
Mastering the Game of 3v3 Snakes with
Rule-Enhanced Multi-Agent Reinforcement

Learning
1st Jitao Wang

University of Science and
Technology of China

Hefei, China
wangjitao@mail.ustc.edu.cn

2nd Dongyun Xue
University of Science and

Technology of China
Hefei, China

andyxue@mail.ustc.edu.cn

3rd Jian Zhao
University of Science and

Technology of China
Hefei, China

zj140@mail.ustc.edu.cn

4th Wengang Zhou
Institute of Artificial Intelligence

Hefei Comprehensive Nation Science Center;
University of Science and Technology of China

Hefei, China
zhwg@ustc.edu.cn

5th Houqiang Li
Institute of Artificial Intelligence

Hefei Comprehensive Nation Science Center;
University of Science and Technology of China

Hefei, China
lihq@ustc.edu.cn

Abstract—As a popular game around the world, Snakes has
multiple modes with different settings. In this work, we are
dedicated to the 3v3 Snakes, which is characterized by a complex
mixture of competition and cooperation. To address this mode
of Snakes, most existing AI agents adopt rule based methods,
which achieve limited performance due to human’s oversight
of some special circumstances. Inspired by the superiority of
multi-agent reinforcement learning (MARL), we propose a rule-
enhanced multi-agent reinforcement learning algorithm and build
a 3v3 Snakes AI. Specifically, we introduce the territory matrix
which is commonly utilized in rule based methods to the state
features and mask the illegal actions through designed rules.
The relationships of individual-team and friends-foes are also
merged into reward design. Trained with Distributed PPO and
self-play on a single GeForce RTX 2080 GPU for twenty-four
hours, our AI achieves state-of-the-art performance and beats
human players. On JIDI platform, our agent outperforms the
other 132 participating agents and ranks the first for more than
20 consecutive days.

Index Terms—Snakes, Multi-Agent System, Game, Reinforce-
ment Learning

I. INTRODUCTION

Games are often abstracted from real-world problems,
which makes them natural benchmarks for intelligent decision
algorithms. With the development of reinforcement learning
(RL), recent years have witnessed significant achievements
in various single-player games such as Atari [1] and Super
Mario [2]. Meanwhile, multi-agent games have caught more
and more attention from researchers, where the agents may
compete or cooperate with others. Specifically, encouraging
advance has been made in competitive games. For example,

This work was supported in part by the National Natural Science Foundation
of China under Contract 61836011 and in part by the Youth Innovation
Promotion Association CAS under Grant 2018497.

the performance of AI in Mahjong [3], multi-player Texas
Hold’em [4] and Fighting game [5] have reached human
professional level. As for cooperative multi-player games,
StarCraft Multi-Agent Challenge (SMAC) [6] and Overcooked
[7] have become important testbeds for research of multi-
agent reinforcement learning. Apart from the above games,
current research efforts are turning to more challenging multi-
player games which simultaneously include cooperation and
competition. OpenAI, DeepMind and Tencent have proposed
their game AI in DOTA [8], StarCraft [9] and Honor of
Kings [10] and achieved amazing achievements, which arouses
widespread attention.

This work is dedicated to building an AI program for 3v3
Snakes. Snakes is a popular game across the world, where
teams manage to make the snakes longer by controlling the
moving direction of the snakes and letting snakes eat beans.
In the basic 1v1 Snakes game, once the head of a snake hits
itself or the body of any other snake, it will be immediately
killed and then reset to a new life with an initial short length
somewhere in the map.

3v3 Snakes not only keeps the basic elements of Snakes, but
also introduces competition and cooperation in the game. Each
team here controls 3 snakes at the same time. In the game,
every snake should not only eat beans, but also cooperate to
defend themselves and discourage other snakes from growing
longer. When the maximum episode step is reached, the snake
with longest length becomes the winner. Compared to other
multi-agent environments like SMAC [6], another advantage
of 3v3 Snakes is that the simulation of the game requires
little computation. Every step of the game only takes time in
the order of millisecond and the simulation can be done even
on personal computers with considerable speed, making it an

(a) (b)

(c) (d)

Fig. 1: Several Snakes game modes. (a) is a game mode with
only one snake and one bean; (b) is a game mode with one
snake and multiple beans; (c) is a game mode with multiple
snakes and one bean; (d) is a game mode with multiple snakes
and multiple beans.

ideal environment to evaluate MARL algorithms.

In the traditional rule-based 3v3 Snakes program, a concept
of a territory matrix is introduced. Specifically, the map of
the game is first split into several pieces, each of which
representing the territory of a snake. Based on these territories,
the snakes try to eat beans by heuristic commands. If any snake
grows to a certain length, the algorithm will direct it to form
a circle using its body (its head adjacent to its tail) to defend
itself. With the development of MARL, there have been some
3v3 Snakes algorithms based on MARL methods. However,
these algorithms fail to achieve a comparable performance
against rule-based algorithms. In this work, we take advantage
of both rule and MARL and proposed a novel 3v3 Snakes
AI. We make our contributions from two aspects. First, we
build benchmarks for 3v3 Snakes to help further investigation.
Second, we propose a rule-enhanced MARL algorithm. To
better integrate environment information, we add the territory
matrix, the core part of rule-based algorithms, into feature
matrices. We also devise a zero-sum individual reward as well
as a team reward to encourage cooperation among snakes in
the same team. To train the agents, we apply the distributed
proximal policy optimization (PPO) paradigm [11]. After
training on a single GeForce RTX 2080 GPU for 24 hours,
our agent is able to achieve state-of-the-art performance and
beats human players. We test our algorithm on the popular

JIDI platform1 against 132 competitive participating agents,
and has kept the first place for more than 20 consecutive days
among all these competitors.

II. RELATED WORK

In this section, we briefly introduce the concept and formu-
lation of reinforcement learning, and review its application in
games.

A. Reinforcement Learning

Reinforcement learning (RL) [12] intends to find the
agent’s optimal policy from the interaction between the agent
and the environment. Generally researchers use the 5-tuple
(S,A,P,R, γ) Markov Decision Process (MDP) to model the
learning process, which represent the state space, action space,
reward function, transition probability function and discount
factor, respectively. In the interaction, at each time step t,
the agent observes the environment state st ∈ S , and then
selects an action at ∈ A according to the current policy
π(at|st). After that, the environment would transfer to the next
state st+1 according to the state transition probability function
P (st+1|st, at) and the agent receives a reward rt ∈ R. The
whole process is defined as a trajectory τ , and the cumulative
reward of this trajectory is as follows:

Rt =

T∑
k=t+1

γk−t−1rk. (1)

During the optimization process, an RL agent is aimed to
find the optimal policy to maximize the cumulative reward
expectation J(π):

J(π) = Es∼P,a∼π[

T∑
t=0

γtrt]. (2)

In order to find the optimal policy, lots of DRL algorithms
have been proposed, such as Trust Region Policy Optimization
(TRPO) [13], Proximal Policy Optimization (PPO) [14],Deep
Deterministic Policy Optimization (DDPG) [15], Rainbow [16]
and so on.

B. Reinforcement Learning in Games

Conventional rule-based game AI approaches have difficulty
in handling complex state information such as images. In order
to overcome this problem, witnessing the fast development
of DRL in recent years, many researchers have adopted the
DRL methods to build the game AI. In the seminal work by
Mnih et al [1] , researchers combine deep neural networks
with the Q-learning [17] algorithm training Deep Q-Networks
(DQNs) with Experience Replay Buffers to obtain human-level
performance on multiple classic Atari 2600 video games. In
[18], DeepMind uses the Monte Carlo Tree Search (MCTS) to
enable DRL agent to search optimal strategy, and defeats the
top human chess player Le Sedol four to one in Go, which

1JIDI is a reinforcement learning evaluation platform which is de-
veloped by the Institute of Automation, Chinese Academy of Sciences:
http://www.jidiai.cn/ranking list?tab=6.

was once considered impossible to be conquered by AI due
to its extremely complex state space. In a famous Real Time
Strategy game StarCraft, DeepMind designs the RL game AI
AlphaStar [9] to beat many top human players. Besides, some
works have bring RL into multiple players games. Recently,
the OpenAI and Tencent have used the reinforcement learning
methods to build their game AI in different Multiplayer Online
Battle Arena (MOBA) games, i.e., Dota [8] and Honor of
Kings [10], achieving impressive performance.

III. PRELIMINARY

A. 3v3 Snakes

Snakes, a video game published in 1976, has been popular
around the world for decades. In the classic mode of the
game, the human player has to control the move of a snake
in a grid map to eat beans. The snake will grow longer by
one unit every time it eats one bean. The goal of this game
is to control the snake to grow as long as possible without
hitting its body. There have been some works solving this task
by utilizing reinforcement learning techniques [19]–[21]. Our
work mainly aims to solve a complicated version of this game,
i.e., 3v3 Snakes. It involves both cooperation and competition
simultaneously, thus raising the difficulty of this game and
making it challenging for the development of game AI.

At the beginning (time step 0), 6 three-unit-long snakes
emerge at random locations in a grid map with a height of 10
and a width of 20. The snake can move towards four directions
(up, down, left, right) and becomes one unit longer when it eats
a bean. However, when a snake bumps into itself or another
snake, it will regenerate in the map with a length of 3 units.
What’s more, there are always 5 beans on the map and if one
bean is eaten, a new bean will appear anywhere on the map
where there are no snakes. After 200 time steps, the system
will calculate the sum of the three snakes in each side and the
one with longer length wins.

B. Territory Matrix

The current best-performing rule-based method requires
calculating a territory matrix. In this section, we introduce how
the territory matrix is calculated and the detailed procedure is
shown as follow:
• Get the coordinate of each snake in the 10×20 grid map,

including the positions of their bodies and heads.
• Delete the tail of each snake and mark the grid that is

adjacent to the head of one snake as (index of the snake
[0-5], 1). Notable, such grid should not be occupied by
bodies of any snake. If any grid is occupied by two or
more snakes at the same time, mark it as (- number of
conflicting snakes +1, 1).

• Delete the tail of each snake and mark the grid that is
adjacent to grid with label 1 as (index of the correspond-
ing snake [0-5], 2). Similarly, such grid should not be
occupied by bodies of any snake and has no label initially.
If any grid is occupied by two or more snakes at the same
time, mark it as (- number of conflicting snakes +1, 2).

• Repeat above operations until all grids on the map are
marked. At this time, an attack range matrix is acquired
as shown in Figure 2.

After getting the attack range matrix, we need to encode it
into a territory matrix. From above description, we can know
that the first element of the label of each grid occupied by
more than one snake is negative. We call the value of each
grid, whose label in attack range matrix is (i, j), in territory
matrix N and the encoding process is shown in Equation 3:

N =

{
6 ∗ j + i, i ∈ [0, 5]
−6 ∗ j + i, i < 0

. (3)

In this way, we can obtain the territory matrix, which is shown
in Figure 3(b).

IV. METHOD

In this section, we introduce the structure of our AI agent,
including input feature, network structures, reward design and
training paradigm.

A. Features design

The map in 3v3 Snakes is fixed to be a 10 × 20 matrix.
Based on this, we derive a 12 × 10 × 20 matrix from the
environment as the input feature. The first 11 channels are
one-hot feature with physical meanings listed as follows:
• [1]: the full body positions of the six snakes.
• [2]: the head position of the currently controlled snake.
• [3]: the head positions of the three snakes in our team.
• [4]: the head positions of the three snakes in the oppo-

nent’s team.
• [5]: the positions of the five beans.
• [6]: the full body positions of the currently controlled

snake.
• [7, 8]: the full body positions of the other two snakes in

our team.
• [9, 10, 11]: the full body positions of the three snakes in

the opponent’s team.
The features mentioned above describe the original informa-
tion of the environment and is sufficient to derive information
for RL policies in the game.

As for the last channel, we take the idea of rule-based
method, adding the territory matrix into the feature set so
that the agent is able to utilize human prior knowledge to
the maximum extent. To normalize it, we divide the value of
the territory matrix by the largest possible value, which is set
to 240 in our method. Introducing prior knowledge helps to
enhance the representations of states, thus assisting the agent
to learn better and faster. The overall framework is illustrated
in Figure 4.

B. Model Structure

Within the actor-critic framework for RL, we design a policy
network and a value network. To be specific, integrated neural
network is utilized in our design, where the policy network
and value network share the main architecture that consists of
eight residual blocks and each residual block includes two 3×

(a) Output State (b) Delete The Tail

(c) Explore One Step (d) Exploration Completed

Fig. 2: Calculation process of the attack range matrix. (a) is a frame of game state extracted from the game and we use it to
explain how attack range matrix is obtained. The first operation is to delete the tail of the snake (remove the last body of each
snake), because the position of the tail of the snake is a safe position for the head of the snake to go to in the next update
step. (b) is the game state after the deletion of tails. After deletion of tails, the second operation is exploration, i.e., exploring
the safe locations where the snake’s head can go in the next step. (c) is the matrix obtained after deletion of tails and one step
of exploration, where the number 1 in the safe positions means that the snake head can reach this safe position in one step.
Repeating tail deletion and exploration until every location on the map is marked, we finally obtain the attack range matrix
(d).

convolution module,s. Notably, the map in 3v3 Snakes has no
boundary, i.e., if one snake goes out of the right side of the
map, it will come in on the left, and the same goes for the
upper and bottom side. To this end, we employ circular pad
for edge supplement. After the extraction of features, there is a
fully connected layer with a hidden size of 4, which represents
four actions, for policy network, and another fully connected
layer for value network, which outputs value function.

It is notable that one of the four actions in the Snakes
game is always illegal. For instance, if the snake is originally
moving to left, it will not be allowed to go right immediately.
Therefore, we need to deal with legal action in a special way,
which is described as follows:

P = softmax(PN(s)− (1− llegal)×NaN), (4)

where llegal denotes the one-hot vector for legal actions (the
legal ones are 1 while illegal ones are 0), PN(s) denotes the
output of the policy network, and NaN denotes a very large
value to mask illegal actions. After the softmax operation,
the probability of actions under current policy is generated.

C. Reward Design

In reinforcement learning, the reward function is used to
encourage agents to act towards the expected goal. However,
in our task, there exists bias between the reward function and
the task target, thus making it difficult to precisely deliver

our desired goal to the agents. To achieve better performance,
we apply a subtly designed reward in 3v3 Snakes. We take
cooperation and competition on team level into account in
reward design and introduce the zero-sum condition and team
reward terms in game theory. We define the initial reward ri
for ith snake based on the game information as follows:

ri =

 ln − ln−1, n < 200
ln − ln−1 + 10, n = 200 and win
ln − ln−1 − 10, n = 200 and lose

, (5)

where ln denotes the snake length of the ith snake when the
game proceeds to the nth step, and ln−1 denotes the snake
length of the ith snake when the game proceeds to the nth
step.

When the game reaches the end of the two-hundred steps,
we give the snake an end game reward based on the win/loss
situation. Given that the team with a larger sum of snake
lengths wins the game, the zero-sum reward r̂i for each snake
is therefore designed as:

r̂i = ri − r̄′, (6)

where r̄′ represents the average value of the three snakes’
reward in the enemy’s team.

When deciding the action of any snake, the information
from the other two snakes in the team should also be taken
into account to beat the other team, which means cooperation

(a) Attack Range Matrix

(b) Territory Matrix

Fig. 3: Attack Range Matrix and Territory Matrix. (a) is an
attack range matrix. (b) is the territory matrix corresponding
to (a). The coordinate point with the value of -11 is because
there are two snakes whose shortest distance to that point is
2.

COVFeature
𝟏𝟐 × 𝟏𝟎 × 𝟐𝟎

repeat × 8

COV

FC4

FC1 value

policy

legal actions

mask

Fig. 4: The overall framework of 3v3 Snakes AI.

is a vital part of the policy. To encourage cooperation between
snakes within the team, we add a cooperation term to the
reward. The final reward r∗i is thus designed as:

r∗i = r̂i × (1− α) + r̃ × α, (7)

where r̃ is the average of r̂i for the three snakes in the same
team, and α is a hyper parameter to decide the weight of the
cooperation term.

D. Training with Distributed PPO

In this subsection, we introduce the training process of
our method. There are two kinds of modules in our training
paradigm: actor, which interacts with the environment and
collects training data, and learner, which trains model. In our
method, we run 20 actor and 1 learner processes in parallel.

Actor The actor is responsible for the game simulation
and information collection. In each iteration, each actor re-

ceives the latest model parameters from the learner. Then,
the environment initializes a new episode. At each time
step t of an episode, each agent receives the observation
ot = O(st) and keeps an action-observation history τt. The
model inputs τt and outputs policy πt(·|τt) and value function
v(τt). According to πt, agent chooses an action at. After the
action execution, it receives a reward rt(st, at), a signal of
whether episode ends donet and a transition to the next state
st+1 ∼ P (·|st, at) by the environment. At the end of the
episode, actor calculates an approximate advantage function
At for each step t, which is always estimated by Generalized
Advantage Estimation (GAE) [22] as followed:

Ât =

∞∑
l=1

(γλ)lδVt+l

=

∞∑
l=1

(γλ)l(rt + γV (st+l+1)− V (st+l)).

(8)

The agent trajectory data tuple (ot, at, πt, vt, At) is then sent
to the learner to train the model. Considering self-play, each
episode will produce 6 = 2× 3 trajectories.

Learner The learner is responsible for network update. In
each iteration, the learner first receives the collected episode
data from the actors and the data is stored in a buffer. The
learner then samples data from the buffer to update the network
with Proximal Policy Optimization algorithm (PPO) [14].
Proximal Policy Optimization (PPO) is an effective policy
gradient actor-critic algorithm, which constructs a optimization
function as follows:

Lclip =Es∼ρold,a∼πold [min(
πθ(a|s)
πθold(a|s)

Aπθold (s, a),

clip(
πθ(a|s)
πθold(a|s)

, 1− ε, 1 + ε))Aπθold (s, a)],

(9)

where ρold represents the state distribution on policy πold of
agent i and Aπθold (s, a) is the advantage function calculated
in actors. Here PPO uses the clip method to constrain the
distance between the new and old policies during updating,
which can effectively solve the problem that policy becomes
worse in training due to an inappropriate update step size. The
definition of clip function is shown in Eq. (10).

clip(x, xmin, xmax) =

 xmax, x > xmax
x, xmix ≤ x ≤ xmax
xmin, x < xmin

.

(10)
In addition to the above optimization target, PPO sets

entropy of policy π as the regularization term in order to
encourage exploration. The entropy loss is defined as follows:

LEnt =
∑
a∈A

πθ(at = a|ot) log πθ(at = a|ot). (11)

Besides, the value network is updated by:

Lv = Es∼ρold [(Vφ(s)−R)2], (12)

where R(s) = A(s, a) +V (s) is the mean cumulative reward.
Therefore, the total loss of PPO is formulated as follows,

L(θ, φ) = −Lclip − ceLEnt + cvLv. (13)

where ce is the entropy coefficient and cv is the value
coefficient.

Algorithm 1 Process of Actor

1: Initialize environment ENV;
2: Initialize model M with random parameters;
3: for Episodes=1,2,3,... do
4: Initial state s0 = ENV.reset();
5: Set t = 0;
6: while not done do
7: for Agent=1,2,3 do
8: oit = Oi(st);
9: the chosen action ait, the probability of each action

πit, value function vit = M .forward(oit);
10: end for
11: next state st+1, reward rt= ENV.step([a1t , a

2
t , a

3
t]);

12: t = t+ 1;
13: end while
14: Calculate advantage function At as Eq. (8) for each

trajectory;
15: For each trajectory (ot, at, πt, vt, At), save it to replay

buffer B;
16: Update model M with period I;
17: end for

Algorithm 2 Process of Learner

1: Initialize the network parameters and replay buffer B;
2: for Iteration=1,2,3,... do
3: Sample a batch of trajectory data D = {(o, a, π, v, A)}

from B;
4: Calculate loss L(θ, φ) as Eq. (9), Eq. (11), Eq. (12) and

Eq. (13);
5: Update policy network parameters θ and value network

parameters φ with L(θ, φ);
6: Send network parameters to Actor;
7: end for

V. EXPERIMENTS

In this section, we demonstrate the effectiveness of our
method with extensive experiments and build a bench-
mark on 3v3 Snakes as well. The code is available
at https://github.com/submit-paper/3v3Snakes. These experi-
ments are conducted to answer the following questions.

RQ1: How do different methods perform compared with
humans?

RQ2: Compared to the currently strongest rule-based 3v3
Snakes algorithm, how does the performance of our RL
method change with and without the introduction of the
territory matrix in the fixed rules?

RQ3: What is the effect of different reward designs on the
performance of the agents?

0 10 20 30 40 50
Training Steps(thousand)

0

20

40

60

80

100

W
in

 R
at

e(
%

)

Ours
RL-Base

Fig. 5: Winning rate of Ours algorithm and RL-Base algorithm
against Rule algorithm during training. The horizontal axis
represents training steps of models. Rule is the currently
strongest rule-based algorithm. RL-Base is the RL agent
trained without territory matrix feature. Ours is the agent
trained with ours final version of rule-enhanced RL method.
Each experiment is executed 5 times with different random
seeds for 250000 tests. The solid line shows the median score
and the shadow area represents the standard deviation.

A. Comparison with Rule-based Algorithms

We first compete our agent with the currently strongest rule-
based 3v3 Snakes AI. We demonstrate the performance of the
agent with and without territory matrix from heuristic rules
in feature matrix. Despite the difference in features, other
hyper parameters of the two reinforcement learning methods
keep the same. The models are collected and tested every
500 updates. In each test, we randomly generate one hundred
initial environment states, each of which is used twice to test
the method (agents from rule-based method and our method
control two teams of snakes and exchange to test again with
the same initial state). The experimental results are shown in
Fig 5.

As shown in Fig 5, our method without the territory matrix
feature is able to defeat rule-based agent with a winning rate
of 50% after 20k updates and 60% when it converges. With
the territory matrix information, our method is able to defeat
rule-based agent with a winning rate of 50% after 15k updates
and 70% when it converges. It can be seen that with the
territory matrix information, the agent could achieve a better
performance and require less samples.

B. Ablation Study

In this section, we analyze the impact of the zero-sum condi-
tion and the team reward term on the algorithm’s performance.

3v3 Snakes is a zero-sum environment where the two teams
of the game are under complete competition. To test the effect
of the zero-sum reward condition on the performance of the

0 10 20 30 40 50
Training Steps(thousand)

0

20

40

60

80

100
W

in
 R

at
e(

%
)

Ours
Ours-2
Ours-1

Fig. 6: Winning rate for our algorithm and ablations against
rule-based method. The horizontal axis represents training
steps of models. Ours-1 is the RL agent without satisfying
zero-sum condition. Ours-2 is the RL agent without the team
reward term. Each experiment also is executed 5 times with
different random seeds for 250000 tests. The solid line also
shows the median score and the shadow area represents the
standard deviation.

agent, we keep the team reward term but disregard the zero-
sum condition. A non-zero-sum reward function is designed
while keeping the other experimental settings the same. The
non-zero-sum reward for each snake is designed as:

r∗i = ri × (1− α) + r̈ × α, (14)

r̈ represents the average of the ri of the three snakes in the
same team. The reward function here does not include the
changes in length of the enemy snakes.

In addition, in 3v3 Snakes, one team controls three snakes
at the same time. In order to achieve victory for the whole
team, the information of the other two snakes should be
very important when deciding the action of the snake. In
this section, we introduce the team reward to include the
information of the other snakes. To test the effect of the team
reward term, we maintain the zero-sum condition but discard
the team reward term. The devised reward function without
team reward term for each snake is then designed as:

r∗i = r̂i. (15)

With the rest of the experimental settings the same, we
test the performance of the two devised reward functions.
Using different reward functions, we separately test the agent’s
winning rate against the rule-based agent during the training
process. The experimental results are shown in Fig 6.

It’s observed that without zero-sum condition or the team
reward term, the performance of the agent both drop signif-
icantly. Without team reward term, the RL method requires
roughly 18,000 updates to reach a comparable performance

of the rule-based agent, which is 20% slower than the orig-
inal algorithm. The final winning rate also drops to 65%.
Disregarding zero-sum condition, both the training speed and
the best performance will be badly influenced. After 50,000
updates, the agent is still not able to match the rule-based
agent. This shows that both the team reward term and the
zero-sum condition are essential parts of our RL method.

We conducted 15 combat experiments between six versions
of algorithms to test the winning rates against each other.

The chosen algorithms are shown as below:
• Random: A random strategy algorithm.
• Rule: The currently strongest rule-based algorithm in JIDI

platform. 2

• RL-base: The RL agent without territory matrix feature.
• Ours-1: The RL agent without satisfying zero-sum con-

dition.
• Ours-2: The RL agent without the team reward term.
• Ours: Our final version of rule-enhanced RL method

(combining all the elements above).
All RL agents use models trained after 50,000 updates. Tests
are conducted between agents from every two algorithms.
In each test, we randomly generate 1000 initial environment
states. Starting from each initial state, the teams will play
against each other twice, similar to the test as previously
mentioned.

The results are shown in Table I. We counted not only the
win rate of the AI on both sides of the match, but also the
average leading length of the snake body per game and the
percentage of the average leading length of the snake body
per game to the average total length of the snake body per
game.

Table I shows that the Random strategy has barely any
chance to beat the remaining five AIs. Three of the four RL
AIs have a winning rate of over 60% against the currently
strongest Rule-based AI. Only the fourth AI disregarding the
zero-sum condition has a winning rate below 50% against the
rule-based AI. Our AI has achieved a 71.9% win rate against
Rule based AI, with an average lead of 12.79 snake lengths per
game. In a game map of size 10 × 20, this lead is very large.
Our AI also achieves a 62% win rate against the RL-Base,
with an average lead of 7.01 snake lengths per game, which
shows that the introduction of the territory matrix information
in the feature vector effectively helps to improve the game
performance.

To better compare the performance of the six AIs, we also
analyse the percentage of the average leading length of the
snake body per game to the average total length of the snake
body per game. This metric reached 28.02% when Ours is
playing against Rule, meaning that Rule’s average total snake
body length is only 71.98% of Ours’ average total snake body
length.

C. Comparison with Human Players
To further estimate the performance of the Ours agent, we

conduct a set of tests between the agent and human players. In

2https://github.com/CarlossShi/Competition 3v3snakes

A
B Random Rule RL-Base Ours-1 Ours-2

Rule 100% / 42.15 / 81.53% —— —— —— ——

RL-Base 99.9% / 56.55 / 85.63% 62.8% / 7.49 / 17.39% —— —— ——

Ours-1 99.95% / 50.09 / 84.01% 47.6% / 0.09 / 0.23% 29.65% / -12.41 / -32.41% —— ——

Ours-2 100% / 55.02 / 85.34% 67.45% / 10.29 / 23.24% 53.75% / 3.29 / 7.09% 72.35% / 14.34 / 27.98% ——

Ours 100% / 57.10 / 85.75% 71.9% / 12.79 / 28.02% 62% / 7.01 / 14.93% 78.8% / 18.96 / 35.35% 58.4% / 5.17 / 11.18%

TABLE I: The average performance of the compared algorithms by playing 2000 episodes of 3v3 Snakes. In the table, the first
column in the table denotes the winning rate of algorithm A against algorithm B. The second column indicates the average sum
of length of algorithm A when the game terminates and we use lA to represent it. The third column represents the proportion
of length of algorithm A exceeding over algorithm B compared to the length achieved by algorithm A, which can be written
as (lA − lB)/lA.

the test, human players are all extremely familiar with the 3v3
Snakes game. The AI fights three agents at the same time and
each human player control one snake. After extensive testing
statistics, the Ours gets a winning rate of 63.75%, with an
average lead of 11.4 snake lengths per game over the human
players. This result demonstrate that our AI has reached the
super-human level.

VI. CONCLUSION

This work presents a strong AI program for 3v3 Snakes and
builds a benchmark for this game, which will be utilized for
future research in the community. To address the challenges
including the huge state space and the involvement of both
cooperation and competition in 3v3 Snakes, we propose a
rule-enhanced multi-agent reinforcement learning algorithm.
Extensive experimental results reveal that our AI outperforms
the rule-based algorithms and even exceeds human level,
which demonstrate the effectiveness and superiority of our
method. In our future work, we will leverage our idea to more
complex multi-player games and explore better solutions to
game AI.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[2] T. Shu, J. Liu, and G. N. Yannakakis, “Experience-driven pcg via
reinforcement learning: A super mario bros study,” in IEEE Conference
on Games (CoG), 2021, pp. 1–9.

[3] J. Li, S. Koyamada, Q. Ye, G. Liu, C. Wang, R. Yang, L. Zhao,
T. Qin, T.-Y. Liu, and H.-W. Hon, “Suphx: Mastering mahjong with
deep reinforcement learning,” arXiv preprint arXiv:2003.13590, 2020.

[4] N. Brown and T. Sandholm, “Superhuman ai for multiplayer poker,”
Science, vol. 365, no. 6456, pp. 885–890, 2019.

[5] D.-W. Kim, S. Park, and S.-i. Yang, “Mastering fighting game using
deep reinforcement learning with self-play,” in Proceedings of the IEEE
Conference on Games (CoG), 2020, pp. 576–583.

[6] M. Samvelyan, T. Rashid, C. S. de Witt, G. Farquhar, N. Nardelli, T. G. J.
Rudner, C.-M. Hung, P. H. S. Torr, J. Foerster, and S. Whiteson, “The
StarCraft Multi-Agent Challenge.” CoRR, vol. abs/1902.04043, 2019.

[7] J. Bishop, J. Burgess, C. Ramos, J. B. Driggs, T. Williams, C. C.
Tossell, E. Phillips, T. H. Shaw, and E. J. de Visser, “Chaopt: a testbed
for evaluating human-autonomy team collaboration using the video
game overcooked! 2,” in Proceedings of the Systems and Information
Engineering Design Symposium (SIEDS), 2020, pp. 1–6.

[8] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse et al., “Dota 2 with large
scale deep reinforcement learning,” arXiv preprint arXiv:1912.06680,
2019.

[9] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev et al., “Grand-
master level in starcraft ii using multi-agent reinforcement learning,”
Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[10] D. Ye, Z. Liu, M. Sun, B. Shi, P. Zhao, H. Wu, H. Yu, S. Yang,
X. Wu, Q. Guo et al., “Mastering complex control in moba games with
deep reinforcement learning.” in Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), 2020.

[11] N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa,
T. Erez, Z. Wang, S. Eslami et al., “Emergence of locomotion behaviours
in rich environments,” arXiv preprint arXiv:1707.02286, 2017.

[12] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[13] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in Proceedings of the International Confer-
ence on Machine Learning (ICML), 2015.

[14] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv: Learning, 2017.

[15] T. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” in Proceedings of the International Conference on Learning
Representations (ICLR), 2016.

[16] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dab-
ney, D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow: Combining
improvements in deep reinforcement learning,” in Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), 2018.

[17] C. J. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8,
no. 3-4, pp. 279–292, 1992.

[18] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[19] Z. Wei, D. Wang, M. Zhang, A.-H. Tan, C. Miao, and Y. Zhou,
“Autonomous agents in snake game via deep reinforcement learning,”
in Proceedings of the IEEE International Conference on Agents (ICA),
2018, pp. 20–25.

[20] S. Sharma, S. Mishra, N. Deodhar, A. Katageri, and P. Sagar, “Solving
the classic snake game using ai,” in Proceedings of the IEEE Pune
Section International Conference (PuneCon), 2019, pp. 1–4.

[21] A. J. Almalki and P. Wocjan, “Exploration of reinforcement learning to
play snake game,” in Proceedings of the International Conference on
Computational Science and Computational Intelligence (CSCI), 2019,
pp. 377–381.

[22] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
in Proceedings of the International Conference on Learning Represen-
tations (ICLR), 2016.

