
ChemGrid: An Open-Ended Benchmark Domain for
an Open-Ended Learner

Miklos Kepes
Cross Labs

Cross Compass, Ltd.
Kyoto, Japan

kepes.miklos@gmail.com

Nicholas Guttenberg
Cross Labs

Cross Compass, Ltd.
Kyoto, Japan

ngutten@gmail.com

L. B. Soros
Cross Labs

Cross Compass, Ltd.
Kyoto, Japan

lisa.soros@cross-compass.com

Abstract—This paper introduces ChemGrid, which is a novel
video-game-based domain for exploring open-ended artificial
intelligence capable of setting arbitrary goals for itself. In this
domain, agents must satisfy a minimal goal of crafting a preset
“survival molecule” but otherwise can pursue their own agendas
related to crafting in an artificial chemistry based on the concept
of pathway complexity from artificial life. In particular, agents
can discover new molecular recipes by joining existing recipes
together and breaking them apart. This paper explores the design
space afforded by the artificial chemistry. The main contribution
is the introduction of ChemGrid itself, which is intended as a
future benchmark domain for general game-playing algorithms.

Index Terms—Game competitions, benchmarks, multi-agent
systems, open-endedness, artificial chemistry

I. INTRODUCTION

Open-ended algorithms continue to produce novel and in-
teresting outcomes even when run forever. Such algorithms
are particularly important in the context of two distinct yet
potentially related fields: 1) machine learning and 2) generative
systems and artificial life. Open-ended machine learning sys-
tems, if they exist, would be a major accomplishment because
they would be capable of learning to solve arbitrary problems
and not just specific tasks. Open-ended generative systems
(such as evolution on Earth and in artificial life worlds) are
interesting in their own right, but also because they might
provide a route to open-ended machine intelligence [1].

Games are an important and underexplored domain for
open-endedness research, and for AI research in general, be-
cause they abstract key features of real world tasks that require
general intelligence into a more tractable format. Games thus
far have proven useful domains for testing algorithms for
specific components of artificial intelligence such as planning
and visual processing, with different game genres providing
different kinds of challenges for both human and machine
intelligence. Many current AI benchmark domains are inher-
ently limited because they only measure an agent’s ability to
complete a narrow, pre-defined task. However, achieving open-
ended intelligence first requires the existence of domains that
enable a diversity of nontrivial agent behaviors.

This current work introduces a radically new game-based
environment for exploring open-endedness in the context of
multi-agent systems. On an individual level, agents must learn

to craft a “survival molecule” in a simple artificial chemistry,
but otherwise are free to pursue their own molecule crafting
goals. Importantly, there is no inherent reward signal other
than a binary indication of whether or not a target “survival
molecule” has been built (providing a natural minimal criterion
for success). Agents can also participate in a contract-making
system (described later) whereby they can offer rewards to
each other for achieving agent-defined crafting goals.

The new ChemGrid environment is meant to serve as
a new benchmark for both the artificial life and game AI
communities. This introductory paper explores in depth the
properties of the artificial chemistry system underlying the
environment’s crafting system and contract-based economy.

II. RELATED WORK

Games have long served as benchmarks for artificial intel-
ligence. In particular, there exist some benchmark collections
that offer diverse sets of independent tasks with the hope that
a generally intelligent player could solve them all. Examples
include the General Video Game AI (GVGAI) Competition
[2] and the Arcade Learning Environment (ALE) [3].

Still, the games contained in these frameworks are not
themselves generally open-ended as the environment provides
the agent with reward-specified goals such as killing monsters
or navigating mazes. In contrast, sandbox environments such
as the game Minecraft contain many conceivable tasks within a
single environment, with the environment providing little to no
incentive for doing any particular thing besides surviving. This
approach is similar to the challenge solved by life on Earth,
but is implemented in relatively few game benchmarks. One
notable exception is the Minecraft-inspired Voxelbuild [4],
wherein evolved agents placed blocks on a plane. The recent
EvoCraft framework and competition on open-endedness [5]
was additionally inspired by Minecraft, noting that human
players have proven capable of building complex artifacts such
as computers in the game and asking whether sufficiently
open-ended algorithms could achieve similar feats. Of course,
Minecraft is not the only possible domain for experiments in
open-ended creativity. The SimSim framework [6], inspired by
The Sims, focuses on interior design in the context of minimal
criteria for viability; any design that meets all of a simulated
agent’s basic needs is considered viable, and all others are not.

III. BACKGROUND

This section reviews concepts from artificial life that con-
ceptually ground the work presented in this paper.

A. Minimal criterion evolutionary search

The minimal criterion paradigm frames evolution as survival
of the fit enough instead of survival of the fittest. Prior work on
the artificial life world Chromaria [7] showed a binary minimal
criterion for viability (as opposed to gradient-based fitness) to
be a key prerequisite for for open-ended evolution; without
such a mechanism, evolution stagnated. This idea was later
adapted into more applied evolutionary algorithms, including
Minimal Criterion Coevolution [8] and the Paired Open-Ended
Trailblazer (POET) [9]. Another algorithm related to minimal
criterion search is the Feasible-Infeasible Two-Population (FI-
2Pop) genetic algorithm [10], which maintains and evolves
a population of individuals that satisfy a binary viability
criterion alongside a population that doesn’t.

B. Pathway Complexity

Pathway Complexity [11] is a complexity measure for
arbitrary objects. Essentially, this measure quantifies the short-
est path from basic building blocks to a complex structure
as the number of join operations required to compose an
object. The original authors give the example of building
the string “banana” from individual letters and already-built
combinations of letters. By building “ba” (b + a), then “na”
(n + a), then “nana” (na + na), then finally “banana” (ba
+ nana), we get a final pathway complexity of 4. Pathway
Complexity can be applied whenever an object is composed
of discrete building blocks, which will be true of molecules
built by players in ChemGrid. It is preferable to measures such
as Shannon entropy and Kolmogorov complexity because it is
not maximized by randomness and instead in theory identifies
structures with interesting or lifelike complexity.

C. Novelties and “door-opening” states

Banzhaf et al. [12] identify three kinds of novelties that
may occur in evolving systems, with the ongoing production
of novelty being required for open-endedness in evolution and
artificial life. Taylor [13] connects these types of novelties
with Boden’s kinds of creativity, and additionally notes that
“...kinds of open-endedness involving expansive and trans-
formational novelties...both involve the discovery of door-
opening states in P-space that open up an expanded space
of new adjacencies”. The artificial chemistry in ChemGrid
was designed such that simulated molecules, once constructed
by agents, open doors to constructing other molecules in a
theoretically infinite network.

IV. CHEMGRID FRAMEWORK

A screenshot of the main ChemGrid interface is shown in
Figure 1. The window is 256x256 pixels and is intentionally
kept small so that raw pixels can be input to a neural network.
This way, the agent must learn to play the game without

Fig. 1: Main ChemGrid interface. The bottom left corner
depicts a “survival molecule” that serves as a minimal criterion
for successful agent play. To the right are buttons representing,
clockwise from top left, join, break, view available contracts,
and set contract operations. The column on the right con-
tains the agent’s (scrollable) inventory, which represents all
molecules the agent has ever constructed.

being given domain-specific knowledge and the hope is that
gameplaying abilities will generalize to other games.

At each time step, a single player instance can click once
anywhere on the screen. The basic actions available to the
agent, assuming it can navigate the interface successfully, are:

• Join (Figure 2) : The agent selects two molecules from
its inventory and connects them to form one combined
molecule. A join operation is valid if the components
are placed adjacent to one another, i.e. they form a
single connected component. This operation exists so
that atomic complexity can be measured as pathway
complexity.

• Break (Figure 3): The agent selects one molecule from
its inventory and specifies a bond to remove that will
break the molecule into two disjoint sets of atoms (i.e.
two new molecules). Along with the join operations, this
operation also exists so that atomic complexity can be
measured as pathway complexity.

• Set a contract: The agent selects one molecule from
its inventory as a “payout” that another agent will re-
ceive if it constructs a target molecule (distinct from the
global survival molecule) specified by the player. Nothing
happens if a contract goes unfulfilled, so there is no
cost to creating contracts. The contract system provides a
mechanism whereby agents can communicate their goals
to each other and collaboratively participate in open-
ended exploration of the design space.

• View contracts: The agent can view all contracts (pay-
out/target molecule pairs) that have been submitted by
other agents.

Fig. 2: Join interface. A molecule is selected from the
inventory and then placed on a grid of atoms. A second
molecule is selected from the inventory and can be placed
anywhere on the grid. If placing the two molecules adjacent to
each other would result in creating one contiguous molecule,
possible new bonds appear in yellow. After construction, the
new molecule will appear in the agent’s inventory.

Source molecules remain in the inventory after join and
break operations. As such, the inventory is a record of every
“recipe” that an agent has discovered rather than a set of items
in the agent’s possession. Inventory size is currently unlimited,
which may change in future ChemGrid versions if necessary.

V. DESIGN SPACE EXPLORATION

The rest of this paper explores the space of molecules
possible in ChemGrid, the role of the join and break rules, and
the contract system in the building process. The goal is to show
why this environment has the potential to produce interesting
dynamics and properties, including open-ended characteristics.

Because developing agents that can play the game end-
to-end through its interface is an open challenge and the
ultimate goal behind the creation of the ChemGrid framework,
and furthermore because the aim in this section is to give
an insight into the molecule space, agents herein can access
the inventories, targets (survival molecules) and contracts and
use the join/break/contract actions directly. Throughout these
explorations, the grid size, the number of atom types, the initial
inventories, and the target molecules are all also varied.

An interesting question is whether agents are better off
using contracts and thereby acquiring mutually beneficial
molecules if the means are given. That is, can contracts reduce
the number of steps it takes to find targets as the number
of agents increases? This question can be generalized: are
there molecules that are generally worth exchanging? Are
there building blocks that are more valuable than others, i.e.
modules that greatly simplify otherwise challenging tasks?
These “hub” molecules would be “door-opening” gateways to

Fig. 3: Break interface. The player has selected a molecule
(shown alone at the top of the inventory column on the right)
and must now select a valid break point. A bond is a valid
break point if removing the bond will result in two disjoint sets
of atoms. Valid break points are shown in yellow and invalid
break points are shown in white. The two new submolecules
will then appear in the agent’s inventory.

new opportunities. They are expected to be a building block
towards many different targets and also relatively difficult to
construct, therefore exchanging them via contracts is more
economical than building them from scratch multiple times
independently. Note that it is possible to reach any target from
the starting inventory using only joins and breaks, but that
utilizing contracts can provide a more efficient route to targets.

A. Space of possible molecules

The power of human language to efficiently express prac-
tically any thought or concept comes from its combinato-
rial structure [14]; letters, utterances, and sentences can be
combined to construct new, more complex language build-
ing blocks. Similarly, agents in ChemGrid can ever-combine
molecules to construct potentially more complex and delicate
ones. Due to this combinatorial property, the number of
possible molecules grows exponentially with the number of
molecules used to build them. Figure 4 shows the number of
valid molecules by the total number of atoms, when using
three different atom types on an 6x6 grid for total number of
atoms 1-7. Figure 5 shows a sample of randomly-generated
molecules following a repeated application of the join and
break rules on randomly-selected molecules. This sample was
obtained from the resulting ∼ 400, 000 items. This example
gives an idea about the number of opportunities for agents
in this environment. However, not all of these opportunities
have equal significance; it is expected that some of the
structures will be more complex (e.g. according to the pathway
complexity) or valuable (e.g. according to their scarcity and
reusability [Section V-D]).

Fig. 4: Number of molecules by total number of atoms.
The number of possible molecules grows exponentially with
the number of atoms contained in the molecules.

Fig. 5: Sample of randomly generated molecules on a 6x6
grid. Obtained by following a repeated application of the
join and break rules on randomly sampled molecules from
a growing archive. The final sample was generated from the
resulting ∼ 400, 000 items.

B. Molecule-building agents

For the purposes of exploring the molecule building space,
we start with an approach that uses a hard-coded agent logic.
Also, normally, for an agent to be able to play ChemGrid it
needs to process RGB images of the screen, and come up with
an action in the format of the coordinates of the next mouse
click on the game interface, as shown in Figure 6. Furthermore,
while completing target molecules are not intended to be the
ultimate objectives of ChemGrid agents (rather, they should be
viewed as minimal criteria for survival), in these experiments
we build agents whose goal is completing their targets so that
we gain insight into how the ChemGrid rules influence the
molecule building trajectories and the usage of contracts.

The backend of ChemGrid is converted into an OpenAI
Gym [15] like environment1, with which agents can iteratively

1https://github.com/mekhlos/chemgrid

Fig. 6: Agent-game interaction. Agents receive RGB screen
images as states and send mouse click positions as actions.
Each agent has its own interface and can only interact with
other agents by creating, viewing, and completing contracts.

Fig. 7: Agent environment interaction using ChemGrid
backend. Agents receive all the agents’ state from the environ-
ment, containing inventories, targets, and the current contracts,
then they can create a trajectory plan from its current inventory
to its target using join and break and use this plan to generate
the next action. After considering other agents’ plans, an agent
can also create contracts that would shorten the trajectory
of both agents or it can evaluate and work towards existing
contracts.

interact through time, as in Figure 7. In this setup, n agents
are initialized with initial inventories and targets. At each
step, each agent can generate an action to either join two
molecules, break a molecule, or generate a contract promising
a molecule upon completion of a requested molecule, as
described in Section IV. The selected actions are then executed
in the environment and the updated inventories and contracts
are returned together with a “done” indicator for each agent
indicating which agents have reached their targets.

At every step, agents
• check if there are existing contracts worth pursuing.

If yes, they generate a plan from current inventory to
the chosen sub-target using the planner module detailed
below, and return the first step towards the sub-goal.

• otherwise they check if other agents currently possess
or are likely to possess molecules that would reduce the
steps to reach their targets based on their plans. If they
can offer something from their own present or future
inventories in exchange for such desirable items they
generate a new contract. Contracts are supposed to help
both participants reach their targets faster than separately.

• otherwise, they generate a plan from the current state to
their target using the planner module.

Planner: The planner finds a trajectory from a given inven-
tory to the target using only breaks and joins, via

• Exhaustive search: building all possible combinations
starting from the initial inventory, until it comes across
the target. This approach, while guaranteed to eventually
reach the target (if possible), is very inefficient, and only
applicable for smaller grids, and simpler targets.

• Heuristic search: use heuristics such as a similarity mea-
sure between molecules and the target to guide the search
through the molecule selection process, (e.g. Equation
2). Search is faster, but biases can be introduced, and
incremental trajectories such as in Figure 8a can result.

There could be many ways to improve the planning algorithm,
including machine-learning-based approaches to predict which
molecules to select for join and break. Figure 8a shows an
examples of a single target-building agent in action using
the heuristic-based planner. As the initial inventory doesn’t
contain the generally applicable 1x1 and 1x2 molecules, they
are obtained through breaks. One disadvantage of this heuristic
approach is that the target molecule is built in an incremental
manner, i.e. the agent maintains one main working-molecule
which it amends incrementally. The number of steps is proba-
bly far from the optimal, shortest path. This can be contrasted
to the trajectory in Figure 8b, which was obtained from a
randomly-built molecule.

C. Experimenting with the rules

In an alternative approach to joins and breaks, we updated
the rules so that to join two molecules one has to specify the
type of bond on which to join them, that is a pair of colors
representing two (not necessarily) different atom types, see
Figure 9a. Then all possible valid combinations are generated
where these two types of atoms are adjacent. Breaks are
also done by specifying a bond and all atom pairs with this
bond are separated forming new molecules (Figure 9b). Only
molecules with more than one atom are considered valid, and
an operation is only valid if all new items are valid.

Figure 10 shows a sample of randomly-generated molecules
following these new rules, while Figure 11 shows an example
trajectory for building a molecule with this approach. We see
more reuse of molecules compared to the original joins and

(a) Heuristic-based trajectory. (b) Sampled trajectory.

Fig. 8: Target-building trajectories. The molecules without
incoming arrows correspond to the initial inventory of the
agent, while the bottom molecule is the target. Black arrows
represent join and purple dashed arrows represent break oper-
ations. For the left figure, we used a heuristic-based similarity
measure to guide the agent’s search towards its target. On
the right figure we show a trajectory that was sampled from
randomly built molecules and unlike the other trajectory, we
see examples of multiple components being built separately
then joined, instead of progressively developing a single one.

(a) Join. (b) Break.

Fig. 9: New join and break rules. We updated the rules so
that to join two molecules one has to specify the type of bond
on which to join them and all possible valid combinations are
generated where these two types of atoms are adjacent. Breaks
are also done by specifying a bond and all atom pairs with
this bond are separated forming fragments. On the left figure
the first two molecules are joined on all blue-green bonds to
from the third. On the right, the first molecule is broken on
all green-blue bonds to form the second and third molecules.

Fig. 10: Sample of randomly generated molecules when
join and break rules are changed. We obtained this sample
from ∼ 10000 molecules generated by a repeated application
of join and break on a growing archive. Compared to Figure
5, we see, more characteristic, denser molecules.

breaks. The space of possible molecules is more constrained
and there are fewer valid combinations, which also makes the
emergence of rarer, more valuable molecules more likely.

The previous examples show trajectories of individual
agents without using ChemGrid’s contract mechanism. In the
next section we describe contracts more in detail and show
some trajectories that involve contracts.

D. The role of contracts

The basic idea behind the contract mechanism is that agents
can promise to deliver a certain molecule if another agent
completes a requested molecule for them. Agents are obliged
to fulfil their promises and deliver if they request was satisfied.
It is also possible to promise and request molecules that are
not yet built at the time of the creation of the contract. The
exchange happens automatically once the requesting agent
has the promised molecule and any other agent possesses the
requested one. We expect the main role of contracts to be
incentives to build new molecules, and in that case agents can
decide whether building a requested item is worth it for them.
This way agents can create subgoals for each other.

As reasoning about multi-agent environments is not well-
explored and -understood it is often desirable to place multi-
agent problems into a better-understood single-agent frame-
work. The main challenge in training agents in multi-agent
systems is that the system is non-stationary; agents adjust
their behaviour as a function of other agents’ behaviour, which
in turn changes how other agents behave, thus generating a
shooting-at-a-moving-target problem. We hope that contracts
can somewhat alleviate this issue by giving the agents the
ability to tell others what they want instead of needing them
to guess and have model their motivations.

Fig. 11: Trajectory sample for updated join and break
rules. With the changed rules we see more reuse of molecules
compared to the original join and break actions. The space
of possible molecules is more constrained and there are less
valid combinations, which also makes the emergence of hard-
to-come-by, more valuable molecules more likely.

ChemGrid is a multi-agent environment where interactions
between agents are only possible via contracts. Without con-
tracts, players can only rely on their own inventories for
constructing new molecules. In this case, building the target
molecule for n agents would take n times as many steps on
average as building the target for a single agent.

We set up a two-agent experiment where the benefit of
contract usage is clearly shown. In Figures 12a, 12c, 12b, 12d
we show the inventories and the targets of the two agents,
while 12f and 12h show their trajectories. The targets are
composed of the same pair of molecules but have different
relative positions to each other. At start, Agent 1 owns the
first component, while Agent 2 owns the second. Without
contracts they would both need to build the missing parts to
complete their targets, however, contracts allow them to simply
exchange these components and reach their targets faster.

The previous experiment was specifically designed to be
ideal for contracts, but we were also curious to see how often
contracts emerge automatically if we choose targets randomly.
To answer this question, we ran experiments increasing the
number of agents and comparing contract usage. As Figure 14
shows, contracts are more likely to emerge as we increase the
number of agents; with 32 agents we see about 0.39 contract
requests per agent, which adds up to 12.5 total contract

(a) Inventory 1
(b) Target
1 (c) Inventory 2

(d) Target
2

(2).png

(e) Agent 1 no
contract

(2).png

(f) Agent 1 con-
tract

(2).png

(g) Agent 2 no
contract

(2).png

(h) Agent 2 con-
tract

Fig. 12: Benefit of contracts. Agents reach their targets in two
steps instead of four when using them. Here, the targets (fig.
(b) and (d)) are composed of the same pair of molecules but
have different relative positions to each other. At start, agent
1 owns the first component (fig. (a)), while agent 2 owns the
second (fig. (c)). Without contracts they would both need to
build the missing parts to complete their targets (fig. (e) and
(g)), however, contracts allow them to simply exchange these
components and reach their targets faster (fig. (f) and (h)).

requests. Note that the experiment was repeated three times
with different targets, hence the non-integer result. However,
as we can see on the right hand side of the figure, this doesn’t
seem to decrease the number of steps it took for the agents
to reach their targets. Perhaps the molecules acquired through
these contracts weren’t crucial in building the target molecules.
Figure 13 depicts the trajectories of a four-agent example of
the target-building experiment. Once again, we see agents use
contracts during their trajectories towards their targets.

These experiments show the potential benefit of cooperation
through contracts, however, finding the right algorithms and
quantifying this benefit is an open challenge in ChemGrid;
while an optimal agent would recognize that setting contracts
results only in benefits to itself and would take advantage of
this fact, preliminary experiments did not yield agents with
such behavior.

E. Estimating the value of molecules

When generating contracts in Section V-B, agents estimate
how many steps they would save by having a desired molecule
in their inventory and compare this to the number of steps
it would take to offer something that would save steps for
another agent. Based on this we could define a function for

(a) Trajectory 1 (b) Trajectory 2 (c) Trajectory 3 (d) Trajectory 4

Fig. 13: Contract usage emerges when we use non-trivial
initial molecules. We ran four heuristic-based target building
agents with random initial inventories and targets. With multi-
atom initial inventory molecules, agents are more inclined to
utilise contracts (represented by brown dotted edges).

(a) Number of contracts per agent. (b) Number of total actions.

Fig. 14: Contract utilization vs. number of agents. With
more agents we see more contract usage, however the number
of steps to complete the target doesn’t decrease. With 32 agents
we see about 0.39 contract request per agent (figure (a)) which
adds up to 12.5 total contract requests. However, this doesn’t
seem to decrease the number of steps it took for the agents to
reach their targets (figure (b)). This suggests that the agents’
contract mechanism needs to be optimized which is subject of
our future research.

molecule value v as

v(m, Ikt , g
k, o) = d(Ikt , g

k)−(d(Ikt ∪{m}, gk)+d(Ikt , o)) (1)

where m is the candidate molecule, o is the molecule to offered
per the contract, Ikt is the inventory of agent k at time t, gk

is the target of agent k and d is a function that computes the
number of steps needed to build gk starting from Ikt . Currently
d is the length of the trajectory the planner creates (which
currently ignores contracts from the plan).

From another point of view, when selecting breaks and joins
(and contracts too), we are curious about how good it is to
select certain molecules as the subject of the next action. In
this case, the value could represent the negative total number
of steps it would take to reach the target if the given molecule
was selected for the next action, instead of the number of
steps it would save (since it is already part of our inventory).

A molecule that can be used to directly build the target in one
step would have a value of −1, if it would take two steps, the
value would be −2, etc. This is related to the definition of Q-
values in reinforcement learning [16]; Q-values represent the
total expected reward in a given state, following a given action.
We adopt a version of this approach in our heuristic-based
algorithm, approximating the molecule value by its similarity
to the target state described by the sim function.

vmol(m, I
k
t , g

k) = sim(m, gk) =

∣∣m ∩ gk∣∣
|m|

+ α

∣∣m ∩ gk∣∣
|gk|

(2)

where |.| represents the number of atoms in a given
molecule. That is, we take the weighted sum of the portion of
the molecule that overlaps with the target and the portion of
the target that overlaps with the molecule. Then we use this
value in the selection of the next molecule to join or break.

Another interpretation for molecule values can be related
to the scarcity/reusability property of molecules from Section
V-D. This metric doesn’t depend on the current state of
the agents, but rather is determined by the join and break
rules and other properties of the molecule. Finding a suitable
definition for this value is an open question and subject of
future research.

VI. DISCUSSION

This paper introduced ChemGrid, a novel video game
domain for open-ended task exploration. While investigations
focused on open-endedness of the molecule space using the
ChemGrid backend, we also experimented with agents that
play ChemGrid through its interface. For this purpose, we
wrapped the game in an OpenAI Gym environment where
states correspond to the visible game screen and actions cor-
respond to mouse clicks. While it is common to use such pixel-
based state-spaces (see The Arcade Learning Environment
[3]), it is less common2 to use an action space of the same
size (256x256 in our case), which poses an unmet challenge.

It may turn out to be the case that open-endedness in this
domain, and in games in general, is a property not just of the
game/environment (though open-ended properties of the game
are a prerequisite for open-ended gameplay) but of the coupled
game-player system. What makes sandbox games so open-
ended is that players create their own goals in an otherwise
blank canvas environment. It remains an open question how
best to motivate Chemgrid agents to set goals for themselves
beyond crafting a pre-specified survival molecule, and how to
make agents care about the success or failure of other agents
(which would prompt the utilization of contracts).

This environment could conceivably become the basis for
a formal competition, however the lack of a progressively-
increasing score earned by the agent (as in most games
used for competitions) makes evaluating agents difficult. One
solution might be to use the pathway complexity of all
molecules in an agent’s inventory after some time as a measure

2A notable exception is the StarCraft II Learning Environment [17].

of agent progress, but biasing the agents towards any game-
specific goals in particular goes against the open-ended spirit
of the game. Another option may be to include human judges
as subjective evaluators of constructed molecules, as in the
Generative Design for Minecraft Competition [18].

ACKNOWLEDGEMENT

This work was supported by a grant from GoodAI.

REFERENCES

[1] K. O. Stanley, J. Lehman, and L. Soros, “Open-endedness: The last
grand challenge you’ve never heard of,” December 2017.

[2] D. Perez-Liebana, S. Samothrakis, J. Togelius, T. Schaul, and S. M.
Lucas, “General video game ai: Competition, challenges and opportu-
nities,” in Thirtieth AAAI conference on artificial intelligence, 2016.

[3] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade
learning environment: An evaluation platform for general agents,” Jour-
nal of Artificial Intelligence Research, vol. 47, pp. 253–279, jun 2013.

[4] L. B. Soros, J. K. Pugh, and K. O. Stanley, “Voxelbuild: a minecraft-
inspired domain for experiments in evolutionary creativity,” in Pro-
ceedings of the Genetic and Evolutionary Computation Conference
Companion, 2017, pp. 95–96.

[5] D. Grbic, R. B. Palm, E. Najarro, C. Glanois, and S. Risi, “EvoCraft:
A New Challenge for Open-Endedness,” arXiv, Dec 2020. [Online].
Available: https://arxiv.org/abs/2012.04751v1

[6] M. Charity, D. Rajesh, R. Ombok, and L. B. Soros, “Say “sul sul!” to
simsim, a sims-inspired platform for sandbox game ai,” in Proceedings
of the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, vol. 16, no. 1, 2020, pp. 182–188.

[7] L. Soros and K. Stanley, “Identifying necessary conditions for open-
ended evolution through the artificial life world of chromaria,” in ALIFE
14: The Fourteenth International Conference on the Synthesis and
Simulation of Living Systems. MIT Press, 2014, pp. 793–800.

[8] J. C. Brant and K. O. Stanley, “Minimal criterion coevolution: a new
approach to open-ended search,” in Proceedings of the Genetic and
Evolutionary Computation Conference, 2017, pp. 67–74.

[9] R. Wang, J. Lehman, J. Clune, and K. O. Stanley, “Poet: open-
ended coevolution of environments and their optimized solutions,” in
Proceedings of the Genetic and Evolutionary Computation Conference,
2019, pp. 142–151.

[10] S. O. Kimbrough, G. J. Koehler, M. Lu, and D. H. Wood, “On a feasible–
infeasible two-population (fi-2pop) genetic algorithm for constrained
optimization: Distance tracing and no free lunch,” European Journal
of Operational Research, vol. 190, no. 2, pp. 310–327, 2008.

[11] S. M. Marshall, A. R. Murray, and L. Cronin, “A probabilistic framework
for identifying biosignatures using pathway complexity,” Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engi-
neering Sciences, vol. 375, no. 2109, 2017.

[12] W. Banzhaf, B. Baumgaertner, G. Beslon, R. Doursat, J. A. Foster,
B. McMullin, V. V. De Melo, T. Miconi, L. Spector, S. Stepney et al.,
“Defining and simulating open-ended novelty: requirements, guidelines,
and challenges,” Theory in Biosciences, vol. 135, no. 3, pp. 131–161,
2016.

[13] T. Taylor, “Evolutionary Innovations and Where to Find Them: Routes
to Open-Ended Evolution in Natural and Artificial Systems,” Artificial
Life, vol. 25, no. 2, pp. 207–224, 05 2019.

[14] B. de Boer, W. Sandler, and S. Kirby, “New perspectives on duality of
patterning: Introduction to the special issue,” Language and Cognition,
vol. 4, no. 4, p. 251–259, 2012.

[15] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” CoRR, vol. abs/1606.01540,
2016. [Online]. Available: http://arxiv.org/abs/1606.01540

[16] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: A Bradford Book, 2018.

[17] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets,
M. Yeo, A. Makhzani, H. Küttler, J. Agapiou, J. Schrittwieser et al.,
“Starcraft ii: A new challenge for reinforcement learning,” arXiv preprint
arXiv:1708.04782, 2017.

[18] C. Salge, M. C. Green, R. Canaan, and J. Togelius, “Generative design in
minecraft (gdmc) settlement generation competition,” in Proceedings of
the 13th International Conference on the Foundations of Digital Games,
2018, pp. 1–10.

