
Towards verifiable Benchmarks
for Reinforcement Learning

Matthias Müller-Brockhausen, Aske Plaat, Mike Preuss
Leiden Institute of Advanced Computer Science (LIACS)

Leiden University
The Netherlands

{m.f.t.muller-brockhausen, a.plaat, m.preuss}@liacs.leidenuniv.nl

Abstract—Reinforcement Learning (RL) is one of the most
dynamic research areas in Game AI and AI as a whole,
and a wide variety of games are used as its prominent test
problems. However, it is subject to the replicability crisis that
currently affects most algorithmic AI research. Benchmarking
in Reinforcement Learning could be improved through verifiable
results. There are numerous benchmark environments whose
scores are used to compare different algorithms, such as Atari.
Nevertheless, reviewers must trust that figures represent truthful
values, as it is difficult to reproduce an exact training curve.
We propose improving this situation by providing access to the
original evaluation data to validate study results. To that end, we
rely on the concept of replay traces. These allow re-simulation
of action sequences in deterministic RL environments and, in
turn, enable reviewers to verify, re-use, and manually inspect
evaluation results without needing large compute clusters. It also
permits validation of presented reward graphs, an inspection
of individual episodes, and re-use of result data (baselines) for
proper comparison in follow-up papers. We offer plug-and-play
code that works with Gym so that our measures fit well in
the existing RL and reproducibility eco-system. Our approach
is freely available, easy to use, and adds minimal overhead, as
replay traces allow a data compression ratio of up to ≈ 104 : 1
(94 GB to 8 MB for Atari Pong) compared to a regular MDP
trace used in offline RL datasets. The paper presents proof-of-
concept results for a variety of games.

Index Terms—Verifiable, Benchmarks, Reinforcement Learn-
ing, Reproducibility

I. INTRODUCTION

Reproducibility is a key component of peer-reviewed sci-
ence. Reviewers are supposed to read, understand, and ideally
be able to reproduce an experiment to ensure its factual
correctness. It touches not only computer science, but any
science, as without easy reproducibility, fraud is difficult to
detect [1]. Especially for benchmarks and competitions, where
fraudulent submissions potentially poison the rankings of a
leaderboard, it is important to have tools for validation.

Benchmarking AI algorithms has become increasingly im-
portant and is now a driving force behind algorithm devel-
opment. In Game AI, competitions have been an important
part of scientific conferences for a long time already, and
especially game problem benchmarks are currently more and
more spreading out to core AI conferences, e.g., with the
MineRL competition at NeurIPS [2], [3]. Whereas the overall
aims of algorithm development are often to improve generality
and especially sample efficiency, the employed methods are

still relatively slow and thus need very long runs, thereby
making reproducibility difficult.

In theory, computers are excellent for reproducibility. One
can run the same code, bit for bit, on many different machines.
This may be simplified down to issuing a single command
based on technologies such as Docker [4]. However, methods
that include some sort of non-determinism (e.g., training
evolutionary algorithms [5], or deep neural networks [6])
hamper the reproducibility of experiments. Another growing
problem is the availability of computing resources that would
be needed to replicate results [7]. The tremendous successes
of AlphaStar [8] and Dota 2 [9] are prominent examples.
The large computing clusters they relied on are unavailable
to most researchers for running any type of replication exper-
iment. Furthermore, it becomes increasingly important to also
consider sustainability issues, as the big cluster experiments
are energy inefficient. Such considerations have been voiced,
e.g., for Natural Language Processing (NLP) [10] or complex
Games as Go (AlphaZero) [11]. It would thus make more
sense to avoid re-computing everything but to improve the
inspection of existing log data. Other issues that stand in the
way of exact replication include insufficient reporting [12] or
not open-sourcing code [13].

If replication itself is unavailable for some experiments, the
next best thing could be verifiability, namely the ability to
inspect, check, and replay parts of the evaluation. However,
this is also difficult even in terms of handling the huge amounts
of data that are produced during the big experiments. In
order to achieve this, we would need some way of highly
compressing this data, which instantly points us to the concept
of replay traces.

The research question we are going to tackle in this work
is thus: How may a researcher verify the evaluation of a rein-
forcement learning algorithm of other researchers, especially
the display of results in figures and tables, based on replay
traces?

We offer the following contributions:
• We explain how replay traces (Section II) allow repro-

ducible verification of results such as benchmark leader-
boards (Section III-A). Moreover, we empirically show
that they enable a compression ratio of up to 104 : 1 for
offline RL datasets (Section IV-A)

• We provide Plug-n-Play code [14] to collect replay traces
that integrate with the RL-Ecosystem (Gym [15])

• We provide an agenda for further research on how to
obtain verifiable RL evaluation results using replay traces
(Section V)

Although there are many factors at play with reproducibility,
our work solely focuses on methodological improvements
for reinforcement learning research. After briefly introduc-
ing the concept of replay traces (section II), we first look
at suggestions that have already been made for improving
reproducibility or experimental methodology in section III.
Based on that state, we find improvable points (section III-A)
and suggest concrete, actionable steps (section V). We then
outline how these steps can be applied in practice with the
code that we provide (section V-A). To enable compatibility,
we ensured that it properly interfaces with the existing RL-
Ecosystem.

II. BACKGROUND: REPLAY TRACES

For the following sections, the concept of replay traces is
important. Thus we review its origins and known uses here.

Reinforcement learning optimizes sequential decision mak-
ing processes, that are modeled as so called Markov deci-
sion processes (MDPs). An MDP consists of a tuple (S, A,
Pa(s, s

′), Ra(s, s
′)) (state space, action space, the probability

of going from state s to s′, and reward for going from s to s′)
[16].

A trace, also commonly referred to as an Episode within
an RL-Environment [17], is a list of tuples that contain the
start state st, the chosen action a, the received reward r, and
the resulting state st+1. Traces are sufficient to train an RL
Algorithm offline / off-policy, and they are also shared by
related work as dataset-basis for training [18].

We introduce the term replay traces. Staying true to the
computer science reinforcement learning terminology drawing
inspiration from psychology [19], we were inspired by the
work “Predicting the Past from Minimal Traces” [20]. We
want reviewers to reliably predict (verify) the past (evaluation
results) using traces that use up a minimal amount of storage
space. To reduce the used space of traces, we assume that
an MDP, given the same initial state s0 and action sequence
α, will yield the exact same trace. To reliably re-reproduce
the initial state s0 and follow up states, the random outcomes
in Pa(s, s

′), as well as parameters influencing the behavior
of the environment need to be fixed based on an initial
configuration sinit. Hence sinit contains the random seed as
well as environment hyper parameters (see Table II for an
example of CartPole hyper parameters). Fixing these proba-
bility outcomes is commonly referred to as a deterministic
MDP [21]. Deterministic MDPs reduce the required data for
re-simulation of replay traces to sinit and α. Replay traces fit
well into reinforcement learning problems as there the action
set A is usually smaller than the state space S. Hence it
makes more sense to only save actions if the observations
can be re-constructed afterward. While the added re-simulation
cost might seem impractical for verification purposes, our

experiments show that it can take less than 0.7% of the original
RL training time (Section IV-A).

III. RELATED WORK

While the matters of reproducibility, replicability, and ver-
ifiability are relevant to all scientific fields [1], we will focus
on reinforcement learning here. In reinforcement learning,
previous works suggest guidelines on how to design and report
a well reproducible experiment [12]. Conferences such as
NeurIPS are moving towards implementing these guidelines
and ask reviewers to fill in a questionnaire about reproducibil-
ity. This has led to more and more sharing of code, and
researchers are encouraged to do so [13]. Moreover, reviewers
found it easier to judge submissions that included code. Most
of the reviewer guidelines focus on the paper itself, which
is the well-established scientific tradition that was practiced
already when computers were not yet invented. However,
many researchers in Computer Science now believe that for
experimental works, we should go one step further and exploit
its theoretically perfect and exact ability to verify the factual
correctness of reported results and submitted code / data
(Section III-A). This so-called “Verification of Artifacts” [5]
is not a new concept. For example, tools available to make
policy training as reproducible as possible are readily available
(e.g., Garage [22]). For experiments that are not using tools
such as Garage, there are also clear guidelines on how to
properly compare to a baseline of an algorithm [23]. Moreover,
researchers have suggested saving the final values used in
graphs to be able to verify the figures [24]. This theoretically
works for any Figure. However, how can we be sure that the
Figure is correct [25]?

Games are an interesting playground for RL-AI. GVGAI
is a prominent example [26], as it is used for competitions
that benchmark individual algorithm submissions from both
planning [27] and learning,m such as RL [28]. For these
competitions, the validity of results is guaranteed by means of
execution of the submitted code by the event host. This is made
possible through a pre-defined agent interface that allows in-
teracting with arbitrary games. In other reinforcement learning
environments, we also have a pre-defined agent interface (see
the center of Figure 1), but re-running policy training is not at
all reproducible. Reproducibility is not guaranteed in GVGAI
either, as the applied algorithms, such as MCTS [29], include
randomness that is not fixed. While GVGAI remedies this by
means of multiple runs, research has shown that averaging
over runs does not prevent inconsistencies in reproduction
attempts [12]. Whereas replay traces do not alleviate the
problem directly, they do lift the requirement to have to run
the agent code oneself.

A. Why replay traces?

Reproducibility in the RL ecosystem is an evolving matter.
Environments usually behave deterministically if seeded as,
e.g., CartPole or MountainCar in Gym [15]. Famous problems
that did not yet satisfy this requirement have been converted
(e.g., Robotics [30], [31]). Moreover, besides theory-focused

Agent

Environment

Action (a)Observation (S)
Reward (r)

Environment
Hyperparameters

(s_init)

Action Log
(alpha)

MDP
Trace

(Offline RL)

Algorithm
Hyperparameters Garage

Replay
Trace

Can
Re-Simulate

initialize

initialize

Fig. 1: A visualization of the relationship between reinforce-
ment learning training, offline RL datasets (traces), replay
traces Garage [22], as well as the data collected for each.

guidelines [12], practical tools like Garage exist to enable
reproducible policy training [22].

Nonetheless, RL lacks verifiability of evaluation results,
such as benchmark submissions. Reviewers shall be enabled to
easily verify reported results in figures or tables with minimal
effort. MDP’s already come with the concept of traces that are
basically a full log of all data (observation, action, reward)
[17], from which figure data could also be constructed (see
Section II). These traces are used for offline reinforcement
learning. However, offline RL datasets can become quite
large (3TB for the experiments in one paper [18]) and, as
a consequence, are hosted on a proprietary central authority.
To remedy this problem, we collect as little data as possible
and without requiring a central hosting authority regardless
of size (Section IV-C). In Figure 1, we attempt to visualize
the relationship between offline RL datasets, replay traces, and
the data that Garage [22] collects. Thus, we suggest collecting
an initial environment configuration corresponding to sinit
from the Replay Trace (Section II). In Gym, sinit contains
all values that influence an environments initialization (reset)
and transition function (step). Table II contains an example of
sinit for CartPole. Moreover, the actions that an agent takes
are saved. A consequence is that our method is limited to
fully deterministic environments. By properly seeding non-
deterministic algorithms’ random number generation, non-
deterministic problems can also be used.

We later show that replay traces allow a compression ratio
of up to 77 for regular and up to 12559 for image-based
environments (Section IV-A).

Our focus on the environment instead of the policy training
is well motivated. The data collected by tools such as Garage
[22] can not overcome one specific problem. The training
of neural networks includes certain operations that render it
not reproducible if the host machine, host operating system,

or software library version change [32]. Unless researchers
have the exact same machine and software configuration,
reproducibility will become difficult. Software configurations
are easily reproducible via Docker [4]. However, if the same
code produces different results on other machines, then repro-
ducibility becomes practically impossible.

We see replay traces as an add-on rather than a replacement
to current reproducibility approaches. It is a workaround
because reproducible policy training, such as Garage [22]
attempts to offer, does not yet work. Should training become
fully deterministic, replay traces might become obsolete. Nev-
ertheless, they would still offer the advantage of being com-
putationally cheaper than training, as environment execution
requires less computational resources than updating weights of
a large neural network. Moreover, environment re-simulation
is cheap enough to potentially run in the web browser en-
abling interactive tools, which is difficult to reproduce with
computing clusters needed for training.

Whereas replay traces are limited to reinforcement learning,
their concept transfers perfectly to video games. TrackMania is
a great example because its physics is fully deterministic. For
its leaderboard, replays are saved. A replay contains the name
of a level and all taken actions by the player. Leaderboard
submissions are verified for validity [33]. Moreover, it allows
to detect Tool-Assisted Runs in pure human play leaderboards
[34]. More complex games, such as Counter Strike: Global
Offensive, Dota 2, and Starcraft, support replays as well. Yet,
their replay formats contain a multitude of possible inputs that
are difficult to map directly to a reinforcement learning action
space and hence replay traces. The same applies to the Unreal
Engine, which has a general ReplaySystem that can replay any
data [35] but does not automatically allow replaying arbitrary
scenes deterministically based purely on agent actions. Nev-
ertheless, this larger trove of data is still useful for detecting
cheats, such as AimBots [36]. Furthermore, it can be used to
make estimations of player skill [37].

As games are used in competitions, they could also be
applied for validation there. For example, two of the games
we previously mentioned to support replays have been a
competition at the IEEE Conference on Games 2021: Dota
2 [38] and Starcraft [39]. Moreover, SpaceInvaders, which we
test from Gym, is also a CoG competition [40]. Other games
seem suitable as well, such as GvGAI [27], Snakes [41], or
Bot Bowl [42]. These games might even manage to be directly
compatible with replay traces, as, for example, GvGAI has
managed to provide an RL-Gym Environment for its learning
track [28].

Lastly, our data collection suggestion harmonizes with the
concept of Procedural Content Generation (PCG), as the seed
can be saved for deterministic reproduction. ProcGen has
already shown that current RL-Algorithms are struggling to
generalize [43]. However, PCG applied correctly already en-
ables better generalization [44] and more fine-grained training
curricula [45], and is thus especially important in benchmark-
ing Transfer in Reinforcement Learning [46].

IV. METHOD

We will describe our approach in detail, along the lines of
3 different aspects. Replay traces achieve a high compression
ratio compared to regular traces. They can compress up to
104 : 1 (Section IV-A). Next, we detail how replay traces
enable re-usable visualizations (Section IV-B). Moreover, we
suggest the usage of a distributed file system, the interplanetary
file system (IPFS) [47], for long-term storage (Section IV-C).
Based on these insights, we propose a reproducibility agenda
(Section V).

A. Data compression

Replay traces are a way to store evaluation result signatures
efficiently. We will have a closer look at efficient storage
for different games. Please refer to Table I for the size
comparisons.

Reinforcement learning traces can take up a considerable
amount of space. For example, a single work offering an
offline RL trace provides 3TB of data [18]. In order to compare
the amount of space needed for traces vs. replay traces
(Section II), we chose different environments with growing
observation spaces. Taxi with one integer, CartPole with two
floats, BipedalWalker with 24 floats, Atari-Games RAM using
128 bytes, and the produced 210 x 160 pixel RGB image using
100800 bytes. More interestingly, whereas most environments
have only a single integer action space A, BipedalWalker
has three continuous actions increasing the space required
for replay traces. We train on the environment for 1 Million
steps using PPO [48] from stable baselines 3 [49], using
the default hyperparameters for both environment and agent.
During training, we collect the full MDP-trace (Observation,
Action, and Reward) and the replay MDP-trace (Env-Params
and Actions) for each environment. The results in Table I are
striking: Replay traces enable a compression ratio of 12559.36
for image-based environments with a single action, such as
Atari Pong. For the 128-byte ram observation, the compression
ratio falls to 99.58 for Pong, reducing 767.18 MB to 7.7 MB.

Nevertheless, environments with small observation spaces
such as CartPole still allow a compression rate of 53, reducing
a 452.25 MB trace down to 8.5 MB. However, BipedalWalker
underlines that the potentially saved space depends solely
on the size difference between the observation space S and
the action space A. For BipedalWalker, 24 numbers in the
observation space vs. 4 in the action space. Hence the com-
pression ratio of 2.9 reduces the 530.72 MB trace down to
181.79 MB. An intriguing discovery we made is a varying
size for the re-simulated trace of BipedalWalker, which should
not occur. Thus we performed an experimental analysis and
found that 5 in 100 re-simulations yielded a different trace
due to rounding errors. Consequently, BipedalWalker is not
yet fully deterministic. We repeated this experiment for all
other tested environments in Table 1 and found that they are
fully deterministic, hence yielding 0 failed re-simulations.

We also measured the time to re-simulate a full MDP-
trace from a replay MDP-trace vs. the training time. Our
measurements are also shown in Table II. Note that for

timing-related data, there is variation in runs for different
hardware. All experiments were run on a machine with an
Intel Xeon Silver 4214, an Nvidia Geforce RTX 3090, and
256GB of RAM. The cost of re-simulation depends on the
complexity and observation space of the environment. We
make use of multi-threading to re-simulating multiple episodes
at once. For Atari, re-simulation varies per observation and
game. In the worst case, it takes 22.39% of the training
time for Breakout-ram-v0, and in the best case 6.03% for
Pong-v0. Computationally less intensive environments, such
as BipedalWalker-v3 or CartPole can lower this further to less
than 1 % (0.68%) of training time.

B. Re-Usable Visualizations

{” $schema ” : ” . . . ” ,
” d e s c r i p t i o n ” : ” Reward p e r Ep i sode ” ,
” d a t a ” : {” v a l u e s ” : [{ ” Ep i sode ” : 0 ,

” Reward ” : 1 1 . 0 , ” env ” : ” . . . ”
} , . . .] } ,

” mark ” : ” l i n e ” ,
” e n c o d i n g ” : {

” x ” : {” f i e l d ” : ” Ep i sode ” ,
” t y p e ” : ” q u a n t i t a t i v e ” } ,

” y ” : {” f i e l d ” : ” Reward ” ,
” t y p e ” : ” q u a n t i t a t i v e ” } ,

” c o l o r ” : {” f i e l d ” : ” env ” ,
” t y p e ” : ” nomina l ”}}

}

Listing 1: An excerpt for a re-usable Vega Reward Graph
description. Generates the graph shown in Figure 2. The full
JSON-File that can be explored in the Vega-Editor can be
found in the Code-Repository as listing graph.json.

Khetarpal et al. [24] suggest saving the values that are used
to plot figures and providing the code to the plot. This
improves reproducibility when the numbers are the results
of the experiments. Replay traces enable re-simulating this
data to verify if this is the case. Moreover, replay traces
allow looking at different values than those presented in a
paper. For example, if a paper reported only the average
reward, one could extract the median reward instead through
the re-simulated data. Alternatively, if reward per episode was
reported, one could instead look at reward per step. To increase
the re-usability and accessibility of figures, we suggest using
Vega [50]. Vega is a JSON-based graph description language.
The main advantage is that plotted values are embedded inside
the human-readable JSON data. Hence, one could extract a
baseline algorithm reward line from the Vega description of an
original paper and then compare it to a newly trained variation
without re-simulation. Of course, it still allows exporting a
scalable graphic for usage inside of the paper (e.g., Figure 2).
In this case, guidelines on designing a proper baseline [23]
are not that important anymore because the actual data from
other papers can be directly compared1.

Another advantage of Vega [50] is the ability to load
Graph-Definition-Files in a Browser. These come with various

1Assuming they are being compared on the same benchmark environment
with the same configuration

Environment Trace (MB) Replay Trace (MB) Compression Ratio Training (sec) Re-simulation (sec) % Re-Simulation to Training
Assault-ram-v0 767.21 7.76 98.82 2314.0 177.0 7.65
Assault-v0 96165.33 7.78 12355.67 5372.0 393.0 7.32
BipedalWalker-v3 530.72 181.79 2.90 2241.0 15.0 0.67
Breakout-ram-v0 757.55 8.33 90.94 2859.0 640.0 22.39
Breakout-v0 96504.98 7.98 12100.5 5647.0 520.0 9.21
CartPole-v0 452.25 8.5 53.23 1907.0 13.0 0.68
Pong-ram-v0 767.18 7.7 99.58 2356.0 142.0 6.03
Pong-v0 94641.99 7.54 12559.36 5319.0 321.0 6.03
SpaceInvaders-ram-v0 767.45 7.76 98.91 2412.0 181.0 7.5
SpaceInvaders-v0 95973.03 7.75 12378.43 5448.0 378.0 6.94
Taxi-v3 335.85 8.46 39.69 2053.0 68.0 3.31

TABLE I: A comparison of the space requirements in megabytes and re-simulation cost in seconds for (replay) traces when
training PPO for 1 Million steps and averaged over three runs. We see that replay traces achieve high compression ratios for
single action environments such as Atari or CartPole. Even in the worst case (BipedalWalker-v3), replay traces still allow a
compression ratio of 2.9, saving nearly 350 MB.

0 1,000 2,000 3,000 4,000 5,000
Episode

0

50

100

150

200

Re
w
ar
d

CartPole-v0
env

Fig. 2: A re-usable Vega Lite Reward Graph, generated from
the Description shown in Listing 1. It displays the sum of
reward per episode achieved during training of PPO3 [48]
for 1 million steps using the default hyperparameters for
algorithm and environment. The used reward data can be re-
simulated based on the replay trace with ID ”2IEpetGGwN-
FOs38rhAFHx”.

advantages, such as seeing the exact value of an individual
coordinate, zooming, scrolling through the axes, and changing
colors if these are not color-blind friendly.

C. Data availability

The data we suggest to collect (Section III-A) potentially
requires much storage. Whereas some hosting authorities allow
researchers to upload large datasets for long-term availability,
the two main problems with a central authority are the pos-
sibility that data could be tampered with / changed and that
there is only a single point of failure regarding availability. The
Interplanetary File System [47] lets us address these issues. It
behaves similar to BitTorrent. Users who downloaded a file
also share it, eliminating the need for a central server to store
all files. Moreover, the data is hashed, so it can not be altered
afterward by the original author, the hosting authority, or a
redistributing user. A hash can represent a full folder with

many subfiles that also all have individual hashes / IDs. So
the log file itself and the results produced with it become
verifiable. IPFS [47] also advertises its usefulness for scientific
purposes, and we believe our replay traces are well suited
for it. Moreover, IPFS can co-exist and even integrate into a
hosting service (such as Zenodo [51]) that could mirror the
data it provides via IPFS. That would allow them to use it as
a Content Delivery Network (CDN) for the actual files listed
in the Zenodo database. Finally, conferences or journals could
have public lists of relevant dataset IDs for published papers
that should be pinned. Pinning in IPFS can be seen as the
equivalent of mirroring data. A pinned ID will permanently
(until unpinned) be held in local storage and thus be available
to others requesting it.

V. REPRODUCIBILITY AGENDA

Replay traces are a useful step on the path to reproducibility,
allowing efficient verification of evaluation data. To further
improve the reproducibility of the field and to put our work
in perspective, we suggest the following agenda.

We propose researchers experimenting with deterministic
Environments (ideally using PCG in order to improve gener-
alizability) to do the following:

1) Use the verifiability tool to collect replay traces
2) Provide source code, including a runnable container

(e.g., Docker), to allow verification of results and figures
3) Generate figures using a common visualization grammar

such as Vega [50], facilitating re-use of figure data
4) Utilize IPFS [47] to ensure the data’s integrity and long-

term availability

A. Agenda applied to CartPole

To better illustrate our suggested agenda in practice, we will
illustrate how following it looks for the proverbial CartPole
environment. In Table II, we have prepared the environment
hyperparameters (sinit) relevant for each CartPole episode.
Garage [22] (Figure 1) also collects these parameters but
assumes policy training to be fully reproducible, which it
is currently not (Section III-A). In Listing 2, we show that
recording replay traces merely requires wrapping the Gym-
environment. The code in this listing is not pseudo-code but

Name Default Description
Gravity 9.8 Gravitational Power of the Planet
Pole Mass 0.1 The mass of the pole balancing on the cart
Pole Length 0.5 The length of the pole (The actual length is this value times two)
Cart Mass 1 The mass of the cart
Force Magnitude 10 Strength of the force applied to the cart on input
Tau 0.02 How much time passes between state updates (in seconds)
Theta Threshold Radians ∼0.209 (∼12°) The angle at which the pole is considered to be tipped over
X Threshold 2.4 The area in which the cart may move without being considered out of bounds
Use euler kinematics TRUE Influences cart movement
Random Seed varies Influences initial cart position and pole angle

TABLE II: Complete list of initial Environment Parameters sinit (Section II) for Cartpole.
Given the same sinit and action sequence α, a deterministic MDP like CartPole will always yield the same trace.

the actual main file of our runnable example. The last func-
tion generates a Vega [50] (Section IV-B) JSON-Description
(Listing 1) that can be used to visualize a graph (Figure 2). It
can also be pasted into the Vega-Editor2. Table I is also based
on re-simulated data from replay traces.

New projects wanting to record replay traces need to wrap
their Gym-environment with the record function from the
vgym-folder [14] before training. Then, the replay traces will
be saved into a sub-folder of the current working directory. A
replay trace file is serialized into the Concise Binary Object
Format (CBOR) [52] and compressed with zlib [53]. Note that
replay trace sizes in Table I reflects the size before serialization
and compression. The utility function load replay in our pack-
age abstracts these serialization details away from the user.
After loading a file, either all episodes can be re-simulated
into regular traces in parallel using resimulate parallel, or an
individual episode can be re-simulated using episode to trace.
Based on that, re-simulated data figures and tables should
be generated, and the code as well as recorded replay traces
published alongside the submission.

i m p o r t gym
from vgym i m p o r t r e c o r d , r e s i m u l a t e
from s t a b l e b a s e l i n e s 3 i m p o r t PPO
from example i m p o r t make graphs from
env = gym . make (” C a r t P o l e−v0 ”)
r env = r e c o r d (env , name=” C a r t P o l e−v0 ”)
r env . r e s e t ()
PPO(” MlpPol i cy ” , renv , v e r b o s e =1)
. l e a r n (1000000)
R e c r e a t e Trace from r e p l a y t r a c e
t r a c e = r e s i m u l a t e (renv ,
r env . m i n i m a l t r a c e s . t o l i s t ())
P l o t u s i n g re−s i m u l a t e d d a t a
make graphs from ([(” C a r t P o l e−v0 ” , t r a c e)])

Listing 2: Example code that trains a policy on Cartpole
collecting a replay trace. The full trace is re-simulated based
on the replay trace and used to generate a Vega Graph-
Description.

Our code repository contains a Dockerfile, recorded / used
replay traces, the example code behind the imported functions
of Listing 2, and a readme detailing how to re-simulate the
shown graph (Figure 2), as well as the values for the size

2https://vega.github.io/editor/

comparison table (Table I). All data is hosted on IPFS [47]
here [14].

VI. DISCUSSION

If properly applied, the concept of replay traces allows for
reproducible and verifiable reinforcement learning evaluations.
Moreover, it enables re-usability of result data, more accessible
ways to view the data interactively, inspection of individual
episodes, and data-saving for offline RL datasets.

A limitation of replay traces is that the source of the action
sequence can not properly be verified. From the obtained data
alone, one cannot exclude any sophisticated ways of cheating
the authors may have applied. Whereas a result figure or table
may be fully reproduced with our data, one can not know
whether the agent created the supplied action sequences. The
data could be handcrafted or made by a heuristic or any other
method that is not listed in the reviewed paper. Although
replay traces do not yet achieve end-to-end verifiable research
experiments, they are an important step towards verifiable
evaluation figures to show that values portrayed in figures or
tables have truly been achieved within the tested environment
and have not been randomly generated. In combination with
host executed competition benchmarks such as GVGAI, they
enable post hoc analysis of individual agent performances.

A. Environmental Impact

In times where big research experiments use large amounts
of electricity [54], it is important to note the possible envi-
ronmental impact of our suggestion. Hard-disk space seems
cheaper than the high wattages of training an agent on a
GPU. Hard-disk space instead of computation is also used
to “greenwash” novel blockchains as Chia [55]. Nevertheless,
nothing electronic comes free, so the hardware still needs to
be built, and energy needs to be used to power the servers
pertaining the datasets we suggest to collect. In consequence, it
will increase the global environmental impact of RL. However,
we see no other less intrusive way to ensure verifiability of RL
evaluation results. Thanks to the suggestion to share the data
via IPFS [47], the servers would not need to stay online 24 /
7. There could be specific times of data availability where the
server is switched on and the data accessible while ensuring
the data is not tampered with. Moreover, the distributed nature
of IPFS might make the necessity of a central storage server

obsolete, given enough participants pertaining parts of the
datasets.

VII. CONCLUSION

In reinforcement learning, reproducibility of experimental
results, and verification of research claims, is an important
challenge. Our work introduces a methodology to verify
evaluation results building on the concept of replay traces. We
provide a full implementation of this method and have tested
it on small and larger reinforcement learning experiments.

For typical experiments, replay traces enable compression
ratios of up to 12539, reducing an offline RL trace of Atari
Pong from 94 GB down to 8 MB. Moreover, re-simulating this
replay trace back to its original size takes 6% of the original
training time.

As our example shows, the collection of replay traces
requires but a wrapper around a Gym-environment.

While replay traces are limited to deterministic Reinforce-
ment Learning problems, the idea transfers well to (video)
games. Trackmania already applies leaderboard verification
via replays, showing that benchmarks and competitions could
adopt similar concepts. We envision a web-based tool that
allows re-simulation and verification of results without any
software setup by a reviewer on their local machine for future
work. To that end, we provide a mock-up (Figure 3) with a
functionality description. This could be implemented through
either a Rust-Gym port of the current approach or by having
a Python interpreter that properly works in a web assembly
environment and with Gym.

Fig. 3: Mock-up of a web-based tool we envision for future
work. The left side contains a list of replay traces, the
environment, and amount of contained episodes. The right
side shows details of the re-simulated trace. For inspection,
one can select individual episode replays directly from the
training reward graph, highlighted by the green vertical stripe.
Each episode can be stepped through frame by frame.

REFERENCES

[1] National Academies of Sciences, Engineering, and Medicine and others,
Reproducibility and replicability in science. National Academies Press,
2019.

[2] W. H. Guss, C. Codel, K. Hofmann, B. Houghton, N. S.
Kuno, S. Milani, S. Mohanty, D. P. Liebana, R. Salakhutdinov,
N. Topin, M. Veloso, and P. Wang, “The minerl competition
on sample efficient reinforcement learning using human priors,”
in Thirty-third Conference on Neural Information Processing
Systems (NeurIPS) Competition track, December 2019. [Online].
Available: https://www.microsoft.com/en-us/research/publication/the-
minerl-competition-on-sample-efficient-reinforcement-learning-using-
human-priors/

[3] W. H. Guss, M. Y. Castro, S. Devlin, B. Houghton, N. S. Kuno,
C. Loomis, S. Milani, S. Mohanty, K. Nakata, R. Salakhutdinov,
J. Schulman, S. Shiroshita, N. Topin, A. Ummadisingu, and O. Vinyals,
“The minerl 2020 competition on sample efficient reinforcement
learning using human priors,” January 2021. [Online]. Available:
https://www.microsoft.com/en-us/research/publication/the-minerl-2020-
competition-on-sample-efficient-reinforcement-learning-using-human-
priors/

[4] C. Boettiger, “An introduction to docker for reproducible research,” ACM
SIGOPS Operating Systems Review, vol. 49, no. 1, pp. 71–79, 2015.

[5] M. López-Ibáñez, J. Branke, and L. Paquete, “Reproducibility in evolu-
tionary computation,” ACM Transactions on Evolutionary Learning and
Optimization, vol. 1, no. 4, pp. 1–21, 2021.

[6] C. Liu, C. Gao, X. Xia, D. Lo, J. Grundy, and X. Yang, “On the repli-
cability and reproducibility of deep learning in software engineering,”
arXiv preprint arXiv:2006.14244, 2020.

[7] J. S. O. Ceron and P. S. Castro, “Revisiting rainbow: Promoting
more insightful and inclusive deep reinforcement learning research,” in
International Conference on Machine Learning. PMLR, 2021, pp.
1373–1383.

[8] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, J. Oh,
D. Horgan, M. Kroiss, I. Danihelka, A. Huang, L. Sifre, T. Cai, J. P.
Agapiou, M. Jaderberg, A. S. Vezhnevets, R. Leblond, T. Pohlen,
V. Dalibard, D. Budden, Y. Sulsky, J. Molloy, T. L. Paine, Ç. Gülçehre,
Z. Wang, T. Pfaff, Y. Wu, R. Ring, D. Yogatama, D. Wünsch,
K. McKinney, O. Smith, T. Schaul, T. P. Lillicrap, K. Kavukcuoglu,
D. Hassabis, C. Apps, and D. Silver, “Grandmaster level in starcraft
II using multi-agent reinforcement learning,” Nat., vol. 575, no. 7782,
pp. 350–354, 2019. [Online]. Available: https://doi.org/10.1038/s41586-
019-1724-z

[9] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse, R. Józefowicz, S. Gray,
C. Olsson, J. Pachocki, M. Petrov, H. P. de Oliveira Pinto, J. Raiman,
T. Salimans, J. Schlatter, J. Schneider, S. Sidor, I. Sutskever, J. Tang,
F. Wolski, and S. Zhang, “Dota 2 with large scale deep reinforcement
learning,” CoRR, vol. abs/1912.06680, 2019. [Online]. Available:
http://arxiv.org/abs/1912.06680

[10] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy consid-
erations for deep learning in nlp,” 2019.

[11] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green ai,”
Communications of the ACM, vol. 63, no. 12, pp. 54–63, 2020.

[12] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
“Deep reinforcement learning that matters,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 32, no. 1, 2018.

[13] J. Pineau, P. Vincent-Lamarre, K. Sinha, V. Larivière, A. Beygelzimer,
F. d’Alché Buc, E. Fox, and H. Larochelle, “Improving reproducibility
in machine learning research (a report from the neurips 2019 repro-
ducibility program),” Journal of Machine Learning Research, vol. 22,
2021.

[14] A. paper authors. (2022-02-27) Code
and trace repository. [Online]. Available:
https://ipfs.io/ipfs/QmRDg98PaQEdvrj6tcDr5eQRLCPc2YovphMd7uHNJet1Ug

[15] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

[16] R. BELLMAN, “A markovian decision process,” Journal of Mathematics
and Mechanics, vol. 6, no. 5, pp. 679–684, 1957. [Online]. Available:
http://www.jstor.org/stable/24900506

[17] A. Plaat, Deep Reinforcement Learning. Springer Nature, 2021.

[18] R. Agarwal, D. Schuurmans, and M. Norouzi, “An optimistic perspec-
tive on offline reinforcement learning,” in International Conference on
Machine Learning, 2020.

[19] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
Second Edition. MIT press, 2018.

[20] M. Werning, “Predicting the past from minimal traces: Episodic mem-
ory and its distinction from imagination and preservation,” Review of
philosophy and psychology, vol. 11, no. 2, pp. 301–333, 2020.

[21] I. Post and Y. Ye, “The simplex method is strongly polynomial for
deterministic markov decision processes,” Mathematics of Operations
Research, vol. 40, no. 4, pp. 859–868, 2015.

[22] T. garage contributors, “Garage: A toolkit for reproducible reinforcement
learning research,” https://github.com/rlworkgroup/garage, 2019.

[23] R. Islam, P. Henderson, M. Gomrokchi, and D. Precup, “Reproducibil-
ity of benchmarked deep reinforcement learning tasks for continuous
control,” 2017.

[24] K. Khetarpal, Z. Ahmed, A. Cianflone, R. Islam, and J. Pineau, “Re-
evaluate: Reproducibility in evaluating reinforcement learning algo-
rithms,” 2018.

[25] D. Eisner, “Reproducibility of science: Fraud, impact factors and care-
lessness,” Journal of molecular and cellular cardiology, vol. 114, pp.
364–368, 2018.

[26] D. Pérez-Liébana, S. Samothrakis, J. Togelius, T. Schaul, and S. M.
Lucas, “Analyzing the robustness of general video game playing agents,”
in 2016 IEEE Conference on Computational Intelligence and Games
(CIG). IEEE, 2016, pp. 1–8.

[27] R. D. Gaina, A. Couëtoux, D. J. Soemers, M. H. Winands, T. Vodopivec,
F. Kirchgeßner, J. Liu, S. M. Lucas, and D. Perez-Liebana, “The 2016
two-player gvgai competition,” IEEE Transactions on Games, vol. 10,
no. 2, pp. 209–220, 2017.

[28] R. R. Torrado, P. Bontrager, J. Togelius, J. Liu, and D. Perez-Liebana,
“Deep reinforcement learning for general video game ai,” in 2018 IEEE
Conference on Computational Intelligence and Games (CIG). IEEE,
2018, pp. 1–8.

[29] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in games, vol. 4, no. 1, pp. 1–43,
2012.

[30] D. Ferigo, S. Traversaro, G. Metta, and D. Pucci, “Gym-ignition:
Reproducible robotic simulations for reinforcement learning,” in 2020
IEEE/SICE International Symposium on System Integration (SII). IEEE,
2020, pp. 885–890.

[31] P. Aumjaud, D. McAuliffe, F. J. R. Lera, and P. Cardiff, “rl reach:
Reproducible reinforcement learning experiments for robotic reaching
tasks,” Software Impacts, vol. 8, p. 100061, 2021.

[32] PyTorch. (2021-12-15) Reproducibility - pytorch documentation. [On-
line]. Available: https://pytorch.org/docs/stable/notes/randomness.html

[33] A. Donadigo. (2021-12-15) Extracting inputs from replays. [Online].
Available: https://donadigo.com/tminterface/input-extraction

[34] ——. (2021-12-15) Tmx replay investigation. [Online]. Available:
https://donadigo.com/tmx1

[35] E. Games. (2021-12-15) Replay system - un-
real engine documentation. [Online]. Available:
https://docs.unrealengine.com/latest/INT/Engine/Replay/

[36] K. Maberry, S. Paustian, and S. Bakir, “Using an artificial neural
network to detect aim assistance in counter-strike: Global offensive,”
DOI, vol. 10, no. 1235, pp. 1–4.

[37] P. Xenopoulos, H. Doraiswamy, and C. Silva, “Valuing player actions in
counter-strike: Global offensive,” in 2020 IEEE International Conference
on Big Data (Big Data). IEEE, 2020, pp. 1283–1292.

[38] J. M. Font and T. Mahlmann, “Dota 2 bot competition,” IEEE Transac-
tions on Games, vol. 11, no. 3, pp. 285–289, 2018.

[39] S. S. Farooq, I.-S. Oh, M.-J. Kim, and K. J. Kim, “Starcraft ai
competition report,” AI Magazine, vol. 37, no. 2, pp. 102–107, 2016.

[40] J. A. Brown, L. J. P. de Araujo, and A. Grichshenko, “Ai space invaders
2021 competition,” 2021.

[41] ——, “Snakes ai competition 2020 and 2021 report,” 2021.
[42] N. Justesen, P. D. Moore, L. M. Uth, J. Togelius, C. Jakobsen, and

S. Risi, “Blood bowl: A new board game challenge and competition for
ai,” in 2019 IEEE Conference on Games (COG). IEEE, 2019.

[43] K. Cobbe, C. Hesse, J. Hilton, and J. Schulman, “Leveraging proce-
dural generation to benchmark reinforcement learning,” arXiv preprint
arXiv:1912.01588, 2019.

[44] S. Risi and J. Togelius, “Increasing generality in machine learning
through procedural content generation,” Nature Machine Intelligence,
vol. 2, no. 8, pp. 428–436, 2020.

[45] M. C. Green, B. Sergent, P. Shandilya, and V. Kumar, “Evolutionarily-
curated curriculum learning for deep reinforcement learning agents,”
2019.

[46] M. Müller-Brockhausen, M. Preuss, and A. Plaat, “Procedural content
generation: Better benchmarks for transfer reinforcement learning,”
in 2021 IEEE Conference on Games (CoG), Copenhagen, Denmark,
August 17-20, 2021. IEEE, 2021, pp. 1–8. [Online]. Available:
https://doi.org/10.1109/CoG52621.2021.9619000

[47] S. Muralidharan and H. Ko, “An interplanetary file system (ipfs) based
iot framework,” in 2019 IEEE International Conference on Consumer
Electronics (ICCE), 2019, pp. 1–2.

[48] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[49] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning
implementations,” Journal of Machine Learning Research, vol. 22, no.
268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/v22/20-
1364.html

[50] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer, “Vega-
lite: A grammar of interactive graphics,” IEEE transactions on visual-
ization and computer graphics, vol. 23, no. 1, pp. 341–350, 2016.

[51] European Organization For Nuclear Research and OpenAIRE, “Zenodo,”
2013. [Online]. Available: https://www.zenodo.org/

[52] C. Bormann and P. Hoffman, “Concise binary object representa-
tion (cbor),” RFC 7049, DOI 10.17487/RFC7049, October 2013,¡
https://www. rfc-editor. org . . . , Tech. Rep., 2013.

[53] P. Deutsch and J.-L. Gailly, “Zlib compressed data format specification
version 3.3,” RFC 1950, May, Tech. Rep., 1996.

[54] D. Patterson, J. Gonzalez, Q. Le, C. Liang, L.-M. Munguia,
D. Rothchild, D. So, M. Texier, and J. Dean, “Carbon emissions and
large neural network training,” 2021.

[55] B. Cohen and K. Pietrzak, “The chia network blockchain,” 2019.

