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Abstract—In a multi-agent competitive domain, the agent
needs to anticipate the opponent’s behavior and select a suitable
policy to exploit the opponent. In this work, based on the
BPR (Bayesian Policy Reuse) framework, we further assume the
opponent may determine its policy depending on its previous
observation. To deal with opponents of this kind, we discuss
three different approaches for the agent, including learning from
scratch, reasoning from experience, and reasoning accompanied
by learning. The “reasoning accompanied by learning” approach
turns out to be the most favorable method, in which the agent
executes an iterative process that alternates between “updat-
ing the belief of each pre-collected model” and “progressively
learning the opponent’s policy selection pattern” based on the
observed data. In our experiments, we simulate a simplified
batter vs. pitcher game. The experimental results show that
the “reasoning accompanied by learning” approach does receive
a larger averaged utility value than the learn-from-scratch
approach and the reason-from-experience approach.

Index Terms—Bayesian Policy Reuse, Bayes rule, opponent
exploitation, opponent modeling, non-stationary opponent.

I. INTRODUCTION

Reinforcement learning (RL) has been employed to solve
game playing [1]–[3] in stationary environments. To deal
with non-stationary opponents, opponent models are typically
incorporated into the RL framework [4]–[6]. Moreover, to
quickly adapt to the opponent’s changing behaviors, it would
be more efficient if the agent can obtain some prior knowledge
of the opponent’s behaviors before the game. For example,
Maruan et al. [7] regards the non-stationarity of an opponent’s
policy as a sequence of stationary tasks and adopts a meta-
learning algorithm [8] to learn the Markovian transitions
between consecutive tasks so that the agent can quickly adapt
to similar non-stationarities at the gaming time.

On the other hand, the Bayesian Policy Reuse (BPR)
framework [9] selects one responding policy from a pre-
learned policy library when facing an unknown task. Based
on the same concept, BPR+ [10] and DPN-BPR+ [14] further
treats the task as the opponent’s policy. In these two BPR-
based methods, the agent continuously updates the belief of
the opponent’s policy via the Bayes rule and then adopts a
suitable policy accordingly. However, they only assume the
opponent adopts a very simple policy changing pattern, which
randomly switches its policy among several stationary ones. To
be more realistic, Yang et al. [11] assume the opponent may

adopt either random switching or BPR reasoning technique
to play the game and propose the Bayes-ToMoP framework
that incorporates the concept of Theory of Mind (ToM) [12],
[13] into the BPR framework to deal with such kind of oppo-
nents. However, Bayes-ToMoP framework only assumes the
opponent has two possible policy selection patterns: random
switching or BPR, and this framework uses a heuristic method
based on the winning rate to detect the opponent’s policy
selection pattern.

In this work, we make a more reasonable and realistic
assumption that the opponent may select its policy depending
on its previous observation. Based on this assumption, we
present three approaches to deal with opponents of this kind.
In the first approach, the agent learns the opponent’s policy
selection pattern from scratch. In the second approach, the
agent reasons the opponent’s policy selection pattern based
on pre-collected models. In the third approach, the agent
combines both learning and reasoning approaches to infer the
opponent’s policy selection pattern. In the next section, we first
explain the BPR framework, which works as the backbone of
our approaches.

II. BACKGROUND

The Bayesian Policy Reuse (BPR) framework was originally
proposed in [9] for an agent to choose its policy π from a
pre-learned policy library Π, when facing an unknown task
τ ∈ T . The task τ is defined as a Markov Decision Process
and π(a, s) represents the probability of choosing the action
a given the state s. That is, π(a, s) = p(a|s).

A BPR-based agent is equipped with an observation model
p(σ|τ, π) and a performance model p(U |τ, π). The observation
model p(σ|τ, π) represents the probability distribution of σ
when the agent adopts the policy π to deal with the task τ .
Here, σ ∈ Σ denotes the information observed by the agent,
such as the state-action-state tuples, instantaneous rewards, or
terminal utility. On the other hand, the performance model
p(U |τ, π) represents the probability distribution of the utility
U when the agent adopts the policy π to deal with the task τ .
When facing a new task τ∗, a BPR-based agent continuously
updates the belief β(τ) through episodes, where β(.) denotes
the probability distribution of τ over the task space T that
measures the similarity between τ∗ and τ in T . After the



Fig. 1: An illustration of β(σ, τ) updating process.

episode at t, based on (σt,πt), and the observation model
p(σ|τ, π), the BPR-based agent updates the belief βt(τ) based
on the Bayes rule:

βt(τ) =
βt−1(τ)p(σt|τ, πt)

Σ
τ ′∈T

βt−1(τ ′)p(σt|τ ′, πt)
. (1)

With the belief βt(τ), there are several policy selection
methods in order to select the best policy. For example, the
agent may select a policy πt+1 from its policy library Π that
maximizes the expected utility U under the belief βt(τ) and
the performance model p(U |τ, π). That is,

πt+1 = argmax
π∈Π

Σ
τ∈T

βt(τ)E[U |τ, π]. (2)

Based on Equations (1) and (2), a BPR-based agent can
efficiently respond to the unknown task, relying on a small
number of episodes. With the same concept, BPR+ [10] and
DPN-BPR+ [14] further treat the task τ as the opponent’s
policy and assume the opponent randomly switches its policy
among several predefined policy candidates for every few
episodes. As the opponent switches its policy τ , the BPR-
based agent can gradually adjust its belief β(τ) based on (1)
and thereby exploit the opponent.

Basically, the updating rule in (1) is based on a fundamental
assumption that the opponent’s current policy is the same as
the previous policy and hence the agent can keep updating its
belief on the opponent’s policy based on every observation.
However, in real life, an opponent may change its policy
quickly during the game. In this situation, the updating rule
in (1) becomes ineffective. In our work, instead, we assume the
opponent may determine its policy τ t based on the previous
observation σt−1. This assumption is more realistic than the
assumptions in the BPR variants. In the next section, we
explain more details of the proposed framework.

III. BAYESIAN OPPONENT EXPLOITATION

In the proposed framework, we model the opponent’s policy
selection pattern by the form τ t = fop(σ

t−1), where the initial
selection τ1 is made in a random way. In this work, we present
three different approaches. In the first approach, we assume
the agent has no information of fop(.) at all and has to learn
fop(.) from scratch. In the second approach, we assume the
agent has a pre-collected library that contains several models
of the opponent’s policy selection pattern and the agent aims
to infer fop(.) by referring to the library. In the third approach,

we combines the above two approaches and assume the agent
may not only refer to the pre-collected library but also try to
learn fop(.) from scratch at the same time.

A. Approach 1: Learning from scratch

In the first approach, the agent aims to infer the opponent’s
adopted policy τ ∈ T under each observation σ ∈ Σ. Here
we model the agent’s belief of the opponent’s current policy
τ based on the previous observation σ as β(σ, τ) = p(τ t =
τ |σt−1 = σ); that is, β : Σ×T → [0, 1]. Besides, we initialize
β(.) as a uniform distribution of τ for every possible value of
σ.

During the game, after observing (σt, πt) at episode t,
the agent updates its belief of τ under the condition that the
previous observation is σ = σt−1 based on the Bayes rule,
which can be expressed as

β(σ, τ)← β(σ, τ)p(σt|τ, πt)
Σ

τ ′∈T
β(σ, τ ′)p(σt|τ ′, πt)

, (3)

where σ = σt−1.
After that, the agent predicts the opponent’s next policy via
β(σt, τ) and selects πt+1 based on the following equation:

πt+1(σt) = argmax
π∈Π

Σ
τ∈T

β(σt, τ)E[U |τ, π]. (4)

As the episode proceeds, the agent dynamically updates
β(σ, τ) via (3). As t becomes large, β(σ, τ) is expected to
approach the real β(.), which is defined as

βreal(σ, τ) =

{
1, τ = fop(σ)

0, τ 6= fop(σ)
. (5)

That is, the agent may eventually get a close prediction of the
opponent’s next policy. With the predicted policy, the agent
can select the optimal policy πt+1 to exploit the opponent.
An illustration of the β(σ, τ) updating process is illustrated
on Figure 1.

B. Approach 2: Reasoning from experience

In this approach, we assume the agent has obtained
n models of β(.) beforehand to form a library B =
{β1, β2, β3, ......, βn}. As the game proceeds, the agent contin-
uously reasons which βi in B is most similar to the opponent’s
policy selection behavior based on the observed σ, together
with the agent’s policy π. With this reasoning process, the
inference of fop(.) becomes a classification problem to classify



the opponent’s policy selection behavior into one of the β
models in the B library. Here, we no longer need to learn
fop(.) from scratch and this speeds up the inference process
greatly.

Here we use γ(.) to represent the agent’s belief over βi
in B and initialize γ(.) with a uniform distribution. In our
formulation, after observing (σt, πt) at the episode at t, the
agent updates γ(βi) by

γ(βi)←
γ(βi)L(βi|σt, πt, σt−1)
n

Σ
i=1

γ(βi)L(βi|σt, πt, σt−1)
, (6)

where L(βi|σt, πt, σt−1) represents the likelihood function of
βi.

To derive L(βi|σt, πt, σt−1), we combine the model
βi(σ

t−1, τ) and the model p(σt|τ, πt) and marginalize the
variable τ out. That is, we define L(βi|σt, πt, σt−1) as
Σ
τ∈T

βi(σ
t−1, τ)p(σt|τ, πt). Based on this formulation, (6) can

be rewritten as

γ(βi)←
γ(βi) Σ

τ∈T
βi(σ

t−1, τ)p(σt|τ, πt)
n

Σ
i=1

γ(βi) Σ
τ∈T

βi(σt−1, τ)p(σt|τ, πt)
. (7)

With (7), the agent predicts τ t+1 by taking the weighted
average of βi(σt, τ), with the weight γ(βi), and selects πt+1

via the following equation:

πt+1(σt) = argmax
π∈Π

Σ
τ∈T

[
n

Σ
i=1

γ(βi)βi(σ
t, τ)]E[U |τ, π]. (8)

As the episode proceeds, the agent adaptively updates γ(βi).
As t becomes large, γ(.) will be inclined to the βi in B which
is most similar to βreal than the other models. If βreal is not
too far from this βi, the agent may still effectively deal with
the opponent. However, we would expect this βi cannot predict
the opponent’s policy as accurately as the learn-from-scratch
approach in Approach 1 does. For the fortunate case that βreal
happens to be the same as the model βi in the library B,
γ(βreal) will be triggered to approach 1. In this case, the term
n

Σ
i=1

γ(βi)βi(σ
t, τ) in (8) can be simplified to βreal(σt, τ) and

the agent can successfully predict the opponent’s next policy
and select the optimal π to exploit the opponent.

Here, in a conceptual way, we compare the behavior of the
learn-from-scratch approach in Approach 1 and the reason-
from-experience in Approach 2. With the learn-from-scratch
approach, the agent can eventually learn the opponent’s policy
selection function fop(.) as t becomes large. However, the
learning process takes time. On the other hand, with the
reason-from-experience approach, the agent can quickly select
the most similar βi in B as the opponent’s policy selection
pattern. However, as t becomes large, the agent’s received
utility may be restricted to a lower value if βreal does not
belong to the library B.

In Figure 2, we illustrate the agents’ received utilities versus
t of these two approaches. For the reason-from-experience
approach, as shown in blue, its received utility value increases

quickly in the beginning episodes but is restricted when t is
large. On the other hand, for the learn-from-scratch approach,
as shown in black, its utility value increases slowly in the
beginning episodes but will reach a higher value than the
reason-from-experience approach as t becomes large.

Now, if we may combine the advantages of these two
approaches, the agent’s received utility value versus t curve
may look like the red line in Figure 2. This “Reasoning
accompanied by learning” approach is to be explained in the
next subsection.

Fig. 2: An illustration of the agents’ utility versus t.

C. Approach 3: Reasoning accompanied by learning

Similar to Approach 2, we assume the agent has obtained
the library B before the game. Apart from this, we add in
an extra adjustable model β∗(.) into the B library. During
the game, β∗(.) is iteratively adjusted based on (3) to learn
fop(.). On the other hand, the agent also updates γ(βi) to infer
fop(.) from the extended B library. The flow of the proposed
inference process is described in Algorithm 1.

Algorithm 1 Reasoning accompanied by learning

Require: agent’s policy library Π, opponent’s policy li-
brary T , opponent’s model library B, performance model
p(U |τ, π), observation model p(σ|τ, π).

1: Add β∗(.) into B and initialize β∗(.) with a uniform
distribution of τ for every value of σ

2: Initialize γ(.) as a uniform distribution
3: Randomly select π1 from Π
4: for episodes t=1 to N do
5: adopt πt to play and observe σt

6: γ(βi)←
γ(βi) Σ

τ∈T
βi(σ

t−1,τ)p(σt|τ,πt)

n+1

Σ
i=1

γ(βi) Σ
τ∈T

βi(σt−1,τ)p(σt|τ,πt)

7: β∗(σ, τ)← β∗(σ,τ)p(σt|τ,πt)
Σ

τ′∈T
β∗(σ,τ ′)p(σt|τ ′,πt) , where σ = σt−1

8: πt+1(σt) = argmax
π∈Π

Σ
τ∈T
{
n+1

Σ
i=1

γ(βi)βi(σ
t, τ)}E[U |τ, π]

9: end for

With the “reasoning accompanied by learning” algorithm,
the agent updates γ(βi) and β∗(σ, τ) via (σt,πt) alternately at
the episode at t and then selects πt+1 based on the weighted

prediction of βi(σt, τ),
n+1

Σ
i=1

γ(βi)βi(σ
t, τ). As more and more



observation becomes available, γ(βi) and β∗(σ, τ) will be

adjusted to make the prediction
n+1

Σ
i=1

γ(βi)βi(σ
t, τ) match the

opponent’s adopted policy. After that, the agent may select the
optimal policy to exploit the opponent.

Next, we give an example and consider two extreme cases

to explain the weighted prediction
n+1

Σ
i=1

γ(βi)βi(σ
t, τ). In this

example, we assume there are three β models, β1, β2, β3,
in the library B and we add in one extra model β∗ to form
the extended library, where β1, β2, and β3 remain unchanged
while β∗ continues to be updated via the learning-from-scratch
process. In Case 1, we assume βreal = β3; while in Case 2,
we assume βreal is different from β1, β2, and β3, as illustrated
in Figure 3.

β1

β2

β3
β∗ βreal =

library B={ β1, β2, β3, β∗ }

(a) Case1: βreal = β3

β1

β2

β3β∗

βreal

library B={ β1, β2, β3, β∗ }

(b) Case2: βreal is different
from β1, β2, and β3.

Fig. 3: An illustration of an example, where β1, β2, and β3

remain unchanged while β∗ is adjusted to approach βreal.

In Case 1, the agent’s belief of β3, γ(β3), will be quickly
triggered to approach 1 before β∗ is adjusted to βreal. In this

case, the weighted prediction
n+1

Σ
i=1

γ(βi)βi(σ
t, τ) will converge

to β3(σt, τ).
In Case 2, the agent cannot find a clear match between βreal

and the pre-collected βi in B. As the episode proceeds, the
learned β∗ will gradually move toward βreal. As t becomes
large, β∗ will converge to βreal and γ(β∗) will converge to 1.

In this case, the weighted prediction
n+1

Σ
i=1

γ(βi)βi(σ
t, τ) will

converge to β∗(σt, τ).
Based on the above analysis, we would expect that

no matter whether βreal is in B or not, the “reasoning
accompanied by learning” approach can help the agent to
predict the opponent’s policy as t becomes large and to select
the proper policy to exploit the opponent.

IV. EXPERIMENT

In our experiments, we construct a simplified batter vs.
pitcher game (BvPG) to compare the performance of different
approaches.

A. Description of batter vs. pitcher game (BvPG)

In BvPG, the batter aims to predict the pitcher’s targeted
location in order to hit the ball, while the pitcher tries to avoid

1 2
3 4

(a)

τ

π

l

r

σ

(b)

Fig. 4: Illustration of the batter vs. pitcher game (BvPG). (a)
Pitch locations. (b) Flow for a pitch in an episode.

the ball being hit by the batter.This competing process repeats
for several episodes. Here, we treat the batter as the agent
and the pitcher as the opponent. The flow for a pitch in an
episode is illustrated in Figure 4b. In an episode, the pitcher
may choose the policy τ1, τ2, τ3, or τ4 that targets on the
location 1 to 4 to pitch, respectively, as illustrated in Figure 4a.
To make the game more realistic, each pitch contains a certain
degree of uncertainty and the actually pitched location falls at
the location l, where 1 ≤ l ≤ 4. On the other hand, the batter
may choose the policy π1, π2, π3, or π4 that targets on the
location 1 to 4 to hit, respectively. Depending on l and π, the
result r may be “hit” or “miss”, denoted by r = 1 and r = 0,
respectively. For the batter, we define the value of the utility
U to be 1 or 0 if r is “hit” or “miss”, respectively. Here, we
treat (l, r) as the observation σ and we define 8 different cases
of σ, as listed in Table I.

TABLE I: The corresponding (l, r) for each definition of the
8 observations.

σ1 : (1, 1) σ2 : (1, 0) σ3 : (2, 1) σ4 : (2, 0)
σ5 : (3, 1) σ6 : (3, 0) σ7 : (4, 1) σ8 : (4, 0)

The transition probability p(l|τ) and p(r|l, π) are defined in
detail in the appendix. Based on p(l|τ) and p(r|l, π), we can
derive the observation model p(σ|τ, π) and the performance
model p(U |τ, π). With the defined p(U |τ, π), we may obtain
E[U |τ, π], as listed in Table II. Referring to Table II, if a
batter knows the pitcher’s next policy is τi, the batter will
select πi to play. The corresponding batter’s expected utility
value is 0.834. This is the upper bound of the batter’s expected
received utility value.

TABLE II: E[U |τ, π], the batter’s expected utility given τ and
π.

τ1 τ2 τ3 τ4
π1 0.834 0.454 0.454 0.188
π2 0.454 0.834 0.188 0.454
π3 0.454 0.188 0.834 0.454
π4 0.188 0.454 0.454 0.834

B. Compare Batters’ performance against different pitchers

In this experiment, we define 4 types of batters (the agent),
which include
Batter A: learning from scratch;
Batter B: reasoning from the library B;



Batter C: reasoning from the library B accompanied by
learning from scratch; and
Batter D: playing based on the BPR mechanism.

In our experiments, we construct the library to be B =
{β1, β2, β3, ......, β8}, as listed in Table III. This table shows
the predicted opponent’s policy τ at t+1 given the observation
σ at t for each of the eight β models. For example, for the β1

model, if σ1 is observed at t, then the predicted opponent’s
policy at t + 1 is τ1. Similarly, for the β8 model, if σ5 is
observed at t, the predicted opponent’s policy at t+ 1 is τ3.

TABLE III: Library B

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8
β1(.) τ1 τ1 τ1 τ1 τ1 τ1 τ1 τ1
β2(.) τ2 τ2 τ2 τ2 τ2 τ2 τ2 τ2
β3(.) τ3 τ3 τ3 τ3 τ3 τ3 τ3 τ3
β4(.) τ4 τ4 τ4 τ4 τ4 τ4 τ4 τ4
β5(.) τ3 τ3 τ3 τ3 τ1 τ1 τ1 τ1
β6(.) τ4 τ4 τ4 τ4 τ2 τ2 τ2 τ2
β7(.) τ4 τ1 τ3 τ2 τ2 τ3 τ1 τ4
β8(.) τ1 τ4 τ2 τ3 τ3 τ2 τ4 τ1

For β1, β2, β3, and β4, they always choose the same τ no
matter what σ is observed. On the other hand, for β5, it may
predict τ3 or τ1 depending on the observation σ. For β6, it
may predict τ4 or τ2 depending on the observation σ. For β7,
when r is “miss” (r = 0) or “hit” (r = 1) at location i, β7 will
predict the same location or the diagonal location, respectively,
at the next episode. In the contrast, the policy selection pattern
of β8 is opposite to that of β7.

To evaluate Batters’ performance, we define 4 types of
pitchers (the opponent), including Pitcher 1, Pitcher 2, Pitcher
3, and Pitcher 4. Their corresponding βreal models are defined
in Table IV.

TABLE IV: βreal for the 4 Pitchers.

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8
βreal1(.) τ1 τ1 τ1 τ1 τ1 τ1 τ1 τ1
βreal2(.) τ3 τ3 τ3 τ3 τ1 τ1 τ1 τ1
βreal3(.) τ4 τ1 τ3 τ2 τ2 τ3 τ2 τ3
βreal4(.) τ4 τ1 τ3 τ2 τ4 τ1 τ2 τ3

Comparing the batter’s β model library B and the pitcher’s
actual policy selection model βreal in Table IV, βreal1 and
βreal2 are included in B (βreal1 = β1, βreal2 = β5 ), while
βreal3 and βreal4 have two and four elements, respectively,
different from β7 in B. In the following discussion, we use
the number of different elements between two β models to
represent the “distance” between these two models.
In our experiments, each batter plays against each type of
pitcher. For each pairing of batter and pitcher, we simulate
20000 games, with each game containing 200 episodes. Af-
ter that, we investigate each batter’s received utility against
Pitcher 1 to Pitcher 4, as shown in Figure 5a to Figure 5d,
respectively.
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Fig. 5: Batters’ received utility values, averaged over 20000
games.
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Fig. 6: Batter C’s belief, γ(β), averaged over 20000 games.

1) vs. Pitcher 1: Since Pitcher 1 always adopts τ1, Batter
D, who adopts BPR, can quickly detect the pitcher’s policy
and thereby its utility value increases rapidly to the expected
upper bound 0.834. On the other hand, for Batter B and
Batter C, since the pitcher’s policy selection pattern βreal1



is the same as the β1 model in B, their belief of β1 will be
quickly triggered and their received utility values also increase
quickly to approach 0.834. Especially, Batter C’s belief of β1,
with respect to the other β models is plotted in Figure 6a. In
comparison, for Batter A, its utility value increases slowly
since it learns the opponent’s policy selection model from
scratch.

2) vs. Pitcher 2: Since Pitcher 2 may adopt τ3 or τ1, Batter
D with the BPR mechanism cannot accurately predict the
opponent’s policy τ . Hence, its utility value will be restricted.
On the other hand, since βreal2 = β5, the utility values of
Batter B and Batter C will increase quickly to 0.834 (Batter
C’s belief of β5 is quickly triggered, as shown in Figure 6b.).
For Batter A, its utility value increases slowly, comparing with
the utility values of Batter B and Batter C.

3) vs. Pitcher 3: Since Pitcher 3 has many different choices
of τ , Batter D will be confused and its utility value becomes
very low. On the other hand, since βreal3 has only two
elements different from the β7 model in B, Batter B will select
β7 as the policy selection model of Pitcher 3 and its utility
value increases quickly in the beginning episodes. However, as
the episode proceeds, Batter B’s utility value is restricted to a
value lower than 0.834. In contrast, although Batter A’s utility
value increases slowly, the learn-from-scratch mechanism will
help Batter A’s utility value to approach the upper bound 0.834
eventually. For Batter C, since βreal3 is close to β7, γ(β7)
increases in the beginning episodes. At the same time, β∗
continuous to be adjusted to approach βreal3 . As the episode
proceeds, γ(β∗) will gradually increase and exceed γ(β7)
to reach 1, as shown in Figure 6c. With the above belief
updating process, Batter C’s utility value increases quickly in
the beginning and continuous to increase to reach 0.834.

4) vs. Pitcher 4: For Batter D, its utility value is low since
it cannot deal with the opponent with many different selections
of τ . Since βreal4 is very different from the β models in B,
the mechanism of reasoning from B does not help too much
to increase the utility value. Hence, Batter B’s utility value is
restricted to only about 0.6. For Batter A and Batter C, with
the learning mechanism, their utility values may still reach
0.834 (Batter C’s belief of β∗ dominates the others, as shown
in Figure 6d.).

Until now, we have compared Batters’ received utility values
with respect to the situation βreal ∈ B or βreal /∈ B. Next, we
further test the case when the batter plays against a pitcher with
different degrees of “distance” with respect to the β models
in the library B.

C. Batters’ performance against pitchers with different de-
grees of “distance” with respect to B

In this experiment, we first design a procedure to generate
the pitcher’s βreal model in a somewhat random way. Here,
we define a parameter q to control the degree of “distance”
with respect to the βi in B defined in Table III.

Random generation of βreal with a “distance” q
away from B
1. Randomly select a β model βi in B and copy it to form
the prototype model of the βreal model.
2. For this prototype model, randomly select q σ-values out
of the 8 σ-values, σ1 to σ8.
3. For each selected σ-value, randomly change its
corresponding τ -value to a different τ -value. For each
of the remaining (8 − q) σ-values, keep its corresponding τ
value unchanged.
4. Check whether the “distance” between the newly modified
prototype model and each of the β models in B is equal to
or larger than q. If yes, assign the newly modified β model
to be the βreal model; if no, repeat the above process again.

In our experiments, we choose the range of q to be 0 ≤
q ≤ 5 and compare the received utility value along episodes
for Batter A, Batter B, and Batter C, as shown in Figure 7.
For each case, we simulate 100000 games, with each game
containing 300 episodes. In each game, βreal is randomly
generated based on the aforementioned process.

For Batter A and Batter C, who have adopted the learning
mechanism, their received utility values always converge to
the expected upper bound 0.834 no matter what q-value we
choose, as shown in the left column of Figure 7. On the other
hand, for Batter B, who only reasons from the pre-collected
library B, the saturation value of its utility value decreases as
q increases.

Now we investigate Batters’ performance in the beginning
episodes, as shown in the middle column of Figure 7. Batter
B’s utility value increases faster than Batter A. However, with
the learning-from-scratch mechanism, Batter A’s utility value
exceeds Batter B’s utility value as the game proceeds. If we
denote the overtaking moment as t∗, then t∗ becomes smaller
as q becomes larger. On the other hand, with the “reasoning
accompanied by learning” algorithm, Batter C’s utility value
increases as quickly as Batter B’s and converges to 0.834, like
Batter A does.

Next, we further investigate Batters’ performance from
episode 1 to episode 20, as shown in the right column of
Figure 7. Similarly, t∗ gets smaller as q becomes larger and
Batter C combines the advantages of Batter A and Batter B
for 0 ≤ q ≤ 3. Note that when q = 4 or q = 5, as shown
in Figure 7o and Figure 7r, Batter C’s utility value is slightly
smaller than Batter A’s utility value. This could be due to the
fact that βreal is very far away from βi in B and the reason-
from-B mechanism causes some incorrect classification results
in Batter C’s prediction. Fortunately, as the episode proceeds,
Batter C’s γ(β∗) still approaches 1 and Batter C’s utility
value will catch up with Batter A’s utility value, as shown
in Figure 7q.

Finally, we average each batter’s utility value over 0 ≤ q ≤
3 from Figure 7, as shown in Figure 8. Basically, Batter C
receives a larger averaged utility value than Batter A and Batter
B. This result matches the expectation illustrated in Figure 2.
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(a) q=0, episode 1 to episode 300.
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(b) q=0, episode 1 to episode 50.
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(c) q=0, episode 1 to episode 20.
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(d) q=1, episode 1 to episode 300.

1 10 20 30 40 50

0.5

0.6

0.7

0.8
0.83

Episode

U
til

ity

BatterA BatterB BatterC

(e) q=1, episode 1 to episode 50.
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(f) q=1, episode 1 to episode 20.
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(g) q=2, episode 1 to episode 300.

1 10 20 30 40 50

0.5

0.6

0.7

0.8
0.83

Episode

U
til

ity

BatterA BatterB BatterC

(h) q=2, episode 1 to episode 50.
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(i) q=2, episode 1 to episode 20.
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(j) q=3, episode 1 to episode 300.
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(k) q=3, episode 1 to episode 50.
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(l) q=3, episode 1 to episode 20.
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(m) q=4, episode 1 to episode 300.
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(n) q=4, episode 1 to episode 50.
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(o) q=4, episode 1 to episode 20.
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(p) q=5, episode 1 to episode 300.
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(q) q=5, episode 1 to episode 50.
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(r) q=5, episode 1 to episode 20.

Fig. 7: Batter’s utility value against randomly selected Pitchers, averaged over 100000 games.
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Fig. 8: Batter’s utilities, averaged over 0 ≤ q ≤ 3.

V. CONCLUSION

In this work, based on the BPR framework, we further
assume the opponent may determine its policy based on
the previous observation. Here, we present three different
approaches and construct a simplified batter vs. pitcher game
to compare their performance. The agent with the reason-from-
experience approach may increase its utility value quickly
by referring to the pre-collected policy selection models.
However, if the opponent’s policy selection model is different
from the pre-collected models, the agent’s utility value will be
restricted. On the other hand, the agent with the learn-from-
scratch approach can accurately learn the opponent’s policy
as the episode proceeds and its utility value will reach the
expected upper bound. However, this learning-from-scratch
approach takes time to learn. In comparison, with the reason-
accompanied-by-learn approach, the agent’s utility value can
not only increase quickly in the beginning but also reach the
expected upper bound eventually. This “reason-accompanied-
by-learn” approach appears to be the most favorable one
among these three approaches when dealing with an opponent
with unknown policy selection pattern.
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VI. APPENDIX

A. Definition of the transition probability p(l|τ)

We define the transition probability p(l|τ) with the follow-
ing rules with the parameters κ and λ, where λ = 1−κ

5 and
κ > 2λ:

1. p(l = i|τi) = κ.
2. p(l = j|τi) = 2λ, where the position j is next to the

position i.
3. p(l = k|τi) = λ, where the position k is at the diagonal

position of the position i.
For example, for i = 1:
1. p(l = 1|τ1) = κ.
2. p(l = 2|τ1) = 2λ; p(l = 3|τ1) = 2λ.
3. p(l = 4|τ1) = λ.

B. Definition of the transition p(r|l, π)

We define the transition probability p(r|l, π) with the
following rules with the parameters µ and ν, where ν =
0.1 + 2

5 (µ− 0.1) and µ > ν > 0.1:
1. p(r = 1|l = i, πi) = µ.
2. p(r = 1|l = j, πi) = ν , where the position j is next to

the position i.
3. p(r = 1|l = k, πi) = 0.1, where the position k is at the

diagonal position of the position i.
For example, for i = 1:
1. p(r = 1|l = 1, π1) = µ
2. p(r = 1|l = 2, π1) = ν; p(r = 1|l = 3, π1) = ν
3. p(r = 1|l = 4, π1) = 0.1
Actually, κ represents the pitcher’s control capability and

µ represents the batter’s batting capability. In this experiment,
we let κ=0.8, µ=0.95.


