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Abstract—Proof-Number Search (PNS) and Monte-Carlo Tree
Search (MCTS) have been successfully applied for decision
making in a range of games. This paper proposes a new approach
called PN-MCTS that combines these two tree-search methods by
incorporating the concept of proof and disproof numbers into the
UCT formula of MCTS. Experimental results demonstrate that
PN-MCTS outperforms basic MCTS in several games including
Lines of Action, MiniShogi, Knightthrough, and Awari, achieving
win rates up to 94.0%.

Index Terms—Monte-Carlo Tree Search, Proof-Number Search

I. INTRODUCTION

In recent years a new paradigm for game-tree search has
emerged, called Monte-Carlo Tree Search (MCTS) [1], [2]. It
is a best-first search method guided by the results of Monte-
Carlo simulations. Using the results of previous simulations,
the method gradually builds up a game tree in memory
and increasingly becomes better at accurately estimating the
values of the most promising moves. MCTS has substantially
advanced the state of the art in several deterministic game
domains [3], in particular Go [4], but other board games
include Amazons [5], Hex [6], Lines of Action [7], and the
ones of the General Game Playing competition [8]. MCTS
has even increased the level of competitive agents in board
games with challenging properties such as multi-player (e.g.,
Chinese Checkers [9]) and uncertainty (e.g., Kriegspiel [10]
and Scotland Yard [11]).

In tactical games, where the main line towards the win-
ning position is typically narrow with many non-progressing
alternatives, MCTS may often lead to an erroneous outcome
because the nodes’ values in the tree do not converge fast
enough to their game-theoretic value. To mitigate this effect,
MCTS variants have been proposed that integrate concepts of
minimax search [12]–[15].

Another promising direction would be the incorporation
of Proof-Number Search (PNS) [16] in MCTS. PNS and its
variants [17] have been proposed to prove endgames faster
than traditional minimax. PNS variants have been successfully
applied to a large number of domains including Chess [18],
Othello [19], Shogi [19], Lines of Action (LOA) [20], Go
[21], Checkers [22], Connect6 [23], and the multi-player game
Rolit [24]. All PNS variants share two features: (1) they are
algorithms for solving binary goals, such as proving a win or

a loss for a game position, and (2) they rely on the concept
of proof and disproof numbers.

This paper proposes a new variant, called PN-MCTS, that
combines the strengths of MCTS and PNS with each other.
The idea is to incorporate proof and disproof numbers in the
UCT mechanism [2] of MCTS. To investigate its performance,
game-playing experiments are conducted in five two-player
board games (i.e., Lines of Action, Gomoku, MiniShogi,
Knightthrough, and Awari).

This paper is organized as follows. First, MCTS and PNS
are discussed in Sections II and III, respectively. Next, PN-
MCTS is proposed in Section IV. Subsequently, the proposed
technique is empirically evaluated in Section V. Finally, Sec-
tion VI gives conclusions and an outlook on future research.

II. MONTE-CARLO TREE SEARCH

Monte-Carlo Tree Search (MCTS) [1], [2] is a best-first
search method that does not require a positional evaluation
function. It is based on a randomized exploration of the
search space. Using the results of previous explorations,
the algorithm gradually builds up a game tree in memory,
and increasingly becomes better at accurately estimating the
values of the most promising moves. MCTS consists of four
strategic steps, repeated as long as there is time left [25]. The
steps, outlined in Fig. 1, are as follows.

Repeated X times

Selection Expansion Play-out Backpropagation

A selection strategy is
used to traverse the tree

One or more nodes 
are created

One simulated 
game is played

The result is propagated  
back in the tree

Fig. 1. Outline of Monte-Carlo Tree Search.

Selection Step. In the first step, a child is selected to
be searched based on previous gathered information. The
selection step controls the balance between exploitation and
exploration. On the one hand, the task consists of selecting



the move that leads to the best results so far (exploitation).
On the other hand, the less promising moves still have to be
tried, due to the uncertainty of the simulations (exploration).

Several selection strategies [3] have been suggested for
MCTS such as BAST, EXP3, UCB1-Tuned, but the most
popular one is based on the UCB1 algorithm [26], called UCT
(Upper Confidence Bounds applied to Trees) [2]. UCT works
as follows. Let I be the set of nodes immediately reachable
from the current node p. The selection strategy selects the
child b of node p that satisfies Formula 1:

b ∈ argmaxi∈I

(
vi + C ×

√
lnnp
ni

)
(1)

where vi is the value of the node i, ni is the visit count of
i, and np is the visit count of p. C is a parameter constant,
which can be tuned experimentally (e.g., C =

√
2). In the

case of a tie, the tie is broken randomly. This process is
repeated until a node is reached that has not yet fully been
expanded.

Expansion Step. As previously stated, the selection step
continues until a node is reached that has not yet expanded all
of its children. Among the children that have not been stored
in tree, one is selected uniformly at random. This node L is
then added as a new leaf node and is subsequently investigated.

Play-out Step. From the leaf node the play-out step is
performed. Moves are selected in self-play until the end of
the game is reached. This step might consist of playing plain
random moves or – better – semi-random moves chosen
according to a simulation strategy.

Backpropagation Step. In the final step, the result R of a
play-out k is backpropagated from the leaf node L, through
the previously traversed nodes, all the way up to the root. The
result is scored positively (Rk = +1) if the game is won,
and negatively (Rk = −1) if the game is lost. Draws lead
to a result Rk = 0. A backpropagation strategy is applied to
the value vi of a node i. Here, it is computed by taking the
average of the results of all simulated games made through
this node [1], i.e., vi = (

∑
k Rk)/ni.

III. PROOF-NUMBER SEARCH

Proof-Number Search (PNS) is a best-first search method
especially suited for finding the game-theoretic value in game
trees [16]. Its aim is to prove a particular goal. In the context
of this paper, the goal is to prove a forced win for the player to
move. A tree can have three values: true, false, or unknown. In
the case of a forced win, the tree is proven and its value is true.
In the case of a forced loss or draw, the tree is disproven and its
value is false. Otherwise, the value of the tree is unknown. As
long as the value of the root is unknown, the most-promising
node is expanded. Just like MCTS, PNS does not need a
domain-dependent heuristic evaluation function to determine
the most-promising node [16]. In PNS this node is usually

called the most-proving node. PNS selects the most-proving
node using two criteria: (1) the shape of the search tree (the
branching factor of every internal node) and (2) the values of
the leaves. These two criteria enable PNS to treat game trees
with a non-uniform branching factor efficiently.
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Fig. 2. An AND/OR tree with proof and disproof numbers

Below we explain PNS on the basis of the AND/OR tree
depicted in Fig. 2, in which a square denotes an OR node, and
a circle denotes an AND node. The numbers to the right of
a node denote the proof number (upper) and disproof number
(lower). A proof number (pn) represents the minimum number
of leaf nodes, which have to be proven in order to prove the
node. Analogously, a disproof number (dpn) represents the
minimum number of leaf nodes that have to be disproved in
order to disprove the node. Because the goal of the tree is to
prove a forced win, winning nodes are regarded as proven.
Therefore, they have pn = 0 and dpn = ∞ (e.g., node i).
Lost or drawn nodes are regarded as disproven (e.g., nodes
f and k). They have pn = ∞ and dpn = 0. Unknown leaf
nodes have pn = 1 and dpn = 1 (e.g., nodes g, h, j, and l).
The pn of an internal OR node is equal to the minimum of
its children’s proof numbers, since to prove an OR node it
suffices to prove one child. The dpn of an internal OR node
is equal to the sum of its children’s disproof numbers, since
to disprove an OR node all the children have to be disproven.
The pn of an internal AND node is equal to the sum of its
children’s proof numbers, since to prove an AND node all the
children have to be proved. The dpn of an AND node is equal
to the minimum of its children’s disproof numbers, since to
disprove an AND node it suffices to disprove one child. The
procedure of selecting the most-proving node to expand next is
as follows. The algorithm starts at the root. Then, at each OR
node the child with the smallest pn is selected as successor,
and at each AND node the child with the smallest dpn is
selected as successor. Finally, when a leaf node is reached, it
is expanded (which makes the leaf node an internal node) and
the newborn children are evaluated. This is called immediate
evaluation. The selection of the most-proving node (j) in Fig.
2 is given by the bold path.



IV. PN-MCTS

To properly determine a feasible approach to the incorpo-
ration of (dis)proof numbers into MCTS, it is first important
to consider what information the proof and disproof numbers
bring. As explained in the previous section about PNS, a
(dis)proof number provides a lower bound for the number of
nodes that still have to be (dis)proven to prove the current
node. In PNS, this lower bound (together with the lower bound
that the disproof number gives) determines which leaf node
would be investigated further. In MCTS, the selection step
has a similar function. In the default MCTS implementation,
this would be the UCT formula (1).

Thus, a natural way to combine MCTS and PNS would be
to combine these two ways of selecting promising leaf nodes.
The approach proposed for this paper is a modification of
basic UCT. By adjusting UCT to also use proof and disproof
numbers, nothing else about MCTS has to be changed, though
the information from the (dis)proof number can still influence
the decision making process.

The final consideration then is how to use (dis)proof
numbers in UCT. The magnitudes of differences amongst
(dis)proof numbers technically do not have much meaning.
For example, a node with a proof number of 100 is not
necessarily ten times worse than a node with a proof number
of 10. The node with the proof number of 100 may just
have been investigated more often already. The fact that the
magnitudes of differences between (dis)proof numbers do not
have much meaning makes it difficult to directly use them
in the UCT formula. Instead of using the proof or disproof
numbers directly in the formula, this paper proposes that the
(dis)proof numbers are used to determine a ranking amongst
all the nodes. The ranking is similar to the one of PNS as
explained in Section III. At an OR node the child node with
the lowest proof number would get the best ranking because
that is the node that would be selected in regular PNS. For
example, if there are 30 child nodes, the one that would
be picked according to PNS gets a rank of 1. At an AND-
node, the node with the lowest disproof number is picked.
The next best ranking node would be the node PNS would
pick if the original best ranking node was not an option (so
the second lowest (dis)proof number would get a ranking of
2, whereas the worst option would get 30 for this example).
Ties are awarded the same rank. Finally, this rank can then be
normalized to be in the range of [0, 1]. Normalization allows
the resulting value to be in a range that is similar to the values
that might come out of the exploitation or exploration parts of
the UCT formula. To normalize, the ranking (called pnRank
in the formula) is divided by the highest rank of any of the
children. Finally, to control the influence of the addition, a
parameter is added (called Cpn in the formula).

Putting all that together gives the following adjusted UCT
formula, referred to as the UCT-PN formula:

b ∈ argmaxi∈I

vi + C

√
lnnp

ni

+ Cpn

(
1 −

pnRanki

argmaxj∈I (pnRankj )

)
(2)

where Cpn is the PN-Parameter that can be adjusted, pnRank
is the rank of a specific node (lowest rank is best node
according to PNS), and argmaxj∈I(pnRankj) is the highest
(and thus worst) rank of any child node. The rest of the
variables are the same as the regular UCT Formula 1. This
paper uses the term PN-MCTS to refer to any MCTS variant
that uses the UCT-PN formula instead of the base UCT
formula for its selection step.

V. EXPERIMENTS

This section outlines the experiments that have been con-
ducted, the experimental environment and the specific setups.
All of the the experiments have been conducted in the Ludii
General Game System [27], and have been run on a Intel(R)
Core(TM) i7-10750H CPU with 16 GB of RAM. First, in
Subsection V-A the Ludii General Game System is outlined
and the choice for this system is explained. Next, in Subsection
V-B the test domains are described. Subsequently, in Subsec-
tion V-C the specific experimental setup is explained. Finally,
in Subsection V-D the results of the experiments are shown
and discussed.

A. Ludii General Game System

The Ludii General Game System is a general game play-
ing framework, which provides an environment for devel-
opers to test their implementation of general game playing
agents. The system includes over 1,000 games described in
its general game description language, and implementations
of various standard algorithms and enhancements (such as
several variants of MCTS). It has a single, unified API for
the development of intelligent agents, based on a forward
model (with functions to generate lists of legal actions, gen-
erate successor states, and so on) and standardized state and
action representations. Ludii has been demonstrated [27] to
process games faster than the previous state-of-the-art general
game playing framework based on Stanford’s general game
description language [28], which is important for the playing
strength of tree search algorithms such as MCTS.

B. Game Domains

Two-player adversarial games are well suited to PNS as it
structures its knowledge as AND/OR-trees. The list of games
that fulfill this condition is still rather large. To narrow the list
down even more, only domains in which both MCTS and PNS
have shown to be effective are considered. If either MCTS or
PNS does not perform well in a domain, the combination of the
two will probably not be very effective. From the remaining
list of games that fits the requirements and desirable qualities,
five games are chosen: Lines of Action, Awari, MiniShogi,
Gomoku, and Knightthrough. Lines of Action (LOA) is the
primary domain for most of the experiments. The other games
are used in two of the experiments. Each of the games is briefly
described below.



1) Lines of Action: The rules of Lines of Action (LOA) are
as follows [29]. It is played on an 8×8 board by two sides,
Black and White. Each side has twelve pieces at its disposal.
The black pieces are placed along the top and bottom rows of
the board, while the white pieces are placed in the left- and
right-most files of the board. The players alternately move a
piece, starting with Black. A piece moves in a straight line,
exactly as many squares as there are pieces of either color
anywhere along the line of movement. A player may jump
over its own pieces, but not the opponent’s, although opposing
pieces are captured by landing on them. The goal of the players
is to be the first to create a configuration on the board in which
all own pieces are connected in one unit. The connections
within the unit may be either orthogonal or diagonal.

There are two main reasons why LOA was chosen as the
main test domain. Both MCTS and PNS have been extensively
tested on LOA [7], [17], and the game board has an adjustable
size. The default board is 8×8, but smaller sizes such as 7×7
can also be used. The advantage of the smaller board sizes
is that the game reaches endgame states much quicker. PNS
works best in endgame scenarios where game states can be
proven or disproven in fewer steps. Thus, by testing on various
board sizes, the experiments can test whether PN-MCTS has
a better performance when endgame states require fewer steps
to be reached.

2) Awari: Awari is a Mancala or sowing game [30]. Awari
is played on a 2×6 board and with counters. The goal of the
game is to capture as many counters as possible. To capture
counters, a player must end their sow in the opponent’s row
and in a hole with 2 or 3 counters (including the piece used
to sow). Sowing is a process where a player takes all the
counters from a hole in their row and deposits them one by
one into adjacent holes until none are left. In Awari, sowing
goes counter-clockwise. The game is over once none of the
holes contain more than 1 counter. The player who captured
most counters wins, or in case both players have an equal
amount, the game ends in a draw. Awari is a suitable test
domain for PN-MCTS as Mancala variants have been used as
testbed for PNS [16] and MCTS [14] in the past.

3) MiniShogi: MiniShogi is a variant of the old Japanese
game called Shogi and was invented around 1970 by
Shigenobu Kusumoto. The game has various pieces each of
which have their own rules for movement. The goal is to
capture the opponent’s King with these pieces. Pieces can
be promoted by moving them towards the opponent’s side
of the board. Opponent pieces can be captured by moving
a piece onto an enemy piece. Captured pieces can re-enter
the game as a turn. MiniShogi differs from regular Shogi in
the following ways: it is played on a 5×5 board, it has fewer
pieces than the original, and features a smaller promotion area.
Shogi endgames have been one of the main test domains of
PNS [31], whereas MCTS has become the dominating search
technique for this game [32].

4) Gomoku: Gomoku is a connection game [33]. The goal
of the game is to make a row of exactly 5 stones of the same
color. Gomoku is played on a 15×15 board, with black and

white stones. Players take turns placing pieces of their color on
any empty position of the board. The game ends once a player
places a stone that gives them a line of exactly 5 pieces (lines
of more than 5 pieces do not count). Lines may be orthogonal
or diagonal. PNS has been applied in Gomoku before [34],
and MCTS variants have also been developed for this game
[35].

5) Knightthrough: The game of Knightthrough is a variant
of Breakthrough [36]. It is played on an 8×8 board. Each
player has 16 pieces in the first two rows of their side of
the board (opposing sides). Every piece moves like a knight
in chess. This means each piece may move 1 square in one
non-diagonal direction and then 2 squares in a perpendicular
direction. Pieces may be captured by landing on them. Knights
can jump over other pieces (both friendly and opponent). The
goal of the game is to reach the opponent’s edge of the board
(the row furthest from the player) with one of their knights.
A player can also win by capturing all opposing pieces.
Knightthrough has been used to test MCTS in a general-
game-playing context [37]. Its original variant Breakthrough
has served as a test bed for PNS variants [38].

C. Experimental Setup

This subsection explains the setup for the following four
experiments.

1) Overhead Cost: This experiment investigates the cost
of obtaining — and continuously updating — the proof and
disproof numbers. PN-MCTS is constructed as an augmen-
tation of the basic MCTS implementation provided by the
Ludii system to ensure that any difference in performance is
solely due to the proposed enhancement. To obtain the cost
specifically, PN-MCTS and the original MCTS are both run
for a fixed amount of time from the initial positions of several
different games. The number of simulations that the two search
techniques are able to perform are tracked and noted.

2) PN-Parameter: The second experiment tests the per-
formance of PN-MCTS against the original MCTS. for
Cpn ∈ {0.0, 0.1, 0.5, 1.0, 2.0, 5.0, 106} are tested, each with
250 games against the base MCTS. One of the tested Cpn

configurations is set to an arbitrarily high number, such that
the PN-MCTS performs practically the same as a regular PNS
would, with the exception that ties in proof and disproof num-
ber are broken by MCTS instead of randomly. The experiments
are executed with 1 second per turn. For both agents the C
parameter is set to

√
2. This experiment is conducted in the

game of LOA. The boards on which the experiments happen
are 7×7 and 8×8. By playing on two board sizes, results
can be compared to determine if larger search spaces, longer
games and later endgame situations have different trends in
which parameters are best for the PN-MCTS.

3) Time Settings: This experiment explores what effect a
longer or shorter time setting has on the win rate of PN-MCTS.
The default MCTS is given the same amount of time per turn.
The performance of MCTS becomes significantly better with
more time. If only the PN-MCTS was given more time, it
would not be possible to say much about the performance



of the enhancements. This way the win rate is relative to an
MCTS on equal ground. These experiments are conducted with
Cpn set to 1 for the PN-MCTS and both agents have C =

√
2.

As in the previous experiment, for each data point 250 games
were played. The domain for this experiment is also LOA on
the 7×7 and 8×8 boards.

4) Other Domains: Finally, the last series of experiments
investigate the performance of PN-MCTS in domains other
than LOA. As described in Subsection V-B, these other
domains are Awari, MiniShogi, Gomoku, and Knightthrough.
In each of these games, a subset of the previous experiments
is executed. Specifically, a limited version of the time settings
experiment is conducted for three time configurations (0.1s,
short turns; 1.0s, regular turns; 2.0s, longer turns). LOA with
the default board size of 8×8 is also included in the experiment
for the sake of comparison. The PN-MCTS parameters for all
domains are set as follows: Cpn = 1, and C =

√
2.

D. Results

In this subsection, the results of the experiments are shown
and discussed. Every result (except for the overhead-cost ex-
periment) has a 95%-confidence interval behind it in brackets,
and the agents play both colors equally.

1) Overhead Cost: In Table I the average number of
simulations per second is given for PN-MCTS and MCTS, as
well as the ratio between these two numbers, for five games.
These numbers were measured over a period of 30 seconds for
Knightthrough, and 100 seconds for the remaining games. A
shorter duration was used for Knightthrough because, due to
its large branching factor and relatively high baseline number
of simulations per second, PN-MCTS tended to run out of
memory at higher time settings. The increased memory usage
is because the implementation of PN-MCTS fully expands all
children of nodes at once—allowing for the computation of
(dis)proof numbers and rankings for all children—whereas the
standard MCTS only expands one child per simulation. The
table reveals that PN-MCTS has a relatively mild overhead in
most games (ratios relatively close to 1.0), with the most no-
table drop in performance being in Knightthrough. While this
number does give an indication of the overhead, it should also
be noted that the overhead here might be higher than in usual
experiments; this experiment measured overhead over 100
seconds (or 30 for Knightthrough), whereas other experiments
run tree searches only for up to 5 seconds. The (dis)proof
numbers have to be recalculated on backpropagation, thus
the larger the tree, the higher the backpropagation has to go
and the higher the processing cost. However, the (dis)proof
numbers for ancestors of a leaf node are only recalculated if
the change in (dis)proof number has an effect on the (dis)proof
numbers of the ancestors. So even if the game tree goes quite
deep (such as in this experiment), the overhead cost should not
be much higher than in usual cases. Still, the overhead cost
will be different every turn depending on the current board
state.

Fig. 3. PN-Parameter Experiments: PN-MCTS against MCTS for 7×7 and
& 8×8 LOA

TABLE I
AVERAGE NUMBER OF SIMULATIONS PER SECOND

Game PN-MCTS MCTS Ratio

LOA 8×8 172.84 188.95 0.91
LOA 7×7 312.89 341.34 0.92
Awari 898.82 913.69 0.98
MiniShogi 83.40 89.51 0.93
Knightthrough 1104.23 1342.30 0.82

2) PN-Parameter: Figure 3 displays the win rates of PN-
MCTS with varying Cpn against MCTS. The trend in win rate
of PN-MCTS is fairly similar for both board sizes. If Cpn nears
0, such as when it is 0.1, the PN-MCTS will function more like
the basic MCTS. If Cpn was 0, the two agents would be the
same and a win rate of approximately 50% would be expected.
Thus it seems that as Cpn nears 0, so too does the win rate
near 50%. Another low point for both board sizes is when
Cpn is 106. When Cpn is that high, the agent starts behaving
similar to PNS. From the results, it seems that a basic PNS still
performs better than basic MCTS on the smaller 7×7 board,
but not on the regular 8×8 board. This is expected as PNS
is most effective in endgame play. Endgame play is reached
sooner on a 7×7 board and thus (MCTS-)PNS performs better
more quickly. As for the highest win rates, on a 7×7 board, a
Cpn of 2.0 performs best, recording a win rate of 91.2% over
basic MCTS. On the 8×8 board, there is a different optimal
setting. A Cpn of 1.0 appears to be the optimal one with a
win rate of 83.2%.
Cpn represents the impact that the (dis)proof numbers have

on the basic MCTS. So on the smaller board size, where PNS
performs better than MCTS, a bigger influence of the proof
and disproof number performs better. This is only true to some
degree, as when Cpn reaches 5.0, the win rate drops as it starts
to converge towards the score of a pure PNS.

To give an idea how a pure PNS would behave on its own
without any CPU overhead, we conducted an experiment with
Cpn = 106 and a fixed number of 1000 simulations per
move in LOA 8×8. Here PN-MCTS won only 9 out 100



games against the regular MCTS. For the same number of
simulations, but for Cpn = 1, PN-MCTS won 99 out 100
games. These results validate that PNS on its own is weaker
than MCTS, but when combined together in PN-MCTS the
algorithm may outperform MCTS.

3) Time Settings: In the next series of experiments, the
effect of time on PN-MCTS is measured. Figure 4 shows the
performance of PN-MCTS against MCTS for different time
settings in LOA 7×7 and 8×8. For each data point both the
PN-MCTS and the basic MCTS have the same time allotted.
Just as with the PN-Parameter experiments, the two board
sizes show similar trends in their results. Generally, the results
indicate that the more time is given to PN-MCTS the higher
the win rate, resulting in a 94% win rate for 5 seconds in LOA
8×8. As described before, generally MCTS performs better
with more time. This means that any increase in PN-MCTS
performance is not only a general improvement but also one
relative to the inherent improvement that any enhanced MCTS
would see with more time. If this was not the case, the win
rate would not go up, and instead stay roughly the same.

The behavior is likely due to the nature of the enhancement
given to PN-MCTS. The PN component of the PN-MCTS
has most impact in endgame positions. For the search to
reach those positions, time is required. Once those positions
are reached and explored by PN-MCTS, more time does not
necessarily improve the decision making much more. The time
required for PN-MCTS to reach those endgame positions is
shorter on smaller boards. Thus, the aforementioned situation
where more time does not necessarily improve the decision
making much more is reached sooner too. This is the most
likely explanation for the difference in behavior on the dif-
ferent board sizes. Moreover, with enough time PN-MCTS
can prove the tree and thus does not need any more time (as
proving the tree means PN-MCTS can guarantee a win).

Fig. 4. Time Setting Experiments: LOA 7×7 & 8×8 Compared

4) Other Domains: In the final series of experiments, PN-
MCTS is tested in four additional domains. Table II shows
the performance of PN-MCTS for different time settings in
LOA, MiniShogi, Knightthrough, Awari, and Gomoku. The
highest win rate for each domain is printed in bold. The

table reveals that in every game except Gomoku, PN-MCTS
outperforms MCTS for certain time settings. In some games
such as Awari and MiniShogi, PN-MCTS is most effective if
the available time is limited (only 0.1 seconds). Due to the
limited number of simulations, the Monte-Carlo evaluations
are not very informative, which is mitigated by the information
of the (dis)proof number. In the case, the search is directed to
areas where the player has more options than the opponents.
Such an implicit mobility feature is correlated with a material
advantage. When the search time increases, the Monte-Carlo
evaluations become more reliable, and the addition of the
(dis)proof number becomes even detrimental. In other games
such as LOA and Knightthrough the opposite seems to be true.
With more time, PN-MCTS becomes increasingly stronger
than MCTS.

TABLE II
DOMAIN EXPERIMENT: WIN RATE% OF PN-MCTS IN VARIOUS GAMES

AT VARIOUS TIME SETTINGS AGAINST BASIC MCTS

Game domain 0.1s 1.0s 2.0s

LOA 8×8 65.2(±5.90) 87.6(±4.09) 92.4(±3.28)
MiniShogi 86.0(±4.30) 76.8(±5.23) 67.2(±5.82)
Knightthrough 46.0(±6.18) 60.4(±6.06) 63.6(±5.96)
Awari 61.2(±6.04) 49.8(±6.20) 31.1(±5.74)
Gomoku 32.4(±5.80) 9.6(±3.65) 11.2(±3.91)

VI. CONCLUSIONS AND FUTURE RESEARCH

This paper has proposed PN-MCTS, which combines Proof-
Number Search and MCTS by adjusting the UCT formula. The
ranking of the nodes according to their (dis)proof numbers is
used to bias the UCT formula. While there is a computational
cost necessary to obtain the proof and disproof numbers, the
benefits can outweigh the costs if the domain and choice
of parameters are right. The results show that PN-MCTS
outperforms MCTS in LOA, Knightthrough, and MiniShogi.
Though for MiniShogi the added benefit seems to diminish
when the thinking time increases. For other domains such
as Awari and Gomoku, the addition of (dis)proof numbers
appears to be detrimental in the long run. One of the reasons
could be that PNS can only deal with binary outcomes. In
the current PN-MCTS implementation, the (dis)proofnumber
is the same for a draws and a loss, potentially steering the
search into the wrong direction.

There are three main directions for future research. The first
one is to test PN-MCTS on more domains and to investigate
the reason why it does (not) work for certain domains. The
second one is to test PN-MCTS with different parameter
configurations and time setting. The third one is to test the
performance of PN-MCTS in combination with enhancements
that are successful in a general-game-playing context such as
RAVE [39] and MAST [8].
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