
Inspector: Pixel-Based Automated Game Testing via
Exploration, Detection, and Investigation

Guoqing Liu
Microsoft Research Asia

guoqingliu@microsoft.com

Mengzhang Cai*
University of Science and Technology of China

caimz@mail.ustc.edu.cn

Li Zhao
Microsoft Research Asia

lizo@microsoft.com

Tao Qin†
Microsoft Research Asia

taoqin@microsoft.com

Adrian Brown
Xbox Studios Quality

adrianbr@microsoft.com

Jimmy Bischoff
Xbox Studios Quality

jimmyb@microsoft.com

Tie-Yan Liu
Microsoft Research Asia

tyliu@microsoft.com

Abstract—Deep reinforcement learning (DRL) has attracted
much attention in automated game testing. Early attempts rely
on game internal information for game space exploration, thus
requiring deep integration with games, which is inconvenient
for practical applications. In this work, we propose using only
screenshots/pixels as input for automated game testing and build
a general game testing agent, Inspector, that can be easily
applied to different games without deep integration with games.
In addition to covering all game space for testing, our agent
also tries to take human-like behaviors to interact with key
objects in a game, since some bugs usually happen in player-
object interactions. Inspector is based on purely pixel inputs
and comprises three key modules: game space explorer, key
object detector, and human-like object investigator. Game space
explorer aims to explore the whole game space by using a
curiosity-based reward function with pixel inputs. Key object
detector aims to detect key objects in a game, based on a small
number of labeled screenshots. Human-like object investigator
aims to mimic human behaviors for investigating key objects via
imitation learning. We conduct experiments on two popular video
games: Shooter Game and Action RPG Game1. Experiment re-
sults demonstrate the effectiveness of Inspector in exploring game
space, detecting key objects, and investigating objects. Moreover,
Inspector successfully discovers two potential bugs in those
two games. The demo video of Inspector is available at https:
//github.com/Inspector-GameTesting/Inspector-GameTesting.

Index Terms—automated game testing, deep reinforcement
learning, pixel-based, exploration, detection, investigation.

I. INTRODUCTION

Game testing is a critical part of game development, and has
been long recognized as a notoriously challenging task [1]–[4].
As video games continue growing in both size and complexity,
it has become more challenging to ensure that all the game
content is well tested. Most game companies rely on human
testers, or human written scripts for game testing, which
is costly and time-consuming, especially for complex video
games with large map sizes. As a result, many bugs are still
undiscovered and left in games (e.g., Cyberpunk 2077) after
the official release, and then discovered afterwards by game
players, which seriously hurt players’ experiences.

*Intern at MSRA.
†Corresponding author.
1from https://docs.unrealengine.com/4.27/Resources/SampleGames.

In recent years, reinforcement learning (RL) based au-
tomated game testing has attracted much attention in both
academia and the game industry [18]–[22], due to its flexi-
bility, low cost, and ease of scale up [20] [22] [23]. While
those methods have shown promising results in their tested
games, they all rely on game internal state information such
as player position, player velocity, game reward, etc., which
has several limitations. First, they may not be easily applied
to other games, since the internal states of different games
usually differ a lot, in terms of state dimensions, state structure,
and update frequency. Second, to access game internal states,
a testing program/service needs to be deeply integrated into
game source codes and therefore deeply coupled with the
game development process, which limits the application of
those algorithms to only games with source code accessible.
Furthermore, even when the source code of a game is ac-
cessible, since the code is usually under fast change during
the development stage, it is inconvenient for game developers
always to maintain the deep integration of the testing code.

In this work, we build a general game testing agent/tool,
named Inspector, purely based on game screenshots, i.e., our
agent takes only pixel inputs to make decisions. Such a testing
agent does not suffer from the above limitations: (1) It is
internal state free and able to be applied to a variety of
games with or without access to the source code of those
games. In other words, such an agent can be provided as
a general testing service for both first-party games (with
source code available) and third-party games (with source
code unavailable). (2) In principle, it can be easily applied
to all video games, since we can simply resize the screenshots
of different games to the same size. Another advantage of
Inspector over previous methods is that in addition to covering
all game space for testing, it also mimics human players’
behaviors to interact with key objects in a game, such as
weapons, health packs, etc., as bugs usually happen in those
player-object interactions [39].

For these two purposes, Inspector comprises three compo-
nents: a game space explorer, a key object detector, and a
human-like investigator. (1) The explorer focuses on game
space exploration, using a curiosity-based reward function



which takes the screenshot as input. (2) The object detector
focuses on key object detection and then the investigator takes
human-like behaviors to interact with detected key objects. To
reduce the cost of human labeling, we adopt a few-shot object
detection method to effectively detect key objects based on a
small number of labeled screenshots. The human-like inves-
tigator is trained via imitation learning from human players’
trajectories. As an integrated system, Inspector explores the
game space; when it detects a key object, it investigates the
object; after the investigation is done, it will continue exploring
the game, and find the next object to investigate and test.

We conduct experiments on two video games: Shooter
Game and Action RPG Game, from the two most popular
game categories, shooter and action-adventure games, respec-
tively. For game space exploration, we show that Inspector can
achieve super-human coverage. For key object detection, we
show that Inspector works well for most of the test cases, even
for the cases in which the background is never seen in training
examples. For human-like object investigation, we show that
Inspector can well mimic human behaviors while interacting
with key objects such as health packs. Moreover, Inspector also
successfully discovers two potential bugs in the two games
undiscovered before, which seems not easy to be found by
human testers. We provide several demo videos in anonymous
GitHub2.

To summarize, the main contributions of this paper are as
follows:

1) To the best of our knowledge, we are the first to design
an automated game testing agent purely based on pixel
inputs.

2) In addition to game space exploration, our agent can
also detect key objects and take human-like behaviors to
interact with the objects, so as to better expose hidden
bugs.

3) We conduct experiments on two popular video games
and demonstrate the effectiveness of Inspector.

II. RELATED WORK

In this section, we briefly review related work on game
testing, with special focus on reinforcement learning for game
testing.

A. Game Testing

As modern games continue growing both in size and com-
plexity, game testing has become more challenging; conse-
quently, even the most popular games on the market lack
sufficient testing [1]–[3]. To improve efficiency and reduce
cost, game testing has gradually evolved from manual and ad-
hoc approaches to automated testing [5]–[23]. [5] proposed
black box testing and scenario-based testing for online games.
They only need to refine the game description language and
virtual game maps, instead of rewriting the virtual client
dummy code. Complex scenarios such as attacks, party plays,
and waypoint movements can be tested by combining actions.

2https://github.com/Inspector-GameTesting/Inspector-GameTesting

[6] proposed a testing model specifically for the creation and
execution of fully automated regression tests. The usability
and veracity of records and playback techniques are combined
with the possible test coverage of tests written in a game-
specific scripting language. However, when a game environ-
ment changes, test sequences and scenarios such as [5] and
[6] become obsolete and human efforts are required to create
new test sequences. [7] proposed a model-based approach
for automated test sequence generation and modeled platform
games using domain modeling for representing the game
structure and UML state machines for behavioral modeling.
Unfortunately, generating sequences from UML will run into
state explosions for large games. [8] designed an AI agent
that plays according to a Petri net description of a game with
high-level actions; a limitation is that it only generates test
sequences that cover some specific game scenarios. [9] and
[12] built MCTS [41] based agents to exercise synthetic and
human-like test goals. The sequences generated by the agents
are replayed in the game to check for bugs by humans.

B. Reinforcement Learning for Game Testing

The latest trend for game testing is to leverage reinforcement
learning techniques [26]–[28], especially for maximizing the
coverage of a game [23]. [20] introduced a self-learning
mechanism based on DRL to explore/exploit game mechan-
ics with a user-defined reward signal. [21] leveraged DRL,
evolutionary algorithms, and multi-objective optimization to
perform automated game testing in two commercial combat
games, which balances between winning a game and exploring
the space of the game. [22] maximized game state coverage
through DRL with a count-based reward function [24] [25].
[23] leveraged human demonstrations to better cover the states
of a game. All of the above works rely on game internal state
information for game space coverage and thus a testing agent
needs to access the source code of a game to collect such
information.

Such deep integration with game source code is incon-
venient when a game is under development with fast code
changes, not to mention that the source code of most games are
not available for a third-party testing tool. Different from these
methods, our work uses only screenshot input for game testing,
which is not limited by the availability of game source code
and thus is easy to be applied to many games. Furthermore,
our work enables the agent to interact with key objects of a
game, so as to better expose hidden bugs.

III. INSPECTOR

In this section, we introduce our pixel-based agent, Inspec-
tor, which serves two purposes for automated game testing:
covering all game space, as did in most previous works, and in-
teracting with key objects in games like human players/testers,
which was ignored in most previous works. Inspector consists
of three key modules: 1) Game space explorer (Section III-A),
2) Key object detector (Section III-B), 3) Human-like object
investigator (Section III-C). Putting them together brings us
the integrated system of Inspector (Section III-D), which can
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Fig. 1. Illustration of RND-based curiosity reward for game space exploration.

not only explore all game space, but also detect key objects
and investigate the objects in a human-like way. Combining
Inspector with some existing works using deep learning meth-
ods to detect bugs from screenshots (e.g., [40]) leads to an
end-to-end automated game testing service.

A. Game Space Explorer

Exploring and covering all possible states of a game space
is the basic requirement for automated game testing and well-
studied in general reinforcement learning research (beyond
game testing). The key challenge here is how to design effec-
tive feedback signals to guide and encourage the exploration
of new/unseen game states. Some recent work [22] adopted the
count-based reward function to encourage exploration, which
counts the number of unique game internal states and uses
this number to reward exploration. As mentioned before, we
aim to design a general testing agent taking visual pixels as
inputs rather than game internal states. However, it is hard to
count high-dimensional, continuous pixels, and thus this kind
of count-based reward function does not work for our setting.

To address this challenge, we design a curiosity-driven
reward function, based on Random Network Distilla-
tion (RND) [29]. Our RND-based reward function is inspired
by an interesting property of deep neural networks (DNN):
DNNs usually have lower prediction errors on those seen
examples, while having relatively higher prediction errors on
those unfamiliar examples. When we train a DNN on these
seen screenshots during exploration, the resulted prediction
error is supposed to be large on those novel screenshots never
seen before and vice versa.

Specifically, two neural networks are introduced: a ran-
domly initialized and fixed target network f : S → Rk
which sets the ground truth for prediction, and a predictor
network f̂ : S → Rk trained on the screenshots seen during
exploration. Both the target network and the predictor network
map a screenshot to an embedding vector. The predictor
network with parameter ψ is trained to minimize the following
mean square error:

ψ∗ = min
ψ∈Ψ

1

N

N∑
i=1

||f̂(si;ψ)− f(si)||2, (1)

where N denotes the number of screenshots the agent has ever
seen during exploration. Then the reward function is defined
as follows.

rt = ||f(st)− f̂(st)||2 (2)
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Fig. 2. Illustration of two-stage fine-tuning method for key object detection
based only on a few examples.

We illustrate this RND-based reward function in Fig. 1. If a
screenshot st has been seen before, it will have a small predic-
tion error and thus a low reward. With this reward function, the
agent is motivated to explore novel and unseen screenshots. We
then use Proximal Policy Optimization (PPO) algorithm [30]–
[32], which is widely used in various applications of DRL, to
train the exploration policy in our game space explorer.

B. Key Object Detector

One important task for human testers is to interact with
some key objects in a game, as some hidden and difficult-to-
find bugs only show up when a player interacts with some
objects [39]. Therefore, different from most previous works
which only focus on covering the whole game space, another
focus of our agent is to detect and investigate key objects in
a way similar to human players/testers, to better expose this
kind of difficult bugs.

In this subsection, we introduce the key object detector,
which is to detect key objects in a game during exploration.
For example, in FPS games, the key object can be health
packs, ammo, etc. The technical challenge here is that it is
costly and time-consuming to manually label a large number
of screenshots for each kind of key object, especially for games
with many kinds of key objects. To reduce the cost of human
labeling, we adopt a simple yet effective two-stage fine-tuning
method for few-shot object detection [33]. Specifically, we first
pre-train the entire object detector using MS COCO dataset3,
which is a large-scale dataset for general object detection.
Then, we only fine-tune the last layers of the detector using
a small number of labeled screenshots with each kind of key
object, while freezing the other parameters of the model. The
illustration of the two-stage method is shown in Figure. 2.

For the base detection model, we adopt the widely used
Faster R-CNN [34], which consists of a feature extractor and
a box predictor. The feature extractor comprises the backbone
(e.g., ResNet [35]), the region proposal network (RPN), as well
as a two-layer fully connected (FC) sub-network as a proposal-
level feature extractor. The box predictor consists of a box

3publicly available in https://cocodataset.org.



classifier to classify the object categories and a box regressor
to predict the bounding box coordinates. Both the backbone
features and the RPN features are class-agnostic and likely to
transfer to novel classes [33]. We fix the feature extractor and
directly leverage these features learned from the base classes
in the MS COCO dataset for the new class of key objects.

With the detector trained by the two-stage training with only
a few samples, Inspector can recognize key objects during
exploration, when an object is nearby, which then triggers the
human-like investigator introduced in the following subsection.
To determine if the object is nearby, we leverage the bounding
box size from the detection model when the object has been
detected.

C. Human-like Object Investigator

The goal of the human-like object investigator is to interact
with key objects within a game in a human-like manner.
Since different kinds of objects are usually interacted by
human players in different ways, leverage imitation learning
techniques [36] to train an investigation policy for each kind
of object. We first collect some demonstration trajectories
for each kind of key object from human testers when they
take actions to interact with and investigate the key object.
Then, we train an investigation policy (a convolutional neural
network, CNN) from human demonstrations by minimizing
the behavior cloning (BC) loss [36]:

LBC(πθ) = −
∑

(s,a)∈D

log πθ(a|s), (3)

where πθ denotes the learned policy, and D denotes the set of
(screenshot, action) pairs from demonstration trajectories.

With the learned investigation policy, Inspector can interact
with and investigate key objects to expose potential bugs in a
human-like manner.

D. The Integrated System

Key object 
detected?

Get the screenshot at timestep 𝑡

No

Yes

Take an action from the 
exploration policy

Perform human-like 
investigation to the key object

Timestep 𝑡 ← 𝑡 + 1

Timestep 𝑡 ← 𝑡 + 𝐿

Fig. 3. The decision flow of the Inspector agent.

After introducing the three modules, in this subsection, we
describe the integrated system, the Inspector agent.

The decision flow of the Inspector agent is shown in Fig. 3.
At each timestep t, the agent first uses the detection models
to detect whether there exists a key object in the current

screenshot. If not, the agent will take an action using the
exploration policy to explore the game space; otherwise, the
agent starts to investigate the detected object by taking a
series of actions from the investigation policy for that kind of
object. When the investigation is done, the agent will continue
exploration, until it detects the next key object to investigate.
The pseudo-code for the integrated system is provided in
Algorithm 1.

Algorithm 1: pseudo-code for the integrated system

1 Models: the exploration policy πexplore, the fixed target
network f , the predictor network f̂ , the trained key
object detector d, the trained investigation policy
πinvestigate;

2 N → number of timesteps;
3 L→ length of an investigation process;
4 M → batch size for updating the parameters;
5 E → number of optimization epochs;
6 obtain the initial screenshot s0;
7 set current timestep t = 0;
8 while t < N do
9 use the key detection detector d to infer current

screenshot st;
10 if both the bounding box size and the classification

probability exceed their thresholds then
11 investigate the key object using πinvestigate for L

timesteps;
12 t += L;
13 else
14 sample action at ∼ πexplore(at|st) and obtain

the next screenshot st+1;
15 calculate the RND-based curiosity reward rt;
16 add st, at, st+1, rt into optimization batch B;
17 t += 1;
18 end
19 if t mod M == 0 then
20 for i← 0 to E do
21 optimize πexplore with PPO loss on batch B;
22 optimize f̂ with distillation loss on batch B;
23 end
24 end
25 end

(a) Shooter Game (b) Action RPG Game

Fig. 4. The screenshots of the two used unreal engine video games.



(a) K = 20 (b) K = 30

Fig. 5. The player location coverage results in Shooter Game. K represents
the hyper-parameter for location discretization of the game map.

(a) Random Agent (b) Inspector (c) Human Tester

Fig. 6. Visualization of the player location coverage results in Shooter Game.

IV. EXPERIMENTS

To demonstrate the effectiveness of our Inspector agent,
we apply our methods to two popular video games devel-
oped by Unreal Engine4: Shooter Game and Action RPG
Game. The two games belong to the two most popular game
categories5, shooter and action-adventure games, respectively.
We first introduce the experimental setup in Section IV-A,
which includes game descriptions and implementation details.
After that, we show the empirical results of each module in
Inspector respectively: super-human coverage results for game
space explorer (in Section IV-B), few-shot detection results for
key object detector (in Section IV-C), and imitation learning
behaviors for human-like object investigator (in Section IV-D).
Moreover, we also show the potential bugs discovered by
Inspector in these two video games (in Section IV-E). Finally,
we record the demo video of Inspector, which clearly shows
different stages of the whole automated testing process (in
Section IV-F).

A. Experimental Setup

1) Game description: Two popular video games, Shooter
Game, and Action RPG Game, are chosen to demonstrate
the effectiveness of our agent. Shooter Game is a first-person
shooter (FPS) game, while Action RPG Game is an action-
adventure game. Both of them are complex and large video
games developed by Unreal Engine. The screenshot sizes of
the two games are both (640, 360, 3). In Shooter Game, the
player has seven actions to take: {Forward, Back, Left, Right,

4Unreal Engine (https://www.unrealengine.com, UE in short) is a famous
game engine developed by Epic Games, supporting a wide range of desktop,
mobile, console and virtual reality platforms.

5Refer to https://www.microsoft.com/store/most-played/games/xbox. Most
played games from Microsoft Xbox Store.

(a) K = 20 (b) K = 30

Fig. 7. The player location coverage results in Action RPG Game. K
represents the hyper-parameter for location discretization of the game map.

(a) Random Agent (b) Inspector (c) Human Tester

Fig. 8. Visualization of the player location coverage results in Action RPG
Game.

Turn left, Turn right, Jump}. In Action RPG Game, the player
has six actions to take: {Forward, Back, Left, Right, Turn
left, Turn right}. Fig. 4 depicts the example screenshots of
the two games. We use the UnrealCV plugin6 to facilitate the
communication between the games and the Inspector agent.

2) Implementation Details: For the game space explorer,
we use the PPO algorithm to train an exploration policy
based on the RND-based reward function. The policy network
consists of four convolution layers and a fully connected
layer. Both the predictor network and the target network adopt
the same network structure that comprises three convolution
layers and three fully-connected layers, in which the output
embedding size is 512. During training, the batch size for
updating the parameters of the above networks is 2000, and
the number of epochs for optimizationis 20. We use the Adam
optimizer [37] with a learning rate of 3e− 4.

For the key object detector, we use Faster R-CNN as our
base detector and Resnet-101 [35] with a Feature Pyramid
Network [38] as the backbone. The detection model is trained
using the SGD optimizer with a mini-batch size of 16, mo-
mentum of 0.9, and weight decay of 0.0001. During the base
training period, the learning rate is 0.02. During the few-shot
fine-tuning period, the learning rate is 0.001.

For the human-like object investigator, the network structure
comprises four convolution layers, four fully connected layers,
and a softmax layer. The output represents the probability of
actions. We use the SGD optimizer with the learning rate of
0.001, and the batch size is 256.

For the integrated system, the threshold of the bounding
box size is 18000, while the threshold of the classification
probability is 95%. The two thresholds determine when to

6https://github.com/unrealcv/unrealcv



(a) 0/4 of a circle (b) 1/4 of a circle (c) 2/4 of a circle (d) 3/4 of a circle (e) 4/4 of a circle

Fig. 9. Snapshots of the video showing how the learned investigation policy investigates the health pack in Shooter Game.

(a) Exploring this area. (b) Finding the health pack. (c) Turning 180 degrees. (d) Turning 360 degrees. (e) Re-exploring new areas.

Fig. 10. Snapshots of the demo video for the whole testing process of Inspector in Shooter Game.

start the investigation process for Inspector, and the length of
an investigation process is 200 timesteps.

B. Super-human Coverage Results
In this subsection, we evaluate the ability of Inspector to

navigate and explore the whole map, and show that Inspector
achieves super-human map coverage in both games. Since
the player location is a 3-dimensional continuous vector, we
discretize the whole game map with a volume of K3 to
compute the map coverage result, where K is the hyper-
parameter for discretization.

Fig. 5, Fig. 7 show the coverage results of Random agent,
Inspector, and Human tester in Shooter Game and Action RPG
Game, respectively. As the training proceeds, Inspector (red)
keeps exploring the new areas, and outperforms the results
of Human tester (black) and Random agent (green), in both
games.

Fig. 6, Fig. 8 also depict the 3D scatter plot of the explored
regions by those three methods (K = 30). From the results
on Shooter Game, we can see that Random agent (green)
only covers a small region around the random starting player
location. Although Human tester (black) can roughly cover the
game map, there are still a few places that remain unexplored
(such as some places around the center of the map). In contrast,
Inspector (red) can cover the whole game space thoroughly.
From the results on Action RPG Game, we can see that
Random agent (green) can achieve good results in this map,
since the map size of Action RPG Game is much smaller
than that of Shooter Game. However, Random agent (green)
cannot cover some regions on the edge of the map. Similar to
the results in Shooter Game, Human tester (black) can roughly
cover the map but still have some places unexplored (such as
those blank areas in Fig. 8 (c)). In comparison, Inspector (red)
can consistently achieve the full coverage of the game map.

C. Few-shot Detection Results
In this subsection, we evaluate the key object detector on

Shooter Game. We collect 20 examples of the health pack for
few-shot training, and 9 examples for testing.

Fig. 11 shows the detection results of the learned key object
detector on the test examples. We can see that the key object
detector accurately detects the health pack in most cases (7 out
of 9 examples). It is worth mentioning that all the backgrounds
in 9 test examples are never seen in the 20 training examples,
which demonstrates the effectiveness of the few-shot object
detection.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 11. The detection results of the key object detector in Shooter Game.

D. Imitation Learning Behaviors

In this subsection, we show the learned behaviors by
pixel-based imitation learning for human-like object inves-
tigation in Shooter Game. We first collect 25 trajectories
(about 5000 labeled screenshots and action pairs in to-
tal) from human testers for investigating the health pack.
To investigate health packs, human testers circle around
the health pack to make sure it looks correct from ev-
ery angle. After using these human demonstrations to learn
the investigation policy, we evaluate the performance of



(a) An unimpressive corner in the Shooter Game
map.

(b) Bug: the player stands without support under
the feet.

Fig. 12. The standing bug discovered by Inspector in Shooter Game.

(a) Close to a rock in the Action RPG Game map. (b) Bug: the player clips into the rock.

Fig. 13. The collision bug discovered by Inspector in Action RPG Game.

the investigation policy by deploying it to interact with
the health pack within the game. We record the video
of this process in https://github.com/Inspector-GameTesting/
Inspector-GameTesting/imitation learning behavior.avi. The
snapshots in Fig. 9 show the circular motion of the learned
investigation agent in 0, 90, 180, 270, and 360 degrees, re-
spectively. The result shows that the human-like investigation
behaviors can be learned by the pixel-based imitation learning
method with limited demonstrations.

E. Potential Bugs Discovered by Inspector

In this subsection, we show two potential bugs hidden in
Shooter Game and Action RPG Game, which are discovered
by Inspector during the exploration stage. The two discovered
bugs are shown in Fig. 12 and Fig. 13, respectively. To be
specific, Fig. 12 (a) shows us an unimpressive corner in the
Shooter Game map, and Inspector successfully finds a bug
where the player can stand without support under the feet
after jumping in this corner. Fig. 13 shows that when close to
a specific rock in the Action RPG Game map, Inspector takes
a step forward, and then clips into this rock. We can see that
these two bugs are concealed and might be not so easy for
the human testers to find. The two found bugs suggest that
Inspector has the strong ability to explore the game space and
find the potential bugs in video games.

F. Demo Videos of Inspector

To better show the capabilities of the Inspector agent
for automated game testing, we record several demo
videos for the whole testing progress of the agent, which
are available at https://github.com/Inspector-GameTesting/
Inspector-GameTesting/. Fig. 10 shows the key snapshots in

one of the demo videos: At the beginning, the agent explores
this area via curiosity (a). After some time, the agent detects
the health pack during the exploration (b). Then, the agent
performs the human-like investigation to the health pack, by
making a full circle around it (c)(d). When the investigation
is done, the agent keeps exploring new areas, until it finds the
next health pack to investigate (e).

V. CONCLUSION AND FUTURE WORK

In this work, we built a general pixel-based automated
game testing agent/tool, named Inspector, consisting of three
key modules: a game space explorer, a key object detector,
and a human-like object investigator. Inspector has two main
advantages over previous methods/agents: its larger application
scope without the limitation of accessing game source code,
and its ability to discover hidden and difficult bugs through
human-like investigations with key objects.

For future work, there are multiple directions to advance
Inspector. First, we only tested it with two games both on
the Unreal engine in this work. We will test it over other
game engines (e.g., Unity) and across different devices (e.g.,
PC, Console, etc) with only the screenshot input. Second,
it is worthy of investigation on how to enable Inspector to
explore more complex games, e.g., a game with multi-room
navigation, in which the agent needs to first pick up a key
somewhere in a room, and then open another room with
the key to enter the room. Third, the key object detector
in this work handles each kind of object with a separate
detection model and needs human-labeled data for each kind
of object. We will study how to detect multiple kinds of
objects with a single model, e.g., through multi-task learning,



so as to further reduce human labeling costs. Fourth, human
players/testers may take different actions for different kinds
of objects. Similarly, we will train a single model to perform
human-like investigations over multiple kinds of objects. Last
but not least, we did not consider the bug detection module
from screenshots in this work. We will build a complete game
testing service by enhancing Inspector with a pixel-based bug
detection module, e.g., [40].

REFERENCES

[1] D. Lin, C. Bezemer and A. E. Hassan, “Studying the urgent updates of
popular games on the steam platform,” Empirical Software Engineering,
vol. 22, pp.2095-2126, 2017.

[2] C. Politowski, F. Petrillo, Y. Gäel Guéhéneuc, “A Survey of Video Game
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