
On Linking Level Segments
Colan F. Biemer

Northeastern University
biemer.c@husky.neu.edu

Seth Cooper
Northeastern University

se.cooper@northeastern.edu

Abstract—An increasingly common area of study in procedural
content generation is the creation of level segments: short pieces
that can be used to form larger levels. Previous work has
used concatenation to form these larger levels. However, even
if the segments themselves are completable and well-formed,
concatenation can fail to produce levels that are completable
and can cause broken in-game structures (e.g. malformed pipes in
Mario). We show this with three tile-based games: a side-scrolling
platformer, a vertical platformer, and a top-down roguelike. To
address this, we present a Markov chain and a tree search
algorithm that finds a link between two level segments, which uses
filters to ensure completability and unbroken in-game structures
in the linked segments. We further show that these links work
well for multi-segment levels. We find that this method reliably
finds links between segments and is customizable to meet a
designer’s needs.

I. INTRODUCTION

The field of procedural content generation (PCG) researches
algorithms that auto-generate content. A major focus of the
field is the creation of levels [1]. Approaches vary from
graph grammars [2] to machine learning [3] to reinforcement
learning [4] to behavior trees [5] to search [6] and more.
Generators generate whole levels or smaller segments that
are combined to form larger levels. Segment generation is
a promising area because it has potential to give designers
more fine-grained control. To better understand this claim,
consider the task of building a Mario level with many jumps
at the start, then a few enemies, then no jumps, and, finally,
many jumps and many enemies. If a generator has to build
the described level, then it has a large challenge due to the
size of the search space. It can be more manageable to break
the designer’s requirements into parts by building smaller
segments and combining them together. Unfortunately, little
work has studied how to combine level segments to build
full levels. This is important because the field works with
games more complex than Mario, and, as we will show, current
approaches are insufficient for more complex games, and we
need a better method.

The simplest approach to link level segments is concate-
nation, or simply placing one segment after another [7].
Concatenation has no notion of completability or in-game
structures (e.g. doors in Kid Icarus). Another approach is to
require padding on either side of a generated segment [8]; this
implicitly handles the problem of broken in-game structures.
Green et al. extend this by using an agent to validate that a
level is playable before showing it to the user [8]. However,
these examples only use Mario.

As an alternative to concatenation, we present the process
of linking for 2D tile-based games, which creates a linker—a
tiny level segment that connects two level segments. The full
level is the concatenation of the first segment, the linker, and
the second segment. The full level should be completable (i.e.
a player can get from the beginning to the end) and unbroken
(i.e. a level should contain no broken in-game structures). A
linker is usable if it results in a level that is completable and
unbroken.

To generate usable linkers,1 we present a method of linking
which uses two Markov chains and a tree search. This method
relies on breaking a set of input levels into vertical or hori-
zontal level slices. These level slices are used as input for two
Markov chains. Both chains are used for structure completion
for their respective level segment to guarantee an unbroken
level by adding level slices to the linker—a limitation is that
Markov chains can fail for unseen input. If we concatenate
with the linker generated by the Markov chains, we only have
a guarantee that a generated linker will result in an unbroken
level. To address completability. we use a tree search which
runs on the input level slices or a set defined by the designer.
The output of the search is an ordered list of level slices—the
list may be empty. These are added in between any level slices
added by the two Markov chains to form the linker. If a linker
can be produced, it is guaranteed to be usable.

We test with three games: Mario, a horizontal platformer;
Kid Icarus, a vertical platformer; and DungeonGrams, a top-
down roguelike.2 For all three games, we test linking with level
segments previously generated by Gram-Elites in past work
[9].3 We choose Mario as a baseline because much research
in procedural content generation via machine learning [3] for
games uses it. Icarus is a platformer but has more complicated
vertical pathing than Mario. DungeonGrams is a different
genre, which means it has distinct requirements and can show
that our method works for more than just platformers.

We compare concatenation with our linking approach. Link-
ers always result in unbroken levels. We also find that linking
is always able to find usable linkers between two segments
for Mario and DungeonGrams. Concatenation works well for
Mario, but often fails for DungeonGrams—structures are bro-
ken, the level is not completable, or both. For Kid Icarus, our
approach almost always finds usable linkers and concatenation

1https://github.com/bi3mer/LinkingLevelSegments
2https://github.com/crowdgames/dungeongrams
3https://github.com/bi3mer/GramElitesData

is likely to fail. We extend testing linkers between only two
segments by using them to form larger levels consisting of
multiple linked segments. For DungeonGrams, we find that
increasing the number of segments can result in levels that
are not usable. For Mario and Icarus, though, increasing the
number of segments does not affect usability.

II. RELATED WORK

This section is broken into four parts. First, we look at
previous work that has combined vertical slices and tree search
to generate levels. Second, we consider past work which
connects dungeon rooms to form larger dungeons. Third, we
discuss the similarity of our work to level repair and the work
done in the area. Lastly, we examine previous work that has
combined level segments to form larger levels.

A. Markov Chains and Tree Search

2D tile-based game levels can be broken down from a grid
to an ordered set of horizontal or vertical slices. Dahlskog et
al. [10] use these slices as input to an n-gram [11] to generate
levels. Summerville et al. expand on this by using slices as
input for a Markov chain where the output can be more than
one level slice [12]. They use Monte-Carlo tree search (MCTS)
[13] to generate full levels. This addresses a weakness of
generation by following probabilities in the Markov chain:
there is no guarantee on what will be produced. The addition
of tree search allows Summerville et al. to produce levels that
are completeable and unbroken. Further, they guide the search
to match target characteristics.

B. Connecting Dungeon Rooms

Liapis [14] uses evolution to generate a higher-order repre-
sentation of a dungeon based on rooms. A secondary evolu-
tionary process is run to build these rooms where every room
has constraints (e.g. must have a connection to the left and
right). These constraints are how rooms, or level segments,
are correctly linked to form a larger level.

An alternative approach comes from Ashlock and McGuin-
ness [15]. They use evolution to fill in a grid with different tile
types. Dynamic programming is built into the fitness function
to guarantee that a path exists between all checkpoints in the
level, which ensures that the larger level will be completable.
They then use a room membership algorithm to find the rooms
that were evolved and a separate algorithm to find adjacent
rooms. Lastly, they fill in the rooms with content based on
required and optional content.

C. Level Repair

One way to view this work is that we are proposing a repair
agent for a level formed from level segments. Cooper and
Sarkar propose one approach to level repair using a pathfinding
agent that can find a path that is impossible following the
game’s mechanics [16]. Points in the path that are impossible
are repaired by, for example, removing a solid block that the
agent jumped through.

Another approach comes from Zhang et al. [17], where
they use a GAN [18] to generate a level, but find that it

does not reliable encode playability. To address this they
use a “generate-then-repair” framework. Levels are generated
with the GAN, and then repaired with mixed integer linear
programming, which finds the minimum number of changes
that result in a fully playable level.

Jain et al. [19] use an autoencoder trained on Mario levels
from the VGLC [20]. Among other uses, the autoencoder
network is used to repair levels. In their work, a level is broken
into windows or small level segments which can be input into
the network. By placing a broken window into the network,
they show that the network will output a similar segment that
is playable.

D. Using Level Segments

Volz et al. [7] trained a generative adversarial network
(GAN) [18] on a single Mario level. Their innovation in
the process was to search the latent space of the generative
network with CMA-ES [21]. In one of their experiments, they
tested forming larger levels with increasing difficulty. This
was accomplished by generating the level segments with a
target difficulty and then concatenating them together, which
means there is no guarantee that the larger level is unbroken
or completable.

Sarkar and Cooper [22] use variational autoencoders (VAE)
[23] trained on levels with path information to generate level
segments. The VAE was trained to encode a level segment
and then use the encoding to predict the segment that follows.
A level is generated by starting with one segment and then
sequentially building new segments with the VAE. Meaning,
the VAE is performing the role of generating segments se-
quentially in a way that they connect to each other.

Green et al. [8] start with a corpus of Mario levels that
have been generated with a required padding of two vertical
slices of ground tiles on either side [24]. The segments
are linked together with the padding to form larger levels.
Larger level sequences are found by using FI-2Pop [25].
Infeasible sequences are optimized to be completable. Feasible
sequences are optimized to match a target mechanics sequence.
The padding guarantees unbroken levels and FI-2Pop finds
combinations of segments that are completable.

Li et al. [26] use an ensemble of Markov chains to generate
Mega Man levels. They use a first-order Markov chain to
model the direction (i.e. horizontal or vertical) of a set of
rooms. They use two L-shape Markov chains [27] to generate
the rooms, one for horizontal rooms and the other for vertical
rooms. They place these rooms together and run a check to
guarantee that a path from one to the other exists. If a valid
path does not exist, they re-sample until two rooms with a
connection are found, guaranteeing a completable level.

III. APPROACH

Here, we describe our approach. First, we give a brief
overview of Gram-Elites, which previously generated the level
segments we use. Second, we describe our approach to link
two segments together. Finally, we review the games used in
this work.

procedure BUILD LINK(start, end)
for s in forward chain.get(start) do

for e in back chain.get(end) do
m← tree search(start+ s, e+ end)
if m 6= None then

return s+m+ e

return None

Fig. 1. A pseudocode description for building a link.

A. Gram-Elites
Gram-Elites [9] is an extension to MAP-Elites [28] that uses

n-grams for population generation and the genetic operators
mutation and crossover. These operators use a concept called
connection, which runs a breadth-first search through the n-
gram to ensure that post-modification the new segment is gen-
erable by the n-gram. Like MAP-Elites, Gram-Elites uses be-
havioral characteristics [29] to differentiate level segments—
we give a brief description of the behavioral characteristics
used for each game in section III-C. Gram-Elites guarantees
that all output segments are generable by an n-gram and
optimizes segment completability.

For this work, we filter out segments that were not com-
pletable.

B. Generating Linkers
When building a linker between two segments, there are

three problems. First, does the starting segment end with an
incomplete structure? (Figure 2a is an example of this prob-
lem.) Second, does the end segment begin with an incomplete
structure? Third, does the linker result in a completable level
when used to link the two segments? We start by addressing
the first two problems.

One option to address level segments that start or end with
incomplete structures is to filter them out, but we believe a
more flexible approach is called for. We address this with
structure completion. In some games, like Mario, it would
be simple to check for incomplete pipes at the edge of
segments and add a custom level slice to complete them.
To be more general, we take advantage of using levels that
are generable by an n-gram. We use two Markov chains to
address incomplete structures. (Note that these chains do not
modify the level segments themselves and do not act as level
repairers.) The first, the forward chain, addresses potentially
incomplete structures at the end of the starting segment. This
chain is initialized from data in the direction the designer
meant (e.g. Mario is from left to right). The second, the back
chain, reads in reverse. We filter the data each Markov chain
receives to only include level slices with tiles associated with
game structures, resulting in input and output that can be
greater than one level slice. Further, input is limited by the
size of a structure—e.g. DungeonGrams structures are four
columns long—to prevent the potential problem of adding
additional structures where only one is called for.

Figure 2 shows the forward chain in action. It uses the last
slice of the starting segment as input into the chain. If there

- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - < - - - - - - -
- - - - [- - - - - - -
- - - - [- - - - - - -
- - - - [- - - - - - -
X X X X X - - - X X X X

- - - - - - - - - - - - -
- - - - - - - - - - - - -
- - - - - - - - - - - - -
- - - - - - - - - - - - -
- - - - - - - - - - - - -
- - - - - - - - - - - - -
- - - - - - - - - - - - -
- - - - - - - - - - - - -
- - - - - - - - - - - - -
- - - - < > - - - - - - -
- - - - [] - - - - - - -
- - - - [] - - - - - - -
- - - - [] - - - - - - -
X X X X X X - - - X X X X

(a) (b)
Fig. 2. (a) The tan line marks where the starting segment ends and the
end segment begins. There is an incomplete pipe with concatenation. (b) The
magenta box shows the output of the forward chain which completes the pipe.

- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - < > - - - - - -
- - - - [] - - - - - -
- - - - [] - - - - - -
- - - - [] - - - - - -
X X X X X X X X X X X X

- - - - - - - - - - - - - #
- - - - - - - - - - - - - #
- - - - - - - - - - - - - #
- - - - - - - - - - - - - #
- - - - - - - - - - - - - #
- - - - - - - - - - - - - #
- - - - - - - - - - - - - #
d - - - - - - - - - - - - #
D - - - - - - - - - - - - #
#

- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - / / \ \ - - - -
- - - - \ \ / / - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -
- - - - - - - - - - - -

(a) Mario (b) Icarus (c) DungeonGrams

Fig. 3. Examples of structures for all three test games. Mario has pipes
which are two columns wide and some number of rows tall. Icarus has doors
that are one column wide and two rows tall. DungeonGrams has a structure
that is 4 columns wide and 2 rows tall.

is no output, there are no incomplete structures at the end
of the starting segment. If there is output, check if there is
output for the last two slices. If so, check for three, and so on
until there is no output. We use the output associated with the
most slices in the Markov chain. The back chain follows the
same process, but in the opposite direction. Once both chains
run, we have a guarantee that the concatenation of the starting
segment, forward link, back link, and end segment has no
incomplete structures if the input segments are generable by
the n-gram used in Gram-Elites, which comes from the data
used to create the forward and backward Markov chains. If
either chain receives a structure not present in the input data,
structure completion with Markov chains will fail.

The next step is to address the problem of guaranteeing that
a linked level is completable. Linking slices are level slices
which do not contain in game structures. By default, these are
the level slices not input into the previously described Markov
chains. Alternatively, the designer can define them. A breadth-
first search uses linking slices to find the minimum number
of slices required to make the fully linked level completable.
The output can be zero slices, but we can add constraints (e.g.
require at least k slices). We use a max-depth check to prevent
an infinite search. A benefit of using designer-defined linking
slices is that the search space is reduced and the algorithm is
much faster.

View figure 1 for pseudocode of the proposed method. The
for loops for both chains allow for the possibility that there
may be multiple ways to complete a structure.

C. Games

Here we review the three games used to evaluate linking.
When evaluating completability, we pad the beginning and end
of levels being evaluated with a few level slices. This allows

- - - X X X X - - X X X X - - -
- - - - - - - - - - - - - - - -
X X X - - - - X X - - - - X X X
- - - X X X X - - X X X X - - -
- - - - - - - - - - - - - - - -
X X X - - - - X X - - - - X X X
- - - X X X X - - X X X X - - -
- - - - - - - - - - - - - - - -
X X X - - - - X X - - - - X X XFig. 4. The three linking slices used for for Kid Icarus.

us to easily define where the agent starts and where the agent
must reach for the level to be classified as completable.

Mario is a horizontal platformer. As input for the linker
structures, we use training levels from the VGLC [20]. The
level segments previously built with Gram-Elites use the same
input levels, and the behavioral characteristics are linearity and
leniency, which are the axes of the MAP-Elites grid. For the
linking completability tree search, default linking slices were
used with no designer intervention. As a reminder, the set of
default linking slices does not include level slices with tiles
related to pipes. The max depth for the linking tree search is 7.
For our agent, we used a modified Summerville A* agent [20]
to calculate the furthest point in the level that can be reached.
The only in-game structures are pipes, see Figure 3a.

Kid Icarus is a vertical platformer. As input for the linker
structures, we use training levels from the VGLC [20]. The
level segments previously built with Gram-Elites use the same
levels. The axes of the grid are density and leniency. For the
linking completability tree search, we use one empty row and
two rows with platforms designed to connect to anything else,
see figure 4. The max depth for the linking tree search is 7.
For our agent, we use a modified Summerville A* agent [20]
to calculate the furthest point in the level that can be reached.
Kid Icarus has one structure which is a door, see figure 3b.

DungeonGrams is a top-down roguelike developed to evalu-
ate Gram-Elites. The player has to progress from left-to-right
and hit switches to unlock a portal and then use it as an exit to
beat a level. There are spikes and enemies that the player has
to avoid while navigating a level. DungeonGrams also has as
stamina mechanic where the player has a limited number of
moves before they lose. The player can increase their stamina
by finding food in the level.

As input for the linker structures, we use the 44 training
levels made for Gram-Elites. The axes of the grid are density
and leniency. For the linking completability tree search, we
use three columns with food: bottom, middle, and top of
each respective column. To evaluate completability, we use a
search-based agent already built for DungeonGrams. The max
depth of the linking tree search is 4, which is lower than the
other two games due to the agent being slower as a result of
a larger search space. DungeonGrams also has one structure
that can be seen in figure 3c.

IV. EVALUATION

We break our evaluation into two parts. First we evaluate the
effectiveness of concatenation and compare it to our linking

Type Unbroken Completable Usable

M
ar

io Concatenation 0.97 0.92 0.89

Linking 1.00 1.00 1.00

Ic
ar

us Concatenation 0.96 0.11 0.11

Linking 1.00 0.99 0.99

D
G Concatenation 0.52 0.58 0.23

Linking 1.00 1.00 1.00

TABLE I
PERCENTAGE OF LINKS THAT RESULTED IN UNBROKEN LEVELS,

COMPLETEABLE LEVELS, AND USABLE LEVELS. DG IS SHORT FOR
DungeonGrams.

C
on

ca
t.

- -
- -
- -
- -
- -
- - - - - - - - - S S -
- -
- - S - - o - X - -
- - - - - - - - - - - - - - - - - - - o - X X - -
- - - S S - X X - -
- X X X X - -
- - - - S S S - X X X X X - -
- X X - -
X X - - - - - X X X X X X X X X X - - - - X - - X - - - - - - - - - - - X - - - - X X X X X X X X X X X X X

L
in

ki
ng

- -
- -
- -
- -
- -
- - - - - - - - - S S -
- -
- - S - - o - X - -
- - - - - - - - - - - - - - - - - - - o - X X - -
- - - S S - X X - -
- X X X X - -
- - - - S S S - X X X X X - -
- X X - -
X X - - - - - X X X X X X X X X X - - - - X - - X - - X - - - - - - - - - X - - - - X X X X X X X X X X X X X

C
on

ca
t.

- -
- -
- -
- -
- -
- -
- E -
- > -
-] - - - - - - - - - - - - - o o - - - - - - - - - - -
- X X - - - - - - - - - - E - - - o - - - - - - - - - -
- < > - - - - - - - - - E - - - -
- < - - - - - - - - - - - [] - - - - - - - - - - - - - -
- [- - - - - - - - - - - [] - - - - - - - - - - - - - -
X X - - - - - - - - X - - X - - - X X X X X X X X X X X X X X X X

L
in

ki
ng

- -
- -
- -
- -
- -
- -
- E -
- < > -
- [] - - - - - - - - - - - - - o o - - - - - - - - - - -
- X X X - - - - - - - - - - E - - - o - - - - - - - - - -
- E - - - - - - - - - - - - < > - - - - - - - - - E - - - -
- < > - - - - - - - - - - - - [] - - - - - - - - - - - - - -
- [] - - - - - - - - - - - - [] - - - - - - - - - - - - - -
X X - - - - - - - - X - - X - - - X X X X X X X X X X X X X X X X

Fig. 5. Two examples for Mario. The example on top shows concatenation
failing due to a large gap. The bottom displays the longest linker produced.
The tan line in the middle is where the link would have been placed for
concatenation. The tan boxes on the left and right show the padding. The
magenta box in the middle shows the linker found. The red lines show a path
through the level if it was beatable.

algorithm. Second, we examine how well linkers made for two
segments extend to linking multiple segments.

A. Concatenation Versus Linking

Segments generated by Gram-Elites are organized by the
MAP-Elites grid where each axis represents a behavioral
characteristic [29]. Rather than selecting random segments
and linking them together, we use the grid to select similar
segments by using neighboring segments. There are 13, 182
possible links for Mario, 9, 453 for Kid Icarus, and 6, 086 for
DungeonGrams.

- - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - -
M M M M M M M M # M M M M M M M
- - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - -
- - - - - - - # - - - # - - - -
- - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - -
M M M M M M M M M M M M M M
- - - - - - - - - - - - - - - -
- - - - - - - - - - #
- - - - - - #
- - #
- - - - - - - - - - - - #
- - - - - - - - # # #
- - - - - # # #
- - - - - - - - # # #
- - - - - # # #
- - - - - - T - # # #
- - - - - - - - - - # # #
- - - - - - - - - - # # #
- - - - - - - - - - - # #
- - - # #
- - - - - - - - - - -
- - -
- - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - -
- - - H - - - - - H - - - - - -
M M M M M M M M M M M M M M M #
- - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - -
- - - - - - - - - - - - - # - -
- - - - - - - - - - - - - - - -
- - - - - - - - - - #
- - - - - - - - - - #
- - - - - - #
- - #
- - - - - - - - - - - - #
- - - - - - - - # # #
- - - - - # # #
- - - - - - - - # # #
- - - - - # # #
- - - - - - T - # # #
- - - - - - - - - - # # #
- - - - - - - - - - # # #
- - - - - - - - - - - # #
- - - # #
- - - - - - - - - - -
- - -
- - - - - - - - - - - - - - - -
#

- - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - -
M M M M M M M M # M M M M M M M
- - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - -
- - - - - - - # - - - # - - - -
- - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - -
M M M M M M M M M M M M M M
- - - - - - - - - - - - - - - -
- - - - - - - - - - #
- - - - - - #
- - #
- - - - - - - - - - - - #
- - - - - - - - # # #
- - - - - # # #
- - - - - - - - # # #
- - - - - # # #
- - - - - - T - # # #
- - - - - - - - - - # # #
- - - - - - - - - - # # #
- - - - - - - - - - - # #
- - - # #
- - - - - - - - - - -
- - -
- - - X X X X - - X X X X - - -
- - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - -
- - - X X X X - - X X X X - - -
- - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - -
- - - H - - - - - H - - - - - -
M M M M M M M M M M M M M M M #
- - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - -
- - - - - - - - - - - - - # - -
- - - - - - - - - - - - - - - -
- - - - - - - - - - #
- - - - - - - - - - #
- - - - - - #
- - #
- - - - - - - - - - - - #
- - - - - - - - # # #
- - - - - # # #
- - - - - - - - # # #
- - - - - # # #
- - - - - - T - # # #
- - - - - - - - - - # # #
- - - - - - - - - - # # #
- - - - - - - - - - - # #
- - - # #
- - - - - - - - - - -
- - -
- - - - - - - - - - - - - - - -
#

- - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - -
M M M M M M M M M M M M M M M #
- - - - - - - - - - - - - - - -
- - - H - - - - - H - - - - - -
M M M M M M M M M M M M M M M #
- - - - - - - - - - - - - - - -
- - - H - - - - - H - - - - - -
M M M M M M M M M M M M M M M #
- - - - - - - - - - - - - - - -
- - - H - - - - - H - - - - - -
M M M M M M M M M M M M M M M #
- - - - - - - - - - - - - - - -
- - - H - - - - - H - - - - - -
M M M M M M M M M M M M M M M #
- - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - -
M M M M M M M M M M M M M M
- - - - - - - - - - - - - - - -
- - - - - - - - - - # # #
- - - - - - - - - - # # #
H - - - # # #
- - - - - - # # # # #
- - - - - - # # # # - -
H - H # # # # # # # - -
- - - - - - # # # # - -
H - H # # # # # # # - -
- - - - - - - - - - - - - - - -
- - - # - - - - - - - - - - - -
- - - - - - - - - - - - - - - -
- - - H - - - - - H - - - - - -
M M M M M M M M M M M M M M M #
- - - - - - - - - - - - - - - -
- - - H - - - - - H - - - - - -
M M M M M M M M M M M M M M M #
- - - - - - - - - - - - - - - -
- - - H - - - - - H - - - - - -
M M M M M M M M M M M M M M M #
- - - - - - - - - - - - - - - -
- - - H - - - - - H - - - - - -
M M M M M M M M M M M M M M M #
- - - - - - - - - - - - - - - -
M M M M M M M M M M M M M M
- - - - - - - - - - - - - - - -
- - - - - - - - - - # # #
- - - - - - - - - - # # #
H - - - # # #
- - - - - - # # # # #
- - - - - - # # # # - -
H - H # # # # # # # - -
- - - - - - # # # # - -
H - H # # # # # # # - -
- - - - - - - - - - - - - - - -
#

- - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - -
M M M M M M M M M M M M M M M #
- - - - - - - - - - - - - - - -
- - - H - - - - - H - - - - - -
M M M M M M M M M M M M M M M #
- - - - - - - - - - - - - - - -
- - - H - - - - - H - - - - - -
M M M M M M M M M M M M M M M #
- - - - - - - - - - - - - - - -
- - - H - - - - - H - - - - - -
M M M M M M M M M M M M M M M #
- - - - - - - - - - - - - - - -
- - - H - - - - - H - - - - - -
M M M M M M M M M M M M M M M #
- - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - -
M M M M M M M M M M M M M M
- - - - - - - - - - - - - - - -
- - - - - - - - - - # # #
- - - - - - - - - - # # #
H - - - # # #
- - - - - - # # # # #
- - - - - - # # # # - -
H - H # # # # # # # - -
- - - - - - # # # # - -
H - H # # # # # # # - -
- - - - - - - - - - - - - - - -
- - - X X X X - - X X X X - - -
- - - - - - - - - - - - - - - -
X X X - - - - X X - - - - X X X
X X X - - - - X X - - - - X X X
- - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - -
- - - # - - - - - - - - - - - -
- - - - - - - - - - - - - - - -
- - - H - - - - - H - - - - - -
M M M M M M M M M M M M M M M #
- - - - - - - - - - - - - - - -
- - - H - - - - - H - - - - - -
M M M M M M M M M M M M M M M #
- - - - - - - - - - - - - - - -
- - - H - - - - - H - - - - - -
M M M M M M M M M M M M M M M #
- - - - - - - - - - - - - - - -
- - - H - - - - - H - - - - - -
M M M M M M M M M M M M M M M #
- - - - - - - - - - - - - - - -
M M M M M M M M M M M M M M
- - - - - - - - - - - - - - - -
- - - - - - - - - - # # #
- - - - - - - - - - # # #
H - - - # # #
- - - - - - # # # # #
- - - - - - # # # # - -
H - H # # # # # # # - -
- - - - - - # # # # - -
H - H # # # # # # # - -
- - - - - - - - - - - - - - - -
#

Concat. Linking Concat. Linking
Fig. 6. Two examples for Icarus. Both show concatenation failing due
there being no possible path to complete the level. The right example of
concatenation and linking shows the longest linker required to make a level
completable. Padding is shown with the tan boxes at the top and bottom of the
level. The tan line in the middle is where the link would have been placed for
concatenation. The magenta box shows the linker found. The red lines show
a path through the level if it was beatable.

Table I shows the percentage of concatenations and links
found that are unbroken, completable, and usable (i.e. both
unbroken and completable). With Mario, we can see that con-
catenation is 0.92 likely to result in a level that is completable
by an agent and 0.89 likely to result in a level that is usable,
showing that concatenation is likely to be an effective strategy
for most use cases in a simple platformer. Linking is successful
for every possible link. Figure 5 shows two examples where
concatenation fails. The top example shows that concatenation
can fail when a gap is too large. The bottom example shows
the largest linker required for Mario. The linker completed two
structures, but did not affect completability as the concatenated
version was also completable.

Concatenation performs well for Icarus in terms of pro-
ducing an unbroken level. However, it performs the worst at
generating a completable level at just eleven percent. Linking,
though, finds a usable link for almost every single starting
and ending segment given. Figure 6 shows two examples
where concatenation cannot produce a completable level. In
both cases the agent does not have enough space to make
the required jump. Tree search resolves this by adding two
platforms for the agent. The right-most example shows the
largest linker built.

Concatenation performs poorly for DungeonGrams, and is
unlikely to produce a usable level. This is due to two reasons.
First, the size and complexity of the structures makes it
unlikely for two segments to line up if either or both level seg-
ments have unfinished structures. Second, if the two segments
do not have enough food, the concatenated level is impossible
to beat. Linking, though, handles both problems and always
produces a usable link. Figure 7 shows two examples where
concatenation fails. In both cases, structures are incomplete

C
on

ca
t.

- - - - X X X X X X X X X X X X X - - - - - - - - X - - ^ ^ ^ ^ - -
- - - - - - - - - ^ ^ ^ ^ ^ ^ ^ ^ - - - - - - - - - - - - - X - - -
- - - - - - - - - - - - ^ ^ ^ ^ - - - - - - - - - X - - - - X - - -
- X X - - - - X - - -
- - - - - - - - - - - - - - - / / - - - - - - X X X - - - - X - - -
- - - - - - - - - - - - - - - \ \ - - - # - - X # & - - - - X - - -
- X X X - - - - X - - -
- - - - - - - - - - - - - - - - - / \ \ - - - - X X - - - - X - - -
- - - - - - X - - - - - ^ ^ ^ ^ - \ / / - - - - - X - - - - X - - -
- - - - - - X - - ^ ^ ^ ^ ^ ^ ^ ^ - - - - - - - - - - - - - # - - -
- - - - X X X X X X X X X X X X X * - - - - - - - X - - ^ ^ ^ ^ - -

L
in

ki
ng

- - - - X X X X X X X X X X X X X X X - - - - - - - - - - X - - ^ ^ ^ ^ - -
- - - - - - - - - ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ - - - - - - - - - - - - - - - X - - -
- - - - - - - - - - - - ^ ^ ^ ^ - - - - - - - - - - - - - X - - - - X - - -
- X X - - - - X - - -
- - - - - - - - - - - - - - - / / \ \ - - - - - - - - X X X - - - - X - - -
- - - - - - - - - - - - - - - \ \ / / & - - - - # - - X # & - - - - X - - -
- X X X - - - - X - - -
- / / \ \ - - - - X X - - - - X - - -
- - - - - - X - - - - - ^ ^ ^ ^ - - - - \ \ / / - - - - - X - - - - X - - -
- - - - - - X - - ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ - - - - - - - - - - - - - - - # - - -
- - - - X X X X X X X X X X X X X X X - - * - - - - - - - X - - ^ ^ ^ ^ - -

C
on

ca
t.

- - - - ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ - - - - ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ - -
- - - - - - X - - X - - X - - X - \ \ - - - - - - - - - - - - * - -
- - - - - - X - - X - - X - - X - / / - - - - - - - - - X - - X - -
- - - - - - - - - X - - X - - - - - - - - - - - - - - X X - - X - -
- - - - - - - - - - - - X - - - - - - - - - - - - - X X X - - X - -
- X # * - - X - -
- X X X - - X - -
- - - - - - - / / \ \ - - - - - / - - - - - - - - - - X X - - X - -
- - - - - - - \ \ / / - - - - - \ & - - - - - - - - - - X - - X - -
- -
- - - - ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ - - - - ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ - -

L
in

ki
ng

- - - - ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ - - - - - - - ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ - -
- - - - - - X - - X - - X - - X - - X - - / / \ \ - - - - - - - - - - - - * - -
- - - - - - X - - X - - X - - X - - X - - \ \ / / - - - - - - - - - X - - X - -
- - - - - - - - - X - - X - - - - - X - - - - - - - - - - - - - - X X - - X - -
- - - - - - - - - - - - X - - - - - - - - - - - - - - - - - - - X X X - - X - -
- & - - - - - - - - - - - X # * - - X - -
- X X X - - X - -
- - - - - - - / / \ \ - - - - - / / \ \ - - - - - - - - - - - - - X X - - X - -
- - - - - - - \ \ / / - - - - - \ \ / / - - - & - - - - - - - - - - X - - X - -
- -
- - - - ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ - - - - - - - ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ - -

Fig. 7. Two examples for DungeonGrams where concatenation fails due
to the agent running out of stamina. (& represents food.) The bottom
concatenation and linking example shows the largest linker found. The tan
boxes on the left and right show the padding. The tan line in the middle is
where the link would have been placed for concatenation. The magenta box
shows the linker found. The red lines show a path through the level if it was
beatable

Game
Mean

Length
Median
Length

Max
Length

Mean
DBC

Median
DBC

Max
DBC

Mario 0.110 0 2 0.001 0.000 0.020
Icarus 2.658 3 6 0.008 0.008 0.029

DG 1.147 1 6 0.012 0.011 0.061
TABLE II

FOR EACH GAME, SHOWS THE MEAN, MEDIAN, AND MAX FOR LENGTHS
OF LINKERS FOUND AND DBC . DG IS SHORT FOR DungeonGrams.

and there isn’t enough food for the agent. Linking succeeds by
completing the structures with the forward and back chains,
and tree search adds food in the middle to make the level
completable. The bottom example shows the largest linker
found for DungeonGrams.

The usability of a linker isn’t the only important metric to
consider. Ideally, a linker should not be identifiable or dis-
tracting to the player (e.g. the same set of level slices between
every segment). To examine this, we report on the lengths
of linkers found and the change in behavioral characteristics
of a two segment level when a linker is used. We determine
the latter by finding the behavioral characteristics (BCs) of
the concatenated level and the linked level, and calculate the
euclidean distance between the two. The result is DBC .

The results can be seen in Table II. For Mario, we can see
that a linker tends not to be required and, when it is, the worst
case is a linker with two level slices. As a result, DBC must
be small. To put the value in context, the implementation of
Gram-Elites tessellates the grid by changes in BC every 0.025
for Mario. For Mario, if a linked level and its corresponding

Segments Mario Icarus DG DG-Food
2 1.00 1.00 1.00 1.00
3 1.00 1.00 0.99 0.99
4 1.00 1.00 0.98 0.99
5 1.00 1.00 0.97 0.99

TABLE III
SHOWS THE PERCENTAGE THAT LINKED LEVELS ARE USABLE. DG IS
SHORT FOR DungeonGrams WHERE AN EMPTY LINKER IS ALLOWED.

DG-Food REQUIRES THAT THE TREE SEARCH ADDS AT LEAST ONE LEVEL
SLICE TO THE LINKER.

D
G

- - - - - - - - X X X X X X X X X - - - - - - - X - -
- - - - - - - - X X X X X X X X X - - - - - - - X X X X X X X X X - - - - - - X X X X X X X X X - -
- - - - - - - - X X X X X X X X X - - - - - - - X X X X X X X X X - - - - - - X X X X X X X X X - -
- - - - - - - - X X X X X X X X X - - - - - - - X X X X X X X X X - - - - - - X X X X X X X X X - -
- - - - - - - - - - - - - # X X X - - - - - - - X X X - - - - - - - - - - - - - - # X X X X - - - -
- - - - - # - - - - & - - - X X X - - - - # - - X X X - - & - - - - - - - - - - - - X X X X - - - -
- - - - - - - - - - - - - - - * - - - - - - - - - - - - - - - - # - - - - - - - - - - * - - - - - -
- - / \ \ - - - X X X X X X X X X / / \ \ - - - X X X X X X X X X - - - ^ - - X X X X X X X X X - -
- - \ / / - - - X X X X X X X X X \ \ / / - - - X X X X X X X X X - - - ^ - - X X X X X X X X X - -
- - - - - - - - X X X X X X X X X - - - - - - - X X X X X X X X X - - - ^ - - X X X X X X X X X - -
- - * - - - - - X X X X X X X X X - * - - - - - X - -

D
G

-F
oo

d - - - - - - - - X X X X X X X X X - - - - - - - - X X X X X X X X X - X X X X X X X X X X X X X X X - -
- - - - - - - - X X X X X X X X X - - - - - - - - X X X X X X X X X - - - - - - - X X X X X X X X X - -
- - - - - - - - X X X X X X X X X - - - - - - - - X X X X X X X X X - - - - - - - X X X X X X X X X - -
- - - - - - - - X X X X X X X X X - - - - - - - - X X X X X X X X X - - - - - - - X X X X X X X X X - -
- - - - - - - - - - - - - # X X X - - - - - - - - X X X - - - - - - - - - - - - - - - # X X X X - - - -
- - - - - # - - - - & - - - X X X & - - - - # - - X X X - - & - - - & - - - - - - - - - X X X X - - - -
- - - - - - - - - - - - - - - * - - - - - - - - - - - - - - - - - # - - - - - - - - - - - * - - - - - -
- - / \ \ - - - X X X X X X X X X - / / \ \ - - - X X X X X X X X X - - - - ^ - - X X X X X X X X X - -
- - \ / / - - - X X X X X X X X X - \ \ / / - - - X X X X X X X X X - - - - ^ - - X X X X X X X X X - -
- - - - - - - - X X X X X X X X X - - - - - - - - X X X X X X X X X - - - - ^ - - X X X X X X X X X - -
- - * - - - - - X X X X X X X X X - - * - - - - - X X X X X X X X X - X X X X X X X X X X X X X X X - -

Fig. 8. Example of three segments being linked in DungeonGrams. Tan boxes
on either side represent padding. Magenta boxes in the middle represents a
linker and the magenta line shows that no linker was necessary for the second
and third level segment for linking (DG). The agent fails to reach the end for
DG due to a lack of food, but this was not a problem for linking with food
required (DG-Food).

concatenated level have a DBC smaller than 0.025, then we
consider them to be very similar. Icarus is different in that
it almost always requires a linker with two to three linking
slices. The max length is also much longer than Mario. The
increment for Icarus’s grid is 0.0125. In this case, the mean
and median of DBC show that most linkers are unlikely to
result in large changes to the BCs. The max DBC shows that
the worst case is a jump of two to three neighbors in the grid.
Finally, DungeonGrams on average has smaller linkers than
Icarus but has the same max linker length. The mean and
median of DBC is quite small: the Gram-elites grid is 0.05
per bin in DungeonGrams.

Overall, linking usually results in minimal modifications to
the player’s experience per segment while providing the benefit
of completability and unbrokenness.

B. Linking Multiple Segments

In this section, we test the linkers made for two segments by
combining multiple segments with them. To test, for various
numbers of segments, we generated one thousand random
levels by following the MAP-Elites grid, neighbor by neighbor.
Linkers were selected only if they had a playability guarantee
for the starting and ending level segment. The results are in
Table III. Notably, we see that all two-segment levels are
usable, as should be the case using the linkers.

For both platformers, we can see that increasing the number
of segments does not change the results: all the linked multi-
segment levels were usable.

For DungeonGrams, we updated linking for a new approach.
DG refers to when an empty link is allowed. DG-Food forces

the link to have at least one linking slice from the tree search,
meaning there is at least one column with food in the link since
we use custom level slices which always have food. We find
that DG performs increasingly poorly when compared to the
platformers as the number of segments increases. In contrast,
the simple change for DG-Food results in larger levels almost
always being fully playable. Figure 8 shows an example where
DG fails and DG-Food succeeds. Failure occurs since linking
guarantees that a path exists between two segments, but does
not ensure that the player will have the same stamina at the
start of a new segment as they do when starting the game.
While food in DungeonGrams does not give the player back
their max stamina, it does increase the likelihood that the agent
can make it through the next segment.

V. CONCLUSION

In this work, we present an alternative to concatenation for
linking level segments of 2D tile-based games. Our approach
uses two Markov chains and a tree search to guarantee that
any linker produced results in a level that has no unbroken
structures and is completable by an agent. We test on three
games: Mario, Kid Icarus, and DungeonGrams.

When linking two segments, we find that our approach
outperforms concatenation for all three games. In the two-
segment case, it always finds a usable linker for both Mario
and DungeonGrams. For Kid Icarus, linking works for the vast
majority of segments but can fail. On examining the failure
cases, we believe this is partly due to the agent not perfectly
playing the game by not correctly modelling blocks where the
player can jump through and land on the top. We intend to
improve the agent as part of future work.

We extend our evaluation and test how pre-built two-
segment linkers work with sequences of level segments greater
than two. We find that for Mario and Kid Icarus, all multi-
segment levels are usable. For DungeonGrams, though, perfor-
mance is worse due to the stamina mechanic. We address this
by requiring the link to always contain at least one column
with food, and find that almost every large level can be
completed. Another approach is to extend the linking strategy
to link all k segments simultaneously, where we currently only
solve for k = 2.

As it stands, our approach to linking can work with any
segment-based generator if it generates segments that are
generable by an n-gram; in this work, linkers used the same
datasets that were used to generate the segments. As future
work, we believe it is important to make a linking method
that works for all generators, which means addressing the
limitation of requiring n-gram generability. At the minimum,
this requires updating structure generation to correctly handle
unseen in-game structures. To further extend this work, we
want to use the directed graph we built to evaluate linking,
and use it to build larger levels tailored to individual players.

REFERENCES

[1] N. Shaker, J. Togelius, and M. J. Nelson, Procedural content generation
in games. Springer, 2016.

[2] E. Hauck and C. Aranha, “Automatic generation of Super Mario levels
via graph grammars,” in 2020 IEEE Conference on Games (CoG).
IEEE, 2020, pp. 297–304.

[3] A. Summerville, S. Snodgrass, M. Guzdial, C. Holmgård, A. K. Hoover,
A. Isaksen, A. Nealen, and J. Togelius, “Procedural content generation
via machine learning (pcgml),” IEEE Transactions on Games, vol. 10,
no. 3, pp. 257–270, 2018.

[4] A. Khalifa, P. Bontrager, S. Earle, and J. Togelius, “PCGRL: Proce-
dural content generation via reinforcement learning,” in Proceedings of
the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, vol. 16, no. 1, 2020, pp. 95–101.

[5] A. Sarkar and S. Cooper, “Procedural content generation using behavior
trees (PCGBT),” arXiv preprint arXiv:2107.06638, 2021.

[6] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 3,
no. 3, pp. 172–186, 2011.

[7] V. Volz, J. Schrum, J. Liu, S. M. Lucas, A. Smith, and S. Risi, “Evolving
Mario levels in the latent space of a deep convolutional generative
adversarial network,” in Proceedings of the genetic and evolutionary
computation conference, 2018, pp. 221–228.

[8] M. C. Green, L. Mugrai, A. Khalifa, and J. Togelius, “Mario level gener-
ation from mechanics using scene stitching,” in 2020 IEEE Conference
on Games (CoG). IEEE, 2020, pp. 49–56.

[9] C. Biemer, A. Hervella, and S. Cooper, “Gram-elites: N-gram based
quality-diversity search,” in Proceedings of the FDG workshop on
Procedural Content Generation, 2021, pp. 1–6.

[10] S. Dahlskog, J. Togelius, and M. J. Nelson, “Linear levels through n-
grams,” in Proceedings of the 18th International Academic MindTrek
Conference: Media Business, Management, Content & Services,
2014, pp. 200–206.

[11] D. Jurafsky, Speech & language processing. Pearson Education India,
2000.

[12] A. Summerville, S. Philip, and M. Mateas, “MCMCTS PCG 4 SMB:
Monte carlo tree search to guide platformer level generation,” in
Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, vol. 11, no. 1, 2015.

[13] R. Coulom, “Efficient selectivity and backup operators in monte-carlo
tree search,” in International conference on computers and games.
Springer, 2006, pp. 72–83.

[14] A. Liapis, “Multi-segment evolution of dungeon game levels,” in Pro-
ceedings of the Genetic and Evolutionary Computation Conference,
2017, pp. 203–210.

[15] D. Ashlock and C. McGuinness, “Automatic generation of fantasy
role-playing modules,” in 2014 IEEE Conference on Computational
Intelligence and Games, 2014, pp. 1–8.

[16] S. Cooper and A. Sarkar, “Pathfinding agents for platformer level repair.”
in AIIDE Workshops, 2020.

[17] H. Zhang, M. Fontaine, A. Hoover, J. Togelius, B. Dilkina,
and S. Nikolaidis, “Video game level repair via mixed integer
linear programming,” Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment, vol. 16,
no. 1, pp. 151–158, Oct. 2020, number: 1. [Online]. Available:
https://ojs.aaai.org/index.php/AIIDE/article/view/7424

[18] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Advances in neural information processing systems, vol. 27, 2014.

[19] R. Jain, A. Isaksen, C. Holmgård, and J. Togelius, “Autoencoders for
level generation, repair, and recognition,” in Proceedings of the ICCC
workshop on computational creativity and games, vol. 9, 2016.

[20] A. J. Summerville, S. Snodgrass, M. Mateas, and S. Ontanón, “The
VGLC: The video game level corpus,” arXiv preprint arXiv:1606.07487,
2016.

[21] N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the time
complexity of the derandomized evolution strategy with covariance
matrix adaptation (CMA-ES),” Evolutionary computation, vol. 11, no. 1,
pp. 1–18, 2003.

[22] A. Sarkar and S. Cooper, “Sequential segment-based level generation
and blending using variational autoencoders,” in International Confer-
ence on the Foundations of Digital Games, 2020, pp. 1–9.

[23] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[24] A. Khalifa, M. C. Green, G. Barros, and J. Togelius, “Intentional compu-
tational level design,” in Proceedings of The Genetic and Evolutionary
Computation Conference, 2019, pp. 796–803.

[25] S. O. Kimbrough, G. J. Koehler, M. Lu, and D. H. Wood, “Introducing
a feasible-infeasible two-population (FI-2Pop) genetic algorithm for
constrained optimization: Distance tracing and no free lunch,” European
Journal of Operational Research, 2005.

[26] B. Li, R. Chen, Y. Xue, R. Wang, W. Li, and M. Guzdial, “En-
semble learning for Mega Man level generation,” arXiv preprint
arXiv:2107.12524, 2021.

[27] S. Snodgrass and S. Ontanon, “A hierarchical approach to generating
maps using markov chains,” in Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment, vol. 10,
no. 1, 2014.

[28] J.-B. Mouret and J. Clune, “Illuminating search spaces by mapping
elites,” arXiv preprint arXiv:1504.04909, 2015.

[29] G. Smith and J. Whitehead, “Analyzing the expressive range of a level
generator,” in Proceedings of the 2010 Workshop on Procedural Content
Generation in Games, 2010, pp. 1–7.

