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Abstract—Recent years, there has been growing interests in
experience-driven procedural level generation. Various metrics
have been formulated to model player experience and help
generate personalised levels. In this work, we question whether
experience metrics can adapt to agents with different personas.
We start by reviewing existing metrics for evaluating game levels.
Then, focusing on platformer games, we design a framework
integrating various agents and evaluation metrics. Experimental
studies on Super Mario Bros. indicate that using the same evalua-
tion metrics but agents with different personas can generate levels
for particular persona. It implies that, for simple games, using a
game-playing agent of specific player archetype as a level tester
is probably all we need to generate levels of diverse behaviour
engagement.

Index Terms—Experience-driven procedural content gener-
ation, level generation, player experience, personalised levels,
platformer games

I. INTRODUCTION

Procedural content generation (PCG), aiming at generating
contents algorithmatically, has shown its effectiveness in gen-
erating various types of game contents [1]–[4]. As the rapid de-
velopment and applications of video games in different fields
(e.g., serious games for autistic treatment) and expansion of
player demography, game content tends to satisfy prospective
players with different preference and experience [5]. More
and more studies start to focus on experience-driven proce-
dural content generation (EDPCG). To generate personalised
contents, it is necessary to define evaluation metrics that can
predict player experience on the evaluated contents. Basically,
an evaluation metric can be seen as a function whose input
is the gameplay data or content features that are controllable
by game designers and its output is the quality of the content.
This mapping is often mathematically formulated or learnt by
machine learning models [6], [7]. For instance, Pedersen et
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al. [6] trained a model to predict several key affective states
with a combination of gameplay features and controllable
content features.

EDPCG can be applied to generate contents for general
players or a particular player persona. EDPCG for general
players exists in many forms of games, such as platformer
games [8], dungeon games [9], puzzle games [10] and role
playing games [11]. Besides, Some work categorised players
into different groups according to the behaviour preference
(personas) and try to generate content for specific groups [12],
[13]. The common procedure of generating content for specific
persona has two steps, identifying which profile the player
belongs to, and then changing or adapting the generators
correspondingly.

What if the same content evaluation metrics are used for
different personas? There exists at least two advantages. (i) It
is not necessary to design different content evaluation metrics
for different personas. (ii) If the playing style changes, the
generated content can also change since all the different
playing styles share the same evaluation metrics. To our best
knowledge, no work has ever considered general evaluation
metrics for different player personas. Fernandes et al. [14]
proposed a level generation approach to adapt to four rule-
based persona agents over three different experience metrics
respectively. However, the work [14] did not show the dif-
ference between the levels generated for different personas.
This is important because it reflects whether the evaluation
metrics can capture the preference of personas and affect the
generation of levels.

Motivated by the above, two questions are raised in this
work. How different the generated levels are if using the same
evaluation metric but different evaluation agents? Furthermore,
considering a level generated with a given evaluation agent,
will a player that has similar persona to the evaluation agent
gain more engagement compared with players that have an-
other persona? In this paper, we attempt to answer the above
questions with level generation and conduct case studies on
Super Mario Bros. (SMB), a benchmark platformer game for
procedural level generation.



The main contributions of this work are as follows1. First,
existing metrics for evaluating game levels (not particularly
for platformer game levels) are reviewed. Then, we propose
a framework that is capable of generating levels of diverse
behaviour engagement. The framework is implemented with
three agents of different personas and four evaluation metrics
considering the number, difficulty and diversity of events
triggered by agents during game-playing. The aforementioned
metrics and agents are integrated to the popular MarioGan [15]
framework as fitness functions of an evolutionary algorithm
which searches in the latent space of the level generator of
MarioGan. Levels obtained with different combinations of
evaluation metrics and agents are evaluated by their contents
and gameplay data of different agents in order to verify their
difference and whether they can adapt to agents used during
level generation.

The rest of this paper is organised as follows. Section
II reviews existing metrics for evaluating game levels. The
motivation and design of our framework, details of an im-
plementation of our framework for generating SMB levels,
our evaluation metrics and agents are provided in Section III.
Section IV presents the corresponding experimental studies
and analysis. Section V concludes and discusses some future
directions.

II. RELATED WORK

Section II-A briefly reviews the related work in generating
contents for different player (or agent) types. Focusing on
game levels, Section II-B summarises and discusses what have
been modelled in existing level evaluation metrics.

A. Generating Levels for Different Player / Agent Types

Personalised level design has been comprehensively sum-
marised in the survey of [21]. Here, research work that
classifies players into several groups and generate levels are
discussed. The classification approaches can be based on
intuition or machine learning. The work of [12] categorised
playing styles as Explorer, Enemy killer, Speed runner and the
work of [14] defined four rule-based agent. Yu and Trawick
[13] applied some clustering methods to categorise players
and the naive Bayesian approach to identify playing styles.
As shown in Table I, [12] and [13] applied different level
evaluation metrics to different playing styles, while some
work [14], [20] used the same evaluation metrics but different
agents for simulating the game.

B. Evaluating Levels

Table I also summarises the factors considered when design-
ing a level evaluation metric in each related work, including
the level content itself, game play data collected during the
games played by players or agents and players’ feedback about
their feelings.

1Code of this paper is available on Github: https://github.com/
SUSTechGameAI/EngagementMetrics

The level evaluation metrics can be modelled by expert
knowledge or machine learning methods. Most work con-
sidering players’ feedback trained a model that can predict
“fun” degree of the levels based on the level content and (or)
gameplay data [6], [13], [16], [17]. The work of [18] used
the feedback of players during the game to adaptively change
the challenge of the game. Although the work focusing on
player modelling are not listed in Table I, they can also help
level evaluation by imitating the decision making or players’
playing style [22]–[25].

III. APPROACH AND CASE STUDY WITH SMB

In this work, we mainly consider the gameplay data col-
lected during the games because we want to focus on whether
the evaluation metrics can be sensitive to agents with different
behaviour preference. We also expect to see if the generation
of levels will change for different agents when only the
gameplay data is used to evaluate levels.

Our proposed framework is illustrated in Fig. 1. It is a
general framework that can be extended to many games.
Basically, it is a search-based approach with a generator to
create new candidate levels, a simulator to generate gameplay
data on the candidate levels and some evaluation metrics
to evaluate the quality of the candidate levels based on the
gameplay data.

Our framework is based on MarioGan [15], but differs from
it as follows. In MarioGan [15], only one agent was used to
simulate the generated levels and only the level completion
rate and number of jumps by the agent are considered when
evaluating levels. We extend it by considering various agents
of different playing styles as level evaluation agents. Besides
the original evaluation metrics, new metrics are designed
considering more gameplay data, including the event number,
event distribution and ability of agents.

Fig. 1: Our framework built on MarioGan [15].

A. Agents of Different Personas

Inspired by the Bartle’s Taxonomy [26], which categorised
players to Killer, Achiever, Explorer and Socializer, we design
three different SMB agents: Runner, Killer and Collector.



TABLE I: Factors considered when evaluating levels and research on level generation for different players’/agents’ personas.

Work Evaluation factors Whether categorize
players/agents (Criterion)

Apply same evaluation
metrics for different groups

Compare generated levels
for different groupscontent gameplay feedback

[16] X X X - - -
[17] X X - - -
[6] X X X - - -
[18] X X X - - -
[11] X X - - - -
[19] X - - - - -
[10] X X - - - -
[8] X X - - - -
[13] X X X X (Persona) - -
[12] X X - X (Persona) - -
[20] X X - X (Ability) X X
[14] X - - X (Persona) X -

Self - X - X (Persona) X X

Despite of their common interest in passing the levels, their
preference and reaction to different game mechanisms (such
as coins and monsters) are different.

Runner, Killer and Collector agents are designed as vari-
ations of the winner A∗ agent in the 2009 Mario AI Com-
petition [27]. Its ability of passing levels has been proved
to be superior than human players. Different personas are
implemented through the design of different heuristic function
used for decision-making by each agent. The personas and
corresponding agents are described as follows.

1) Runner: Runner represents the players that try to com-
plete a level as fast as possible. Speed run is a common way
for players to break the game record and avoid monsters in
many games. Its heuristic function punishes the actions that
lead to states which cost longer time to finish, formulated as

costr = RemainingT ime+ TimeElapsed ∗ 0.9, (1)

where RemainingT ime is the estimated time consumed by
Mario to finish the level and TimeElapsed is simply the
elapsed time.

2) Killer: Killer represents the players that prefer to kill
all the monsters in a level. It represents an extreme case for
players that enjoy stomping monsters. Its heuristic function
rewards the actions that kill monsters, formulated as

costk = −KillRate−GameState, (2)

where GameState = 1 if Mario reaches the destination;
GameState = −1 if Mario falls or is killed by a monster;
otherwise, GameState = 0. Introducing GameState is to
ensure the priority of completing levels since it is the common
goal of all the players. KillRate is the ratio of monster killed
by Mario and the total monsters.

3) Collector: Collector represents the players that attempt
to collect all the coins in a level. It represents achievers [26]
who have fun when collecting all the props and earning
additional reward in games. Its heuristic function rewards the
actions that collect more coins:

costc = −CollectRate−GameState, (3)

where CollectRate is the ratio of collected coins to the total
number of coins.

B. Design of Evaluation Metrics

Five different evaluation metrics are designed to evaluate
the quality of levels by the agents’ gameplay features. Note
that all the metrics are to be minimised in our work.

1) Jump: The number of jumps is a common metrics used
in SMB [6], [15] since jump is a basic operation for players.
To be specific, we want to maximise the number of jumps of
agents and formulate the following evaluation metric:

Jump =

{
− p p < 1,

− p−#Jumps p = 1,
(4)

where p is the fraction of levels that the agent completes. p is
to ensure that the level is playable. It is negative because we
want to minimise the value.

2) Event: Since jumping can be seen as an event during
playing, we use the number of events as the metrics and want
to study their difference for generating levels. Table II lists all
the considered events. The corresponding metric is:

Event =

{
− p p < 1,

− p−#E p = 1,
(5)

where #E is the number of events occurred.

TABLE II: Events used for evaluating levels.

Event type Description

Stomp Stomp on and kill a monster
Fall Monster falls

Jump Jump up
Land Land on the solid block

Collect Collect a coin
Lose Fall or be killed by a monster
Win Complete the level

3) Fail rate: Fail rate is used to describe the danger during
playing. As an A∗ agent, a search-based agent, is used, the
ratio of the nodes searched by A∗ that cause a lose (denoted as
Slose) to the total nodes searched by A∗ (denoted as Stotal) can
be calculated as fr = #Slose/ #Stotal. We want to maximise



the fail rate of the agent in order to increase the difficulty
degree of the levels, formulated as follows:

FailRate =

{
− p p < 1,

− p− fr p = 1.
(6)

4) Ability: We denote the basic three persona agents with-
out any modification as perfect agents. A blind agent is defined
as the A∗ agent that can only search positions half distance
to the current position than a perfect agent. It means that the
two agents own the same persona, but different abilities. We
aim to generate levels with different skill-depth that require
further planning and let the blind agent fail to complete. The
Ability metric is formulated as:

Ability =

{
− 1 pperfect = 1 and pblind < 1,

pblind − pperfect otherwise,
(7)

where pperfect and pblind are the fractions of the level that
the perfect agent and blind agent complete, respectively.

5) Variance: Diversity of levels are regarded as an im-
portant factor to improve the engagement. We focus on the
diversity of events triggered by an agent during playing. The
event type is same in the Table II. We consider the coefficient
of variance (CV) of the position of events, defined as the ratio
of its standard deviation to its expectation:

CV (x) =
Std(x)

E(x)
, (8)

if considering an event’s x-coordinate value. We want to
maximise the CV for both x- and y-coordinates of events in
levels:

F =

{
− p p < 1,

− p− CV (x)− CV (y) p = 1.
(9)

IV. EXPERIMENTAL STUDY AND DISCUSSION

We first perform a preliminary experimental study to verify
the behaviour preference of three agents on original SMB
levels. Then, SMB levels are generated by searching in the
latent spaces of a GAN generator with different evaluation
metrics (cf. Section III-B) as the fitness function and different
evaluation agents (cf. Section III-A) for simulation. After level
generation, all the levels are evaluated with various metrics
based on their contents. Results of simulation-based tests by
different playing agents are also reported.

A. Validation of Agents

To verify if the designed agents (Runner, Killer and Collec-
tor) act differently when they play the same levels, they are
tested on the 15 original SMB levels. The time limit for the
agent to determine an action is 200ms. We record the fraction
of the level that was completed, the number of kills and times
of collecting in each level. Every agent played each level 5
times because an agent’s behaviour may vary when playing
the same level twice.

Table III shows the ratio of completion, monsters killed,
coins collected and completion time of the three agents.

Comparing the ratio of completion, three agents show the
similar ability to complete the levels. Runner may pursue
speed too much and choose a dangerous way in some levels,
which leads to a low ratio of completion. As shown in Fig.
2, Runner lands on the edge of the block and fails to jump
again, while Killer and Collector choose a safer policy and
successfully jump over these gaps. Table III also shows the
significantly different preference of agents. In all the 15 levels,
Killer kills the most monsters, Collector collects the most
coins and Runner finishes the levels with the minimum time.
It proves that these agents have different behaviour preference
when playing same levels.

case.png

Fig. 2: Runner falls into the gap, while the others don’t.

B. Generating Levels of Different Behaviour Engagement

With five evaluation metrics and three agents of different
persona, we generate levels for each evaluation metric and
for each agent. Hence, there are 15 groups of levels in total.
Each group contains 30 level segments after evolving the latent
vector with CMA-ES. The parameter setting of CMA-ES is
same as in [15]. The evaluation budget is 1,000, but 2,000
for metric Ability because every evaluation requires two game
simulations (i.e., one game each by the perfect and blind
agents). The game engine used is the Mario AI framework2.

To answer the two research questions, two sets of level tests
are performed to compare the generated levels based on their
content and gameplay data of different persona agents.

1) How different the generated levels are if using the same
evaluation metric but different evaluation agent: In order to
test whether the levels generated with different agents have
different features, we evaluate the generated levels on their
contents. Table IV shows the analysis on the generated levels.
Each level is evaluated with the number of monsters, number
of coins, number of gaps and the maximum width of gaps as
those contents are the core elements in a SMB level.

Comparing the levels generated using different evaluation
metrics and a same evaluation agent, as illustrated in Table
IV, it implies that game contents can be evolved in two
ways: increasing element numbers and increasing difficulty.
For instance, considering Collector as the evaluation agent,
Jump and Event metrics show the number of coins in the
levels are significantly higher than the ones obtained using
other evaluation agents. However, in other metrics, the number
of coins shows no increase and sometimes lower than the ones

2https://github.com/amidos2006/Mario-AI-Framework



TABLE III: The ratio of completion, number of monsters killed, number of coins collected and complete time of three agents
tested on the 15 original SMB levels. AVG in “Monsters killed” (or “Coins Collected”) refers to the average ratio of the
monsters killed (or coins collected) by agents. −1 in “Time” means that the agent fails to finish the level. The maximum
ratio of completion, monsters killed, coins collected and the minimum completion time are in bold. Some cells are left empty
because it is meaningless to calculate the averaged value as the levels are different.

Level Agent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 AVG

Completion
Runner 1 1 0.53 1 1 0.41 1 1 1 0.53 1 0.37 1 1 0.11 0.79
Killer 1 1 0.71 0.93 1 0.41 1 0.87 1 0.57 1 1 0.35 1 0.93 0.85

Collector 1 1 0.29 0.94 1 0.4 1 1 1 0.52 1 1 0.35 1 0.92 0.82

Monsters killed

Runner 1 5 0 8 8 0 0 0 5 0 0 1 0 4 3.2 0.12
Killer 12.8 17 4.6 21.8 20.8 2 0 11.6 22 5 0 6.2 0 7 36 0.65

Collector 4 10 1 11.8 9.8 0 0 3.2 5 2 0 1.4 0 5 11.6 0.24
Total 15 18 6 26 28 6 12 12 31 6 15 8 0 10 50 -

Coins collected

Runner 1 2 0 0 0 4 4 5 0 0 1 0 2 1 0 0.07
Killer 2.8 4 7 5.4 0 3 1.2 2.4 0 2.8 2 1 0 3 5.2 0.21

Collector 13 12 4 13 4 8 20.6 22.8 0 8 14.4 3 7 3 14.2 0.54
Total 21 23 23 21 8 22 35 27 0 23 16 3 24 5 17 -

Time
Runner 9 8 -1 12 10 -1 12 10 10 -1 13 -1 8 8 -1 -
Killer 12 11 -1 -1 15 -1 13 -1 14 -1 10 25 -1 10 -1 -

Collector 12 11 -1 -1 13 -1 16 15 10 -1 13 22 -1 9 -1 -

obtained with other evaluation agents. But the number of gaps
and max width of gaps in Fail rate and Ability are greater
than that in Jump and Event. It indicates that Jump and Event
metrics tend to evolve content in the first way, while Fail rate
and Ability metrics tend to evolve content in the second way.
Fig. 3 shows this difference. Both two way of evolution can
improve the engagement of Collector and they are captured
by different evaluation metrics.

Comparing Jump and Event metrics, it is interesting that
the number of monsters increases significantly for Killer. It
indicates that the meaning of action (e.g., jump) is sometimes
vague and may not guide the evolution as expected. For
example, the purpose of jump can be killing monsters, dodging
monsters, crossing gaps or even nothing. So this result shows
that combining the action with game events can understand
the player’s behaviour purpose better.

2) Considering a level generated with an evaluation agent,
will a player that has similar persona gain more engagement
compared with players that have another personas: To study
whether the generated levels can improve the behaviour en-
gagement for particular personas, we test all the 15 groups of
levels with three agents. Tables Va to Ve show the results of
agents playing the 15 groups of levels. Reading guidelines are
given in the table captions.

Considering Event and Jump, if fix the test agents, the test
value like jump and number of events will be significantly
higher when the test agent and the evaluation agent are the
same. If fixing the evaluation agent and compare different test
agents, more events are also triggered when the test agent and
evaluation agent are the same. It indicates the generated levels
have particular behaviour engagement indeed. For instance,
Fig. 4 illustrates a level generated using the Event metric and
Collector as its evaluation agent. This level tends to attract
Collector to jump and collect coins, triggering more events.
But for Runner and Killer, the presence of coins doesn’t

(a) Jump.

(b) Fail rate.

(c) Ability.

(d) Variance.

(e) Event.

Fig. 3: Levels generated with different evaluation metrics and
evaluation agent Collector. Levels generated with Jump and
Event have a great amount of coins. Fail rate and Ability
contain coins that near to the gap and dangerous to collect. In
the level generated with Variance, the position of coin is high
and also increase the difficulty of collecting it.



increase the appeal.
Fail rate and Ability metrics also can generate levels for

specific persona. For Collector as the evaluation agent, when
test agent is Collector, the completion time, jump, event type,
number of events are all higher than the ones obtained by
other test agents. When Killer is used as the evaluation agent,
the Fail rate is higher when the test agent is also Killer. This
indicates that Fail rate and Ability can evolve levels that can
be harder for specific persona, e.g., a coin hard to get or a
monster hard to kill. It is consistent with the levels shown in
Fig. 3.

Fig. 4: A level generated by Event metric and Collector agent.
It attracts Collector to jump more for collection.

However, when fixing the test agent and considering dif-
ferent evaluation agents, both Collector and Killer have much
larger Fail rate when Runner is the evaluation agent, compared
with the corresponding evaluation agent. This indicates that
levels generated with Runner as its evaluation agent can be
also very challenging for Collector and Killer. From Table
IV, the Max width of gaps in FailRate-runner and Ability-
runner is significantly higher. Fig. 5 shows a level generated
using the Fail rate and Runner. The agent needs to rely on
several landing points to skip large interval segments. This
level is very difficult for all the agents. Runner and Collector
have 4.61% and 5.47% failure rates in this level. Killer cannot
even complete the level with Fail rate 27.01%.

Fig. 5: A level generated by Fail rate metric and Runner agent.
The width of gaps is large and consequently increase difficulty
for all the three agents to pass the level.

For Variance, the pattern is not clear and no obvious
preference observed from the results. A possible reason is that
Variance considers all the types of content together, while in
many cases multiple events happen closely, such like jump
and collect. Some meaningless event should also be excluded
during evaluation. There is an extreme fail case for Variance.
There is nothing but ground in the level, while Collector will
jump time to time and increase the Variance on x-axis. Fig. 6
shows the premature convergence of fitness.

V. CONCLUSION & FUTURE WORK

In this paper, we first analyse the metrics for evaluating
game levels. Then, this work uses evaluation metrics that have
no preference bias and designed agents with different personas

to investigate whether the levels generated with different
simulation agent can have different behaviour engagement.
Experimental results on a platformer game show that our
framework can adapt to different personas and generate levels
for them specifically via changing the behaviour preference of
evaluation agents. The work may guide game designers and
researchers to study further on combining these different eval-
uation metrics to generate levels with more possibilities (e.g.,
dynamically changing the engagement for general players or
particularly for players of a certain persona).

In this work, we assume that higher number (difficulty,
diversity) of triggered events represents more engagement of
players. A more reasonable way is to keep them within a
range, neither too boring nor too diverse. One important future
work is conducting human test to further verify whether those
generated levels have different behaviours engagement. The
evaluation agents can also be a combination of personas (e.g.,
combining Collector and Killer) or a machine learning based
agent to imitate players better. It is also interesting to test our
system on other game genres.
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TABLE V: Agent behaviour test. Kill rate and Collect rate are defined in Section III-B. Time means the completion time.
Event type and Event num means the type and number of events triggered by agent, respectively. Complete means the ratio of
completeness. All the values are averaged over 30 independent levels. The bold number represents the largest number (smallest
for complete) for the same test agent and different evaluation agent. “+”/“-” represents the value is significantly larger/smaller
than the baseline according to Wilcoxon rank-sum test with p < 0.05. The baseline has the identical test and evaluation agent.

(a) Levels generated using Jump metric and different evaluation agents.

Gameplay agent Kill rate Collect rate Fail rate Time #Jump Event type Event num Complete
During generation During test

Collector Collector 0.27 0.78 1.29 3.83 8.47 4.43 21.47 1
Runner Collector 0.32 0.07- 2.11 4.8 6.1- 3.73- 13.1- 0.95
Killer Collector 0.3 0.25- 1.03 3.2- 5.97- 3.87- 13.27- 1

Collector Runner 0.07 0.09+ 0.12 2.3- 2.77- 3.57+ 7.2- 1
Runner Runner 0.01 0.01 0.58 3.4 6.37 3.07 13.8 1
Killer Runner 0.07 0.03 0.14 2.5- 3.67- 3.17 8.53- 1

Collector Killer 0.88 0.11 0.93 3.07 4.23- 4.43+ 11.5- 1
Runner Killer 0.77 0 4.82 3.03 5.03 3.67 11.87 0.93
Killer Killer 0.7 0.07 1.03 4.2 8.3 3.87 18.37 0.99

(b) Levels generated using Event metric and different evaluation agents.

Gameplay agent Kill rate Collect rate Fail rate Time #Jump Event type Event num Complete
During generation During test

Collector Collector 0.46 0.86 0.64 5.6 8.47 4.6 23.17 0.98
Runner Collector 0.47 0.57 2.18 3.07- 5.67- 4.47 14.33- 0.98
Killer Collector 0.31 0.55- 0.87 5- 6.6- 4.37 16.2- 0.98
Collector Runner 0.07 0.17 0.11 2.2- 2.77- 3.77 7.83- 1
Runner Runner 0.16 0.34 0.54 2.9 5.23 4.07 13 1
Killer Runner 0.13 0.09- 0.15 2.43- 3.2- 3.73 8.5- 1
Collector Killer 0.84 0.2 1.42 2.97- 3.9- 4.53 11.33- 0.98
Runner Killer 0.8 0.24 2.55 2.93- 4.8 4.4- 12.87- 0.97
Killer Killer 0.92 0.25 0.72 3.93 6.27 4.63 17.63 1

(c) Levels generated using Fail rate metric and different evaluation agents.

Gameplay agent Kill rate Collect rate Fail rate Time #Jump Event type Event num Complete
During generation During test

Collector Collector 0.16 0.41 6.87 4.9 8.23 4.1 18.73 0.93
Runner Collector 0.26 0.54 14.33+ 3.33- 4.5- 4.1 11.2- 0.84
Killer Collector 0.19 0.38 7.95 3.67- 5.17- 3.93 12.03- 0.93
Collector Runner 0.08 0.06 2.14 2.27 2.87 3.43 7.37 0.98
Runner Runner 0.16 0.08 7.37 2.33 3.13 3.53 7.97 0.93
Killer Runner 0.06 0.01 0.46- 2.27 2.9 3.27 7.2 1
Collector Killer 0.44 0.08 8.36 2.93 3.93 3.77 10.57 0.92
Runner Killer 0.74 0.23+ 13.19+ 2.57 3.33 4.23+ 9.87 0.84
Killer Killer 0.48 0.06 9.26 2.8 3.77 3.67 9.8 0.91

(d) Levels generated using Ability metric and different evaluation agents.

Gameplay agent Kill rate Collect rate Fail rate Time #Jump Event type Event num Complete
During generation During test

Collector Collector 0.1 0.38 2.97 2.53 4.6 3.6 10.07 0.98
Runner Collector 0.06 0.18 12.7+ 2.37 3.97 3.33 8.33 0.89
Killer Collector 0.12 0.3 4.5 2.47 4.2 3.6 9.13 0.97

Collector Runner 0.07 0.03 0.23- 2.13 2.6 3.2 6.4 1
Runner Runner 0.04 0 0.58 2.2 2.83 3.1 6.77 1
Killer Runner 0.04 0 1.58 2.07 2.3- 3.07 5.63- 0.98-

Collector Killer 0.32 0.04 5.41 2.47 3.87 3.43 8.47 0.97
Runner Killer 0.28 0 15.57+ 2.2 3.43 3.3 7.27 0.84-
Killer Killer 0.35 0.01 5.33 2.43 3.43 3.4 7.43 0.97

(e) Levels generated using Variance metric and different evaluation agents.

Gameplay agent Kill rate Collect rate Fail rate Time #Jump Event type Event num Complete
During generation During test

Collector Collector 0.45 0.56 0.13 2.47 3.7 4.37 8.83 1
Runner Collector 0.45 0.46 3.84+ 2.9+ 5.2+ 4.13+ 13.2 0.97
Killer Collector 0.15- 0.66 1.01+ 4.5 4.4+ 3.9- 10.43+ 0.96

Collector Runner 0.14 0.1 0.05 2.1- 1.83- 3.27 5.07 1
Runner Runner 0.09 0 0.63 2.4 2.7 3.17 6.63 1
Killer Runner 0 0 0.06 2.13 2- 3 5- 1

Collector Killer 0.81 0.35+ 0.09- 2.8 3.13 4.23 8.17 1
Runner Killer 0.8 0.13 2.75 2.9+ 3.77+ 4.13 10.1+ 0.97
Killer Killer 0.94 0.04 0.35 2.57 2.67 4.07 7.13 1


