way of doing
this in prior research on game level generation is Expressive
Range Analysis (ERA) [7]. This approach visualises genera-
tive spaces by calculating and mapping emergent Behavioral
Characteristics (BCs) of the generated levels such as heuristics
for difficulty or aesthetic qualities. ERA has been widely
adopted as a metric for qualitatively comparing different
generative spaces (See [8], [9], [10] for recent examples).
However, it is also possible to directly compress the encoded
representations themselves to produce similar low dimensional
representations without the need to decide on BCs of interest
as in ERA. This is commonly done as an intermediary step in a
larger generative process, often to produce a low dimensional
form of levels that can be understood by a neural network
[11], [10], [12]. However we argue this direct compression
can be more intrinsically valuable for producing useful repre-
sentations of generative space which can help bridge the gap
between designers and understanding of their generators.

The approach we explore in this paper is to compress
high dimensional encoded representations of levels from a
generative space to produce two dimensional projections that



capture as much of the variance in the level set as possible.
This projection which represents the underlying generative
space can then be qualitatively understood and compared
to alternatives in terms of the types and variety of levels
that can be produced. If effective, this could let designers
more easily understand and compare generative spaces without
needing to make any decisions about the types of diversity
which are of interest. We explore this approach in the context
of generators for 2D tile-based games as there is a large
amount of prior work and research that we can leverage
such as level generators, pre-generated level corpuses [13],
[14] and research frameworks [15], [16]. By taking samples
of encoded generated levels from a system or selection of
systems and treating them as sets of variables in which each
variable represents a portion of the level, we can then use
dimensionality reduction algorithms to represent that set using
a smaller number of new compressed variables. The goal is
that this compression approach will make it significantly easier
to understand and compare the types and variety of content that
can be produced by alternative PCG systems in a way that is
easy to configure and domain agnostic.

To experimentally explore this approach we assess four
commonly used dimensionality reduction algorithms (PCA,
SVD, MCA and T-SNE) in the domain of compressing the
generative spaces PCG systems for three 2D tile-based games:
Super Mario, Lode Runner and Boxoban [13], an open source
version of Sokoban. To aid in the comparison between the
alternative algorithms, we assess the extent to which diversity
in the compressed low dimensional space correlates with diver-
sity in terms of behavioral characteristics (BCs) of the game
levels. We conduct analysis on the linear correlation between
the distances between levels in the compressed generative
space against the difference between their BCs. The more that
there is a correlation between the two, the more credibly we
can claim that we are compressing the generative spaces of
PCG systems while preserving behavioral information which
would be useful to game designers. While the idea of applying
dimensionality reduction algorithms to encoded game levels is
not itself novel, we believe this is both the first to use it to
compare alternative generative spaces, as well as the first to
explore the correlation between the compressed space and the
behavioral features of the levels.

The rest of this paper is laid out as follows. In Section II we
discuss the most relevant related work and how this project
builds on its ideas. In Section III we introduce and discuss
the approach used, and the system we have implemented to
assess it. In Section IV we explain the experimental design
of the experiments presented, and in Section V we present
the results from these experiments. In Section VI we discuss
the implications of the results, as well as the limitations of
the underlying approach and the future work that should be
done to further explore it. In Section VII we conclude that
this appears to a promising approach for understanding and
comparing generators which is worthy of further examination
in alternative domains and configurations.

II. RELATED WORK

The concept of generative space appears in a majority of
works focused on PCG systems, either directly or indirectly.
Depending on the researcher and the context, many different
terms can be used to refer to a PCG system’s generative
space. They can be referred to as ’search spaces’ in the
context of generate-and-test PCG systems [17], [18], or as
’possibility spaces’ in work using stochastic PCG systems
[3], [19]. Researchers investigating Quality-Diversity (QD)
algorithm based approaches for PCG often refer to ’behavioral
space’ as QD approaches rely on characterising generative
spaces in terms of emergent artifact behaviors. In each case the
underlying concept is largely the same. They are all different
ways of conceptualising the total set of possible outputs from
a PCG system. In this work we use the term ’generative space’
as it is widely understood as well as generalisable to different
domains.

The other concept used frequently in this paper is ’Behav-
ioral Characteristic’ (BC). This term is commonly used in PCG
works based on Quality-Diversity search (See [10], [20], [21]
for recent examples) and it refers to emergent characteristics
of generated artifacts which can be quantified to motivate the
search for output diversity. Similar concepts often appear in
PCG research under other names such as behaviors [22], or
more simply as ’metrics’ [23], [24]. These BCs can be derived
from the encoded artifacts directly [25], [23], or derived from
simulated play by an agent [21], [26].

The most prevalent method which aims to aid with the
understanding and analysis of full generative spaces is Expres-
sive Range Analysis (ERA). ERA was introduced by Smith
and Whitehead in 2010 [7] and has since become a dominant
method for understanding and comparing the generative spaces
of PCG systems. To use it a designer selects two or more
BCs of the generated levels which are then calculated for a
sample of generated levels. They can then be visualised in
lower dimensional space, typically on a 2D graph or heat map,
allowing designers to visualise the generative spaces of their
PCG systems in terms of BCs which are of most interest. This
can have many benefits, such as highlighting where BCs are in
conflict with each other and how different parameterisations of
the same generator change the location and size of the resultant
generative space in BC space [25], [23]. It is also used as
a heuristic for comparing the output diversity of alternative
generators [8].

The primary limitations of ERA are that it can only be
used to visualise two dimensions of diversity simultaneously,
and that it can be challenging to determine and quantify
what diversity is of interest. The first limitation can be offset
using the approach of Summerville [27] who used Corner
Plots to visualise multiple BCs simultaneously, though the
majority of works using ERA still opt to use sets of 2D
visualisations based on two BCs for ease of readability. The
second is more problematic as it speaks to the subjectivity
of analysing the underlying artifacts. The recent work of
Herve and Salge partly mitigates this weakness by exploring



the relationship between commonly used BCs in PCG and
expert evaluations of game content in the game Minecraft [24].
Their finding that there was significant correlation between
perceptual differences between game artifacts and commonly
used BCs bolsters the use of ERA, as well as the use of BCs
as a heuristic for generative space diversity. However it does
not address the issue that BCs and the heuristics that assess
them need to be redesigned for each new game domain. As we
will discuss later in this paper, the hope is that the approach
presented here can realise many of the benefits of ERA while
mitigating or avoiding these limitations.

The approach discussed in this paper relies on applying di-
mensionality reduction algorithms to representations of game
levels. This idea has been used as a preliminary or inter-
mediary step in several pieces of PCG research which were
direct inspirations for this work. In ’Sampling Hyrule’ from
Summerville and Mateas [28] principal component analysis
(PCA), a widely used dimensionality reduction algorithm, was
used to compress representations of Zelda levels to construct
a low dimensional representation of the space which could
be sampled from to generate new levels. In 2018 Justesen
et al used PCA to visualise how their generated level sets
were distributed in relation to levels from the original games
[1]. Variational Auto-Encoders, a neural network designed for
dimensionality reduction, have also become widely used in
PCG for level generation [29], [8]. These works and our own
relate back to the landmark paper ’Eigenfaces for Recognition’
[30], which found that PCA applied to raw image data of
human faces could be used as the basis for accurate facial
recognition software using only eight new variables. The in-
sight that image data containing thousands of variables can be
compressed while maintaining real world useful information
adds weight to the idea that a similar approach could work for
compressing generative spaces.

This work is also closely related to the emerging and
popular subfield of Machine Learning-based PCG approaches
for game levels, commonly referred to as PCGML (See
[31] for a recent overview of this field). These approaches
use neural networks to learn from sets of game levels and
generate new ones. These techniques have been applied to
many diverse goals, such as reproducing the style of expert
designers [32], learning user preferences [33] and generating
new levels for unseen games [8]. These works are related
to this one in two key ways. Firstly, they typically aim to
extrapolate useful information about game levels directly from
their representations, and their success adds credibility to the
idea that encoded forms of game levels contain sufficient
real-world useful information about their form and function.
Secondly, they are very relevant to the concept of generative
space. PCGML can be conceptualised as a process of learning
to reproduce a generative space in the case of training directly
from sets of game levels, or as the process of producing an
ideal generative space from diverse inputs as in the case of
learning from user preferences.

III. APPROACH

The goal for this approach is to represent sets of generated
levels from a PCG system in a compressed two dimensional
space, while maintaining enough information about the levels
such that levels close together in the compressed space have
similar BC values. To achieve this we apply dimensionality
reduction algorithms to sets of game levels to create new
uncorrelated variables composed out of combinations of the
variables that compose the encoded level representations. We
can then select the two new variables which explain the most
variance in the underlying level data and reproject the level set
in this space, giving us a two dimensional visualisation of the
original high dimensional generative space. This should help
designers to answer questions such as:

• Whether a pair of generators produce similar levels
• What kind of outliers are present in a generative space
• What effect re-parameterisation of a generator is having

on its output
The two requirements for this approach to be applied to set
of levels are that every level be the same size and that they
be assembled out of discrete parts in which each part can
have one of a discrete set of values. Asides from these two
requirements the approach is intended to be content agnostic
and applicable to alternative content representations without
significant configuration or domain specific tweaking.

The high level steps of the system we use for applying and
validating the approach are as follows:

To start, sets of levels are produced or sourced from each
system that we want to evaluate which serve as representatives
of the underlying generative space that they came from. In this
iteration of the system designed to work with tile-based 2D
game levels, each level is loaded as a 2D matrix of characters
in which each location in the matrix represents a tile in the
level, and each character represents the corresponding tile type
(i.e a solid block, empty space etc) that appears at that location.

The next step is to flatten the encoded levels into one
dimensional arrays. If the compression algorithm being used
uses categorical data then this is done in a single step, with
each row of the character matrix combined horizontally into a
single, ordered row. For algorithms which require numeric data
we compress them into a 1D one-hot matrix in two steps. First,
the character matrix is converted into a 3D one-hot matrix of
size height x width x number of tile types, with every value
set to 0 apart from those which indicate the tile type which
appears at each location, which are set to 1. This 3D matrix
can then be flattened to 1D in the same way as the categorical
data. This one-hot conversion is the same that is used in many
GAN-based PCGML works [32], [33]. The full set of 1D
representations can then be stacked on top of each other to
give a 2D matrix in which every row represents a level, and
every column represents a location in the original level, or
location and tile type in the case of one-hot encoding.

The compressed 2D matrix representing all levels to analyse
is now ready to have a dimensionality reduction algorithm
applied. In this work we implement and compare four dif-



ferent algorithms: Single Value Decomposition (SVD), Prin-
ciple Component Analysis (PCA), Multiple Correspondence
Analysis (MCA) and T-distributed Stochastic Neighbor Em-
bedding (T-SNE). While they all operate differently (See
Section IV-A), they are all designed to uncover underlying
structures and dimensions in data so that it can be modelled
using a new, smaller set of variables. The original data can
then be reprojected using the top two most explanatory new
variables produced by the respective algorithms. We note that
all algorithms tested apart from T-SNE quantify the amount
of variance explained by the generated variables. In typical
uses of dimensionality reduction algorithms this is extremely
important as it indicates how much of the mathematical
variance of the underlying data set is being captured by the
top n new variables. However, in this work we are interested
in the behavioral difference between the generated levels, not
in mathematical variance in their representations. As a result
it is not the mathematical variance explained that we report
on, but the amount that variance in the projected 2D space
correlates with BC variance.

With the generative space visualisations now generated we
can assess how effective each compressed projection is at
capturing behavioral information about the levels. To assess
this we calculate the linear correlation between BCs of the
levels and the levels’ relative positions in the compressed space
using Spearman’s rank coefficient. The claim we make is that
the more that proximity between levels in the compressed
space correlates with proximity in the levels’s BC values the
more credibly we can claim that the compression is conserving
useful behavioral information about the levels and the more
we are realising the benefits of ERA without many of its
limitations. To calculate this we take every possible pair of
levels and calculate the distance between their locations in the
compressed spaces, and the difference between the values for
commonly used BCs like number of enemies and linearity. We
then look for correlation between the two values by calculating
Spearman’s ρ, which we then use as our heuristic for the
performance of the compression algorithm that produced the
compressed space.

IV. EXPERIMENT DESIGN

In this section we provide an overview of the experimental
design used in this work, as well as the justifications for the
design decisions in the current implementation. The system
is implemented in Python and is available on GitHub at
https://github.com/KrellFace/Generative-Space-Compression

A. Compression Algorithms

We implement four data compression algorithms in this
work: PCA, SVD and MCA. Kernal PCA [34] was also
implemented but was found to not meaningfully outperform
PCA in any configuration. For PCA we use the standard imple-
mentation provided by sklearn in its decomposition module.
For SVD we use the TruncatedSVD implementation from
the same module, though we note that this works identically
to standard SVD. For T-SNE we use the implementation

from the manifold module of sklearn and for MCA we use
the implementation from Max Halfords prince module found
at: (https://github.com/MaxHalford/prince). These four algo-
rithms were chosen for several reasons, including their ease of
implementation and the wide number of domains in which they
have demonstrated usefulness [35]. More specifically, PCA
was chosen as it has demonstrated utility at compressing game
levels in prior works [1], [28] and it is commonly accepted as
’the most important linear dimensionality reduction technique’
[36]. SVD was chosen as it operates similarly to PCA except
without first centering the data and we wanted to observe the
influence of this on the final data. MCA is used as it is regarded
as the categorical data counterpart to PCA [37], and seeing as
the levels are encoded as categorical rather than continuous
data it could allow for similar analysis while avoiding a pre-
processing step of converting to a one-hot matrix. Finally, T-
SNE has also demonstrated utility in game level analysis [8]
and is regarded as well suited specifically for visualising high
dimensional datasets with nonlinear structures [38] . However,
there are many alternative algorithms with similar goals and
outputs that could be used here [35], and future work could
usefully explore these further.

B. Game Domains

This work assesses generative spaces from three different
game domains: Super Mario, Sokoban and Lode Runner, using
open source level corpuses for each game.

For Super Mario we make use of the Mario AI Bench-
mark, an open source platform for AI research based on
Super Mario [15]. The most up to date version of the plat-
form can be found at (https://github.com/amidos2006/Mario-
AI-Framework) courtesy of Ahmed Khalifa, and it comes
packaged with pre-generated level sets from a selection of
9 generators which were generated as part of the work of
Horn et al [39], along with 15 levels from the original game.
Each generated set comes with 1000 generated levels. All
9000 generated levels are used in our analysis, while the 15
from the original game are excluded as they are of varying
sizes unlike the generated sets which are all 16 by 200 cell
grids. We use a simplified encoding system in which every tile
value is mapped to one of five types: Empty Space, Enemy,
Solid, Pipe and Reward. A variety of generative approaches
are represented in the level sets used [39], and the Super
Mario levels are the largest tested in terms of tile count by
a significant margin. This should present the generative space
compression approach with a challenge distinct from the other
two domains, in which relatively distinct generative spaces are
localised in large and sparse high dimensional spaces.

For Sokoban we use level sets provided as part of Guez et
al’s research into Boxoban using an open source variant called
Bokoban [13]. Three sets of levels are provided: ’unfiltered’,
’medium’ and ’hard’. The unfiltered set were generated by
Guez et al using the approach of Racaniere et al [40], and the
other two were generated and selected the approach of Guez
et al explained in [41]. For the medium set 500,000 levels
are available, stored in sets of one thousand in individual text



files. For the unfiltered set one million levels are available, also
stored in individual text files containing a thousand levels. The
hard set contains 3,332 levels. We use the same encoding used
in the original work, with the only tile types available being
solid block, empty space, pushable block, goal and player
spawn location. The medium and hard sets were selected
based on the failure of trained reinforcement learning agents at
solving them. This means that the primary difference between
the sets is not in the generative approach used in making
them, but in the difficulty of solving them. This provides
an interesting challenge for compressing the generative space
of the three sets, as while they present significant variety in
the gameplay experience provided in terms of their difficulty,
they were all generated using a similar underlying approach
before being filtered based on difficulty. This combined with
the relatively small encoding sizes, with the smallest total size
and tile variety of the three game domains, makes them an
appealing challenge for testing this approach.

For Lode Runner we assess only the 150 levels found in the
original game. These are retrieved in an encoded form from
the Video Game Level Corpus (VGLC) [14], an open source
repository of encoded tile-based game levels. We note that this
means in this case we are not in fact assessing a generative
space as this set was hand authored rather than coming from
a generator. However, as there is little conceptual difference
in compressing a generative with compressing a space of
hand authored levels we feel that this will still be a valuable
experiment. The small size and high aesthetic diversity of the
level set also provide a different challenge to the compression
technique than that provided by the other two game domains.
We use the same encoding system as the VGLC in this work.

C. Level Set Selection

For the Super Mario and Boxoban domains, a subset of
4,000 levels are randomly selected for each experimental
run and this selection is evenly distributed between the nine
individual generator sets for Super Mario, and the three sets
for Boxoban. A subset is taken for these domains to limit
the computational resources required. A large sample size
was chosen to increase the credibility of the Boxoban and
Super Mario results as a larger set is presumed to be more
representative of the underlying generative spaces than a small
sample would be. However, initial experimentation as well as
the Lode Runner results suggest that lower sample sizes could
still produce effective results. For Lode Runner the full 150
levels are used in every run.

D. Behavioral Characteristics

For each game domain we calculate between two and three
BCs (See Table I). Each BC was selected for both being
quick to calculate based on an encoded representation. Both
linearity and enemy count have appeared frequently in prior
work using ERA [7], [42] and have also been found to reflect
player perceptions [43]. Contiguity, a measure which rewards
solid blocks being adjacent, has has appeared in prior work
using QD algorithms in PCG for tile-based games [44] and is

TABLE I
BEHAVIORAL CHARACTERISTICS

Game BC How Calculated (Count)

Mario Empty Space (ES) Empty Tiles
Linearity (Lin) Horizontally Adjacent Solid Tiles
Enemy Count (EC) Enemy Tiles

Sokoban Empty Space (ES) Empty Tiles
Contiguity (Contig) Adjacent Solid Tiles

Lode Runner Empty Space (ES) Empty Tiles
Linearity (Lin) Horizontally Adjacent Solid Tiles
Enemy Count (EC) Enemy Tiles

intended to be a heuristic for how restricted player movement
is in the level. Empty space amount, and other similar block
count or ratio based BCs have also appeared in prior works
implementing ERA [45].

E. Linear Correlation

For every combination of compression algorithm and game
domain BC we calculate the difference between the values
for every pair of levels in each set. For the compression
algorithm space this is the vector distance between the level
pairs respective position in the compressed projection. For the
BCs we take the absolute difference between the values for
the level pair. We then calculate the linear correlation between
these values for every level pair, using Spearman’s ρ as we do
not expect there to be a normal relationship between the two
sets of values.

F. Number of Runs

To account for the influence of the random selection of
levels for Super Mario and Boxoban, as well as the stochastic
nature of T-SNE, ten runs are conducted for each game and
algorithm.

G. Computational Resources Used

All experiments were run on an Intel i5-10310U CPU using
a single thread and took approximately four hours to complete.

V. RESULTS

Fig. 1. Best Individual Boxoban Compression. T-SNE Run 9. Average BC
Compression Correlation: 0.0380. Presented with the most proximal and most
distant pair of levels in the compressed space



Fig. 2. Best Individual Super Mario Compression. MCA - Run 7. Average BC Compression Correlation: 0.497. Presented with the most proximal and most
distant pair of levels in the compressed space

TABLE II
AVERAGE SPEARMAN’S RHOS AND ASSOCIATED P VALUES FOR EACH COMPRESSION ALGORITHM AND GAME BC. PRESENTED AS MEAN AVG +-

STDDEV. BEST VALUES FOR EACH GAME BC HIGHLIGHTED IN BOLD

PCA SVD MCA T-SNE
Spearman’s ρ P Value Spearman’s ρ P Value Spearman’s ρ P Value Spearman’s ρ P Value

Mario ES 0.503±0.011 0±0 0.530±0.005 0±0 0.765±0.003 0±0 0.303±0.006 0±0
Lin 0.417±0.005 0±0 0.382±0.006 0±0 0.497±0.006 0±0 0.494±0.005 0±0
EC 0.330±0.003 0±0 0.301±0.002 0±0 0.295±0.004 0±0 0.288±0.006 0±0

Boxoban ES 0.024±0.010 0±0 0.034±0.011 0±0 0.049±0.010 0±0 0.026±0.010 0±0
Contig 0.019±0.010 0.017±0.052 0.032±0.010 0±0 0.046±0.010 0±0 0.020±0.009 0.011±0.034

Loderunner ES 0.656±0 0±0 0.818±0.000 0±0 0.582±0.000 0±0 0.133±0.025 0±0
Lin 0.440±0 0±0 0.557±0.000 0±0 0.440±0.000 0±0 0.046±0.032 0.036±0.115
EC -0.011±0 .266±0.001 0.008±0.000 0.408±0.0 0.008±0.000 0.390±0.005 0.042±0.042 0.121±0.260

Fig. 3. Best Individual Lode Runner Compression. SVD Run 4. Average BC
Compression Correlation: 0.461. Presented with the most proximal and most
distant pair of levels in the compressed space

VI. DISCUSSION

Overall we would describe the experimental results as
promising but inconsistent. Across all game domains the high-
est performing compression algorithms produced compressed
spaces which correlated with the behavioral characteristics
assessed. However, there were areas in which the approach
struggled to produce meaningful compressions. For the Enemy
Count BC for Lode Runner the approach was unable to pro-
duce compressed spaces that correlated despite the approach
otherwise performing well in that domain, and in the Boxoban
domain the approach under-performed across all BCs.

In terms of individual algorithm performance, MCA ap-
peared to perform the most effectively out of the algorithms
tested, producing the strongest correlations with BCs in 3 out
of 8 domains. In this regard it only marginally outperformed
SVD and T-SNE, which performed the best in 2 out of 8
domains. It also notably under-performed in specific domains,
such as the Enemy Count BC for Mario, a phenomenon
that requires more investigation to understand. In general
while MCA performed the best, we would argue that the
inconsistency of results should motivate more experimentation
before alternatives are rejected.

Across the game domains assessed there was significant
variance in performance of the approach. In both Super Mario
and Lode Runner domains generative spaces which correlated
substantially with BCs were found. In the Boxoban domain the
performance for all algorithms and both BCs was significantly
lower, with the best performing compression algorithm pro-
ducing average Spearman’s correlation coefficients of <0.05.

We believe there are two possible reasons for the Boxoban
under-performance. Firstly, the levels may be too similar to
each other. Though 5000 levels were assessed for each run all
three sets come from a similar generative approach and share
features such as having exactly four movable boxes and goals.
This is supported by the generative space visualisation (Fig.
1) which indicates substantial overlap between the three level
sets, in contrast with the Super Mario visualisation (Fig. 2) in



which the levels from different generators occupied different
spaces. The primarily difference between the three sets being
their difficulty may simply not be present or detectable using
the approach presented. The second possible reason is that the
approach may perform worse in domains with smaller level
encodings. Boxoban had the lowest number of tile types at
only 5, and the levels were the smallest tested at only a 10 by
10 grid. More experimentation is required to explore whether
there’s a correlation between size of encoded level and the
efficacy of the generative space compression.

Furthermore, the Boxoban results highlight a general weak-
ness with the approach, which is the inability to detect
structural similarities which appear in different locations of
the level. To a human observer, the pair of levels which were
flagged as being the most dissimilar in the compressed space
(Fig. 1) appear to be substantially similar. However, as the
similar structures appear in two different halves of the level
they are incorrectly identified in the compressed generative
space as being completely dissimilar.

As noted the approach also under-performed in the leniency
BC within the Lode Runner game domain. We suspect this was
a result of a combination of the relative paucity of input level
data combined with the relative sparseness of enemies within
the levels. The Lode Runner input set is both small at only
150 levels. Therefore it follows that the large scale structural
differences between the levels would account for the majority
of the variance within the set, leading to the low correlation
with leniency due to the relatively low influence of enemy
placement on the overall variance.

A. Limitations and Future Work

A primary limitation of this work is its focus on 2D tile-
based games. While the focus on this domain made sense
pragmatically due to the abundance of prior work we could
use, tile-based games only make up a small portion of the
contemporary games market. It is also limited by the small
number of game domains assessed, and the fact that only the
Mario level corpus contained sets from different generators.
Future work could benefit from exploring this approach in
domains with more complex content representations, with
content produced from a wider range of similar and dissimilar
generators. A first step could be applying it to the generative
spaces of Minecraft map generators, as it is a popular 3D game
whose maps are comprised of typed chunks.

A practical limitation of the approach presented is the
requirement that every encoded level have the same encoded
size. Future work could explore the approach used by Sum-
merville and Mateas which used a graph cutting procedure to
scale up the smaller Zelda levels to the size of the larger ones
[14], though this necessarily involves creating new informa-
tion that is not present in the original representation. Future
work could usefully explore these and alternative methods for
applying our approach to game levels of varying size.

As discussed when noting the aesthetic similarity of the two
Boxoban levels flagged as being most dissimilar (Fig. 1), our

approach can be weak in detecting structural similarities be-
tween levels. Future work could explore the use of alternative
compression systems such as Convolutional Neural Networks
that handle location independent structural similarity.

In this work we used correlations between the compressed
spaces and BCs as the heuristic for whether the compressions
were capturing useful information about the game levels.
However, it would be valuable to explore this further with user
studies to examine whether proximity between levels in com-
pressed generative space correlates with player perceptions of
the similarity of the levels. If they do correlate this would be
robust evidence that the generative space compression retains
useful information about the generative spaces.

In future work it will also be important to explore how
best to make use of our generative space projections, ideally
in cooperation with experienced level designers. While the
original motivation for this project was to be able to assess the
output diversity of a generative system, if the projections are
sufficiently information rich and human understandable they
could be more widely useful. For example, future work could
explore their utility as the basis for mixed-initiative design
tools, or automatic generator parameter tuners by allowing
designers to target specific areas of the projected space.

VII. CONCLUSION

In this paper we have presented an approach for compress-
ing the generative spaces of PCG systems using dimensionality
reduction algorithms. The approach appears to be a promising
basis for developing generative space visualisation and com-
parison tools as despite its simplicity it was able to produce
generative space projections which correlated significantly
with behavioral features. Of the algorithms we tested MCA
performed the most reliably, but not by a margin that elim-
inates alternatives from further investigation. Though more
work is required to confirm the efficacy of this approach in
more complex spaces, we hope this work could form the basis
for new qualitative tools for aiding designer understanding of
the generative spaces of PCG systems.
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