
On the Verge of Solving Rocket League using Deep
Reinforcement Learning and Sim-to-sim Transfer
Marco Pleines, Konstantin Ramthun, Yannik Wegener, Hendrik Meyer, Matthias Pallasch, Sebastian Prior

Jannik Drögemüller, Leon Büttinghaus, Thilo Röthemeyer, Alexander Kaschwig,
Oliver Chmurzynski, Frederik Rohkrähmer, Roman Kalkreuth, Frank Zimmer∗, Mike Preuss†

Department of Computer Science, TU Dortmund University, Dortmund, Germany
∗Department of Communication and Environment, Rhine-Waal University of Applied Sciences, Kamp-Linfort, Germany

†LIACS Universiteit Leiden, Leiden, Netherlands

Abstract—Autonomously trained agents that are supposed to
play video games reasonably well rely either on fast simulation
speeds or heavy parallelization across thousands of machines
running concurrently. This work explores a third way that is
established in robotics, namely sim-to-real transfer, or if the
game is considered a simulation itself, sim-to-sim transfer. In
the case of Rocket League, we demonstrate that single behaviors
of goalies and strikers can be successfully learned using Deep
Reinforcement Learning in the simulation environment and
transferred back to the original game. Although the implemented
training simulation is to some extent inaccurate, the goalkeeping
agent saves nearly 100% of its faced shots once transferred, while
the striking agent scores in about 75% of cases. Therefore, the
trained agent is robust enough and able to generalize to the target
domain of Rocket League.

Index Terms—rocket league, sim-to-sim transfer, deep rein-
forcement learning, proximal policy optimization

I. INTRODUCTION

The spectacular successes of agents playing considerably
difficult games, such as StarCraft II [1] and DotA 2 [2], have
been possible only because the employed algorithms were able
to train on huge numbers of games on the order of billions or
more. Unfortunately, and despite many improvements achieved
in AI in recent years, the utilized Deep Learning methods are
still relatively sample inefficient. To deal with this problem,
fast running environments or high amounts of computing
resources are vital. OpenAI Five for DotA 2 [2] is an example
of the utilization of hundreds of thousands of computing
cores in order to achieve high throughput in terms of played
games. However, this way is closed for games that run only
on specific platforms and are thus very hard to parallelize.
Moreover, not many research groups have such resources at
their disposal. Video games that suffer from not being able to
be sped up significantly, risk minimal running times and hence
repeatability. Therefore it makes sense to look for alternative
ways to tackle difficult problems.

Sim-to-real transfer offers such an alternative way and is
well established in robotics, and it follows the general idea that
robot behavior can be learned in a very simplified simulation
environment and the trained agents can then be successfully
transferred to the original environment. If the target platform
is a game as well, we may speak of sim-to-sim transfer
because the original game is also virtual, just computationally

Fig. 1. The game of Rocket League (top) and the contributed simulation
(bottom), which notably advances its ancestor project RoboLeague [3].

much more costly. This approach is applicable to current
games, even if they are not parallelizable, and makes them
available for modern Deep Reinforcement Learning (DRL)
methods. There is of course a downside of this approach,
namely that it may be difficult or even infeasible to establish
a simulation that is similar enough to enable transfer later on,
but still simple enough to speed up learning significantly. A
considerable amount of effort has to be invested in establishing
this simulation environment before we can make any progress
on the learning task.

To our knowledge, the sim-to-sim approach has not yet been
applied to train agents for a recent game. Therefore we aim
to explore the possibilities of this direction in order to detect
how simple the simulation can be, and how good the transfer
to the original game works.

The game we choose as a test case of the sim-to-sim ap-
proach is Rocket League (Figure 1), which basically resembles
indoor football with cars and teams of 3. Rocket league is
freely available for Windows and Mac, possesses a bot API



(RLBot [4]) and a community of bot developers next to a large
human player base. As the 3 members of each team control car
avatars with physical properties different from human runners,
the overall tactics are the one of rotation without fixed roles.
Thereby, large parts of the current speed can be conserved
and players do not have to accelerate from zero when ball
possession changes [5]. Next to basic abilities attempting to
shoot towards the goal and to move the goalie in order to
prevent a goal, Rocket League is a minimal team AI setting
[6] where layers of team tactics and strategy can be learned.

The first step of our work re-implements not all, but multiple
physical gameplay mechanics of Rocket League using the
game engine Unity, which results in a slightly inaccurate sim-
ulation. We then train an agent in a relatively easy goalie and
striker environment using Proximal Policy Optimization (PPO)
[7]. The learned behaviors are then transferred to Rocket
League for evaluation. Even though the training simulation
is imperfect, the transferred behaviors are robust enough to
succeed at their tasks by generalizing to the domain of Rocket
League. The goalkeeping agent saves nearly 100% of the
shots faced, while the striking agent scores about 75% of its
shots. The sim-to-sim transfer is further examined by ablating
physical adaptations that were added to the training simulation.

This paper proceeds with elaborating on related work. Then,
the physical gameplay mechanics of Rocket League are shown.
After illustrating the trained goalie and striker environment,
PPO and algorithmic details are presented. Section V exam-
ines the sim-to-sim transfer. Before concluding our work, a
discussion is provided.

II. RELATED WORK

Sim-to-sim transfer on a popular multiplayer team video
game touches majorly on two different areas, namely multi-
agent and sim-to-real transfer. DotA 2 and StarCraft II are the
already mentioned prominent examples in the field of multi-
agent environments. As this work focuses on single-agent en-
vironments, namely the goalkeeper and striker environments,
related work on sim-to-real transfer is focused next.

Given the real world, a considered prime example for
multi-agent scenarios is RoboCup. RoboCup is an annual
international competition [8] that offers a publicly effective
open challenge for the intersection of robotics and AI research.
The competition is known for the robot soccer cup but also
includes other challenges. Reinforcement Learning (RL) has
been successfully applied to simulated robot soccer in the
past [9] and has been found a powerful method for tackling
robot soccer. A recent survey [10] provides insights into robot
soccer and highlights significant trends, which briefly mention
the transfer from simulation to the real world.

In general, sim-to-real transfer is a well-established method
for robot learning and is widely used in combination with RL.
It allows the transition of an RL agent’s behavior, which has
been trained in simulations, to real-world environments. Sim-
to-real transfer has been predominantly applied to RL-based
robotics [11] where the robotic agent has been trained with

state-of-the-art RL techniques like PPO [7]. Popular applica-
tions for sim-to-real transfer in robotics have been autonomous
racing [12], Robot Soccer [13], navigation [14], and control
tasks [15]. To address the inability to exactly match the real-
world environment, a challenge commonly known as sim-to-
real gap, steps have also been taken towards generalized sim-
to-real transfer for robot learning [16], [17]. The translation
of synthetic images to realistic ones at the pixel level is
employed by a method called GraspGAN [18] which utilizes
a generative adversarial network (GAN) [19]. GANs are able
to generate synthetic data with good generalization ability.
This property can be used for image synthesis to model the
transformation between simulated and real images. GraspGAN
provides a method called pixel-level domain adaptation, which
translates synthetic images to realistic ones at the pixel level.
The synthesized pseudo-real images correct the sim-to-real gap
to some extent. Overall, it has been found that the respective
policies learned with simulations execute more successfully
on real robots when GraspGAN is used [18].

Another approach to narrow the sim-to-real gap is domain
randomization [20]. Its goal is to train the agent in plenty
of randomized domains to generalize to the real domain. By
randomizing all physical properties and visual appearances
during training in the simulation, a trained behavior was
successfully transferred to the real world to solve the Rubik’s
cube [21].

III. ROCKET LEAGUE ENVIRONMENT

This section starts out by providing an overview of vital
components of Rocket League’s physical gameplay mechanics,
which are implemented in the training simulation based on
the game engine Unity and the ML-Agents Toolkit [22].
RLBot [4] provides the interface to Rocket League where
the training situations can be reproduced. Afterward, the DRL
environments, designated for training, and their properties are
detailed. The code is open source1.

A. Implementation of the Training Simulation

The implementation of the Unity simulation originates from
the so called RoboLeague repository [3]. As this version of
the simulation is by far incomplete and inaccurate, multiple
fundamental aspects and concepts are implemented, which
are essentially based on the physical specifications of Rocket
League. These comprise, for example, the velocity and ac-
celeration of the ball and the car, as well as the concept of
boosting. Jumps, double jumps as well as dodge rolls are now
possible, and also collisions and interactions. There is friction
caused by the interaction of a car with the ground, but also
friction caused by the air is taken into account.

However, further adjustments are necessary. Therefore, table
I provides an overview of all the material that was con-
sidered during implementing essential physical components,
while highlighting distinct adjustments that differ from the
information provided by the references. It has to be noted

1https://github.com/PG642



TABLE I
OVERVIEW ON ESSENTIAL PHYSICAL GAMEPLAY MECHANICS PRESENT IN ROCKET LEAGUE, WHICH ARE ADDED TO THE TRAINING SIMULATION.

Physics Component Sources Additional Information and Different Parameters

Entity Measures (e.g. Arena) [3], [4]
Car model Octane and its collision mesh is used
Radius of the ball is set to 93.15uu (value in Rocket League 92.75uu)

Car: Velocity, Acceleration, Boost [23] No modifications done
Car: Jumps, Double Jumps, Dodge Rolls [4], [24] Raise max. angular velocity during dodge from 5.5 rad

s to 7.3 rad
s

Car: Air Control [23] Adjust drag coefficients for roll to −4.75 and pitch to −2.85

Bullet and Psyonix Impulse [23], [25]
Used for the ball-to-car interaction and car-to-car interaction. The impulse by the
bullet engine replaces the Unity one. Psyonix impulse is an additional impulse
on the center of the ball, which allows a better prediction and control of collisions.

Ball Bouncing [23] Within the bounce’s computation a ball radius of 91.25uu is considered.
Friction (Air, Ground) and Drifting [25] A drag of −525 uu

s2 is used, which is reduced by more than half when the car is upside down.
Ground Stabilization [4], [25] The stabilization torque is denoted by an acceleration of 50 rad

s2 .
Wall Stabilization [4] Raise sticky forces for wall stabilization to an acceleration of 500 uu

s2

Suspension [26] [27]
Stiffness of front wheels: 163.9 1

s2
and of back wheels: 275.4 1

s2

Damper front and back is set to 30 1
s

. The equations used are inspired by [27],
which may differ to the approach taken in Rocket League that remains unclear.

Car-to-car interaction Implemented using the Bullet and Psyonix impulses, but not thoroughly tested
Demolitions [28] Implemented, but not thoroughly tested and hence not considered in this paper

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Seconds

0

50

100

150

200

250

300

350

Ro
ll 

(d
eg

re
es

)

Comparing the Alignment of a Dodge Roll
Rocket League's Ground Truth
Max Angular Velocity = 5.5
Max Angular Velocity = 7.3

Fig. 2. The physical maneuver of a dodge roll is executed to exemplary show
the alignment of the Unity simulation to the ground truth by using different
max angular velocities.

that most measures are given in unreal units (uu). To convert
them to Unity’s scale, these have to be divided by 100.

Some adjustments are based on empirical findings by com-
paring the outcome of distinct physical maneuvers inside the
implemented training simulation and the ground truth provided
by Rocket League. A physical maneuver simulates several
player inputs over time, such as applying throttle and steering
left or right. While the simulation is conducted in both sim-
ulations, multiple relevant game state variables like positions,
rotations, and velocities are monitored for later evaluation.
Figure 2 is an example where the physical maneuver orders
the car to execute a dodge roll. Whereas the original max
angular velocity of 5.5 rad

s does not compare well to the ground
truth, a more suitable value of 7.3 rad

s is found by analyzing
the observed data.

The speed of the training simulation is about
950 steps/second, while RLBot is constrained to the
real-time, where only 120 steps/second are possible. This
simulation performance is measured on a Windows Desktop

Fig. 3. The contents of the agent’s observation.

utilizing a GTX 1080 and a AMD Ryzen 7 3700X.

B. Goalie Environment

In the goalie environment, the agent is asked to save shots.
1000 different samples of shots, which uniformly vary in
speed, direction, and origin, are faced by the agent during
training. In every episode, one shot is fired towards the agent’s
goal. The agent’s position is reset to the center of the goal at
the start of each episode. Every save rewards the agent with
+1. A goalkeeping episode terminates if the ball hits the goal
or is deflected by the agent.

C. Striker Environment

To score a goal is the agent’s task inside the striker envi-
ronment. The ball moves bouncy, slowly, close, and in parallel
to the goal. Its speed and origin are sampled uniformly from
1000 samples during the agent’s training. The agent’s position
is farther away from the goal while being varied as well. +1
is the only reward signal that the agent receives upon scoring.
Once the ball hits the goal or a time limit is reached, the
episode terminates and the environment is reset.

D. Observation and Action Space

Both environments share the same observation and action
space. The agent perceives 23 normalized game state variables



to fully observe its environment as illustrated by figure 3.
The agent’s action space is multi-discrete and contains the
following 8 dimensions:

• Throttle (5 actions)
• Steer (5 actions)
• Yaw (5 actions)
• Pitch (5 actions)

• Roll (3 actions)
• Boost (2 actions)
• Drift or Air Roll (2 actions)
• Jump (2 actions)

Rocket League is usually played by humans using a gamepad
as input device. Some of the inputs (e.g. thumbstick) are thus
continuous and not discrete. To simplify the action space, the
continuous actions throttle, steer, yaw, and pitch are discretized
using buckets as suggested by Pleines et al. [29]. By this
means, the agent picks one value from a bucket containing
the values −1, −0.5, 0, 0.5 and 1. The roll action is also
discretized using the values −1, 0 and 1. All other actions
determine whether the concerned discrete action is executed
or not. The action dimension that is in charge of drifting
and air rolling is another special case. Both actions can be
boiled down to one because drifting is limited to being on
the ground, whereas air rolling can be done in the air only.
Moreover, multi-discrete action spaces allow the execution
of concurrent actions. One discrete action dimension could
achieve the same behavior. This would require defining actions
that feature every permutation of the available actions. As
a consequence, the already high-dimensional action space of
Rocket League would be much larger and therefore harder to
train.

IV. DEEP REINFORCEMENT LEARNING

The actor-critic, on-policy algorithm PPO [7] and its clipped
surrogate objective (Equation 1) is used to train the agent’s
policy π, with respect to its model parameters θ, inside the
Unity simulation. PPO, algorithmic details, and the model
architecture are presented next.

A. Proximal Policy Optimization
LC
t (θ) denotes the policy objective, which optimizes the

probability ratio of the current policy πθ and the old one πθold:

LC
t (θ) = Êt[min(qt(θ)Ât, clip(qt(θ), 1− ϵ, 1 + ϵ)Ât)] (1)

with the surrogate objective qt(θ) =
πθ(at|st)
πθold(at|st)

st is the environment’s state at step t. at is an action tuple,
which is executed by the agent, while being in st. The clipping
range is stated by ϵ and Ât is the advantage, which is computed
using generalized advantage estimation [30]. While computing
the squared error loss LV

t of the value function, the maximum
between the default and the clipped error loss is determined.

V C
t = Vθold(st) + clip(Vθ(st)− Vθold(st),−ϵ, ϵ) (2)

LV
t = max((Vθ(st)−Gt)

2, (V C
t −Gt)

2) (3)

with the sampled return Gt = Vθold(st) + Ât

The final objective is established by LCVH
t (θ):

LCV H
t (θ) = Êt[L

C
t (θ)− c1L

V
t (θ) + c2H[πθ](st)] (4)

To encourage exploration, the entropy bonus H[πθ](st) is
added and weighted by the coefficient c2. Weighting is also
applied to the value loss using c1.

Game State Variables (23)

Fully Connected (256)

Fully Connected (256) Fully Connected (256)

Value (1)

(5) (5) (5) (5) (3) (2) (2) (2)

Action Dimensions

Policy
Stream 

Value
Stream 

Fig. 4. The policy and the value function share gradients and several
parameters. After feeding 23 game states variables as input to the model and
processing a shared fully connected layer, the network is split into a policy and
value stream starting with their own fully connected layer. The policy stream
outputs action probabilities for each available action dimension, whereas the
value stream exposes its estimated state-value.

B. Algorithmic Details and Model Architecture

PPO starts out by sampling multiple trajectories of experi-
ences, which may contain multiple completed and truncated
episodes, from a constant number of concurrent environments
(i.e. workers). The model parameters are then optimized by
conducting stochastic gradient descent for several epochs of
mini-batches, which are sampled from the collected data.
Before computing the loss function, advantages are normalized
across each mini-batch. The computed gradients are clipped
based on their norm.

A relatively shallow neural net (model) is shared by the
value function and the policy (Figure 4). To support multi-
discrete actions, the policy head of the model outputs 8
categorical action probability distributions. During action se-
lection, each distribution is used to sample actions, which
are provided to the agent as a tuple. The only adjustment
to the policy’s loss computation is that the probabilities of
the selected actions are concatenated. Concerning the entropy
bonus, the mean of the action distributions’ entropies is used.

V. SIM-TO-SIM TRANSFER

Two major approaches are considered to examine learned
behaviors inside the Unity simulation and its transfer to Rocket
League. The first one runs various handcrafted scenarios (like
seen in section III-A) in both simulations to directly compare
their alignment. This way, it can be determined whether the
car or the ball behave similarly or identically concerning their
positions and velocities. The second approach trains the agent
in Unity given the goalie and the striker environment, while
all implemented physics components are included. We further
conduct an ablation study on the implemented physics where
each experiment turns off one or all components. Turning off
may also refer to use the default physics of Unity.

If not stated otherwise, each training run is repeated 5 times
and undergoes a thorough evaluation. Each model checkpoint
is evaluated in Unity and Rocket League by 10 training and 10
novel shots, which are repeated 3 times. Therefore, each data
point aggregates 150 episodes featuring one shot. Result plots



TABLE II
THE RESULTED ERROR FOR EACH RUN PHYSICAL MANEUVER SCENARIO. THE CAR’S POSITION IS CONSIDERED BY THE GREEN SHADED DATA POINTS,

WHILE THE BLUE ONES ARE RELATED TO THE BALL’S POSITION.

1) Acceleration 2) Air Control 3) Drift 4) Jump 5) Ball Bounce 6) Shot
Mean 0.69 3.72 1.67 2.32 3.07 5.24 3.19 0.84 4.87 0.07 0.22 1.37 0.01 0.05 0.03 28.45 23.79 28.31
Std 0.48 3.05 1.92 2.61 1.81 4.58 4.73 1.04 6.80 0.06 0.15 0.69 0.01 0.03 0.02 25.20 25.01 22.49
Max 1.21 8.04 5.96 8.40 8.12 12.97 16.06 5.12 21.08 0.24 0.41 2.02 0.02 0.12 0.07 58.16 59.00 58.19

TABLE III
THE HYPERPARAMETERS USED TO CONDUCT THE TRAINING WITH PPO.

THE LEARNING RATE α AND c2 DECAY LINEARLY OVER TIME.

Hyperparameter Value Hyperparameter Value
Discount Factor γ 0.99 Clip Range ϵ 0.2
λ (GAE) 0.95 c1 0.25
Number of Workers 16 Initial α 0.0003
Worker Steps 512 Min α 0.000003
Batch Size 8192 Initial c2 0.0005
Epochs 3 Min c2 0.00001
Mini Batches 8 Optimizer AdamW
Max Gradient Norm 0.5 Activations ReLU

show the interquartile mean of the cumulative reward and a
confidence interval of 95% as recommended by Agarwal et al.
[31]. The hyperparameters are detailed in Table III. At last, we
describe some of the learned behaviors that are also retrieved
from training in a more difficult striker environment.

A. Alignment Comparison using Handcrafted Scenarios

To directly compare the alignment between both simu-
lations, six physical maneuvers are assessed by 3 different
handcrafted scenarios:

1) Acceleration
• Car drives forward and steers left and right
• Car drives backward and steers left and right
• Car uses boost and steers left and right

2) Air Control
• Car starts up in the air, looks straight up, boosts

shortly and boosts while rolling in the air
• Car starts up in the air, has an angle of 45◦, boosts

shortly and boosts while rolling in the air
• Car starts up in the air, looks straight up and

concurrently boosts, yaws, and air rolls
3) Drift

• Car drives forward for a bit and then starts turning
and drifting while moving forward

• Car drives backward for a bit and then starts turning
and drifting while moving forward

• Car uses boost and then starts turning and drifting
while using boost

4) Jump
• Car makes a short jump, then a long one and at last

a double jump
• Car makes a front flip, a back flip and a dodge roll
• Car drives forward, does a diagonal front flip and

at last a back flip
5) Ball Bounce

• Ball falls straight down

• Ball falls down with an initial force applied on its
x-axis

• Ball falls down with an initial force applied on its
x-axis and an angular velocity

6) Shot
• Car drives forward and hits the motionless ball
• Car drives forward and the ball rolls to the car
• Ball jumps, the car jumps while boosting and hits

the ball using a front flip
Each scenario tracks the position of the ball and the car
during each frame. As both simulations end up monitoring
the incoming data with slight time differences, the final data
is interpolated to match in shape. Afterward, the error for
each data point between both simulations is measured. The
final results are described by Table II, which comprises the
mean, max, and standard deviation (Std) error across each run
scenario. Letting the ball bounce for some time shows the
least error, while a significant one is observed when examining
the scenarios where the car shoots the ball. Note that slight
inaccuracies during acceleration may cause a strongly summed
error when considering a different hit location on the ball.
The other scenarios, where the error is based on the car’s
position, also indicate that the Unity simulation suffers from
inaccuracies.

B. Physics Ablation Study based on PPO Training
The previously shown imperfections of the Unity simulation

may lead to the impression that successfully transferring a
trained behavior is rather unlikely. This assumption can be
negated by considering the results retrieved from training
the agent in the goalie environment (Figure 5). Even though
each experiment ablates all, single or no physical adaptations,
the agent is still capable of saving nearly every ball once
transferred to Rocket League. A drawback of the goalie
environment lies in its simplicity because the agent only has
to somehow hit the ball to effectively deflect it. The next
step of complexity is posed by the striker environment, where
the agent has to land a more accurate hit on the ball to
score a goal. Figure 6 illustrates the results of the striker
training. Notably, when all physical adaptations are present,
the transferred behavior manages to score in about 75% of the
played episodes. Catastrophic performances emerge in Rocket
League once single physical adaptations are turned off.

C. Learned Policies
During the performed experiments, several intriguing agent

behaviors emerged2. When trained as a goalkeeper, the agent

2https://www.youtube.com/watch?v=WXMHJszkz6M&list=
PL2KGNY2Ei3ix7Vr vA-ZgCyVfOCfhbX0C



0 5 10
Steps (in millions)

0.00

0.25

0.50

0.75

1.00
IQ

M
 C

um
. R

ew
ar

d
All On (Baseline)

Unity Train
Unity Eval
Rocket Eval

0 5 10
Steps (in millions)

0.00

0.25

0.50

0.75

1.00

IQ
M

 C
um

. R
ew

ar
d

Bullet Impulse Off

0 5 10
Steps (in millions)

0.00

0.25

0.50

0.75

1.00

IQ
M

 C
um

. R
ew

ar
d

Custom Bounce Off

0 5 10
Steps (in millions)

0.00

0.25

0.50

0.75

1.00

IQ
M

 C
um

. R
ew

ar
d

Ground Stabilization Off

0 5 10
Steps (in millions)

0.00

0.25

0.50

0.75

1.00

IQ
M

 C
um

. R
ew

ar
d

All Off

0 5 10
Steps (in millions)

0.00

0.25

0.50

0.75

1.00

IQ
M

 C
um

. R
ew

ar
d

Psyonix Impulse Off

0 5 10
Steps (in millions)

0.00

0.25

0.50

0.75

1.00

IQ
M

 C
um

. R
ew

ar
d

Suspension Off

0 5 10
Steps (in millions)

0.00

0.25

0.50

0.75

1.00

IQ
M

 C
um

. R
ew

ar
d

Wall Stabilization Off

Fig. 5. Results of training the goalie environment under different ablations and transferring it to Rocket League. The agent is evaluated on training shots and
ones, which were not seen during training. The agent easily solves the goalie task under all circumstances. Both, training and unseen shots, behave identically
in Rocket League.

0 5 10
Steps (in millions)

0.00

0.25

0.50

0.75

1.00

IQ
M

 C
um

. R
ew

ar
d

All On (Baseline)

Unity Train
Unity Eval
Rocket Eval

0 5 10
Steps (in millions)

0.00

0.25

0.50

0.75

1.00

IQ
M

 C
um

. R
ew

ar
d

Bullet Impulse Off

0 5 10
Steps (in millions)

0.00

0.25

0.50

0.75

1.00

IQ
M

 C
um

. R
ew

ar
d

Custom Bounce Off

0 5 10
Steps (in millions)

0.00

0.25

0.50

0.75

1.00

IQ
M

 C
um

. R
ew

ar
d

Ground Stabilization Off

0 5 10
Steps (in millions)

0.00

0.25

0.50

0.75

1.00

IQ
M

 C
um

. R
ew

ar
d

All Off

0 5 10
Steps (in millions)

0.00

0.25

0.50

0.75

1.00

IQ
M

 C
um

. R
ew

ar
d

Psyonix Impulse Off

0 5 10
Steps (in millions)

0.00

0.25

0.50

0.75

1.00

IQ
M

 C
um

. R
ew

ar
d

Suspension Off

0 5 10
Steps (in millions)

0.00

0.25

0.50

0.75

1.00

IQ
M

 C
um

. R
ew

ar
d

Wall Stabilization Off

Fig. 6. Results of training the striker environment under different ablations and transferring it to Rocket League. The agent is evaluated on training situations
and ones, which were not seen during training. The agent scores in about 75% of the played episodes given all physical adaptations, while any ablation turns
out catastrophic. Both, training and unseen situations, behave identically in Rocket League.

tries to hit the ball very early, while making its body as big as
possible towards the ball. This is achieved by simultaneously
jumping and rolling forward or executing a forward flip. Con-
cerning the striker environment, the agent usually approaches
the ball using its boost. To get a better angle to the ball, the
agent steers left and right or vice versa. Drifting is sometimes
used to aid this purpose. Jumping is always used when needed.
This is usually the case if the agent is close to the ball, which
is located above the agent. Otherwise, the agent’s preference
is to stay on the ground. Further training experiments were
conducted in a more difficult striker environment. The ball
is not anymore simply passed in parallel and close to the
goal. Instead, the ball bounces higher and farther away from
the goal, which increases the challenge of making a good
touch on the ball to score. Given this setting, two different
policies were achieved. One policy approaches the ball as fast
as possible while using a diagonal dodge roll to make the

final touch to score. However, this behavior fails a few shots.
The other emerged behavior can be considered as the opposite.
Depending on the distance and the height of the ball, the agent
waits some time or even backs up to ensure that it will hit the
ball while being on the ground. Therefore, the agent avoids
jumping. This is surprising because the agent should maximize
its discounted cumulative reward and therefore finish the
episode faster. Although the increased difficulty led to different
behaviors, the agent may struggle a lot to get there. Usually, 2
out of 5 training runs succeeded, while the other ones utterly
failed.

VI. DISCUSSION

In this work, the agent is trained on isolated tasks, which are
quite apart from a complete match of Rocket League. To train
multiple cooperative and competitive agents, the first obstacle
that comes to mind is the tremendously high computational
complexity, which might be infeasible for smaller research



groups. But before going this far, several aspects need to be
considered that can be treated in isolation as well. At last, the
difficulties of training the more difficult striker environments
are discussed.

A. On Improving the Sim-to-sim Transfer

At first, the Unity simulation is still lacking the implemen-
tation of physical concepts like the car-to-car interaction and
suffers from the reported (Section V-A) inaccuracies. These
can be further improved by putting more work into the sim-
ulation, but also other approaches are promising. At the cost
of more computational resources, domain randomization [20]
could achieve a more robust agent, potentially comprising an
improved ability to generalize to the domain of Rocket League.
As the ground truth is provided by Rocket League, approaches
from the field of supervised learning can be considered as well.

B. Training under Human Conditions

Once the physical domain gap is narrowed, the Unity
simulation still does not consider training under human condi-
tions. Notably, the current observation space provides perfect
information on the current state of the environment, whereas
players in Rocket League have to cope with imperfect informa-
tion due to solely perceiving the rendered image of the game.
Thus, the Unity simulation has to implement Rocket League’s
camera behavior as well. However, one critical concern is
that the RLBot API does not reveal the rendered image of
Rocket League and therefore makes a transfer impossible as
of now. However, even if that information is made available
by Psyonix, both simulations’ visual appearances are very
different. The Unity simulation’s aesthetics are very abstract,
whereas Rocket League impresses with multiple arenas fea-
turing many details concerning lighting, geometry, shaders,
textures, particle effects, etc.. To overcome this gap of visual
appearance, approaches of the previously described related
work, like GraspGAN [18], can be considered.

Another challenge arises once the environment is partially
observable. It should be considered that the agent will probably
need memory to be able to compete with human players.
Otherwise, the agent might not be able to capture the current
affairs of its teammates and opponents. For this purpose,
multiple memory-based approaches might be suitable, like
using a recurrent neural network or a transformer architecture.

Moreover, the multi-discrete action space used in this paper
is a simplification of the original action space that features con-
current continuous and discrete actions. Initially, the training
was done using the PPO implementation of the ML-Agents
toolkit [22], which supports mixed (or hybrid) concurrent
action spaces. However, these experiments were quite unstable
and hindered progress. Therefore, Rocket League presents
an interesting challenge for exploring such action spaces, of
which other video games or applications are likely to take
advantage.

C. Difficulties of Training the harder Striker Environment

While the goalie and the striker environment are relatively
easy, the slightly more difficult striker one poses a much
greater challenge due to multiple reasons:

• Episodes are longer, leading to an even more delayed
reward signal and more challenging credit assignment

• More states have to be explored by the agent
• Even more accurate touches on the ball have to be made

to score

To overcome these problems, curriculum learning [32] and
reward shaping [33] can be considered. In curriculum learning,
the agent could face easier scenarios first and once success
kicks in, the next level of difficulty can be trained. However,
catastrophic forgetting may occur and therefore a curriculum
should sample from a distribution of scenarios to mitigate this
issue.

Concerning reward shaping, multiple variants were casually
tried without improving training results:

• Reward the first touch on the ball
• Reward or penalize the distance between the ball and the

agent
• Reward or penalize the dot product between the car’s

velocity and the direction from the car to the ball

Adding more reward signals along the agent’s task introduces
bias and is likely task-irrelevant. For example, the agent could
exploit such signals to cuddle with the ball at a close distance
or to slowly approach the ball to maximize the cumulative
return of the episode. If those signals are turned off once the
ball is touched, the value function might struggle to make
further good estimates on the value of the current state of the
environment, which ultimately may lead to misleading training
experiences and hence an unstable learning process. In spite
of the results of these first explorative tests, future work shall
examine whether these points shall be reconsidered.

VII. CONCLUSION

Towards solving Rocket League by the means of Deep
Reinforcement Learning, a fast simulation is crucial, because
the original game cannot be sped up and neither parallelized
on Linux-based clusters. Therefore, we advanced the im-
plementation of a Unity project that mimics the physical
gameplay mechanics of Rocket League. Although the imple-
mented simulation is not perfectly accurate, we remarkably
demonstrate that transferring a trained behavior from Unity
to Rocket League is robust and generalizes when dealing
with a goalkeeper and striker task. Hence, the sim-to-sim
transfer is a suitable approach for learning agent behaviors
in complex game environments. After all, Rocket League still
poses further challenges when targeting a complete match
under human circumstances. Based on our findings, we believe
that Rocket League and its Unity counterpart will be valuable
to various research fields and aspects, comprising: sim-to-sim
transfer, partial observability, mixed action-spaces, curriculum
learning, competitive and cooperative multi-agent settings.



REFERENCES

[1] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Hor-
gan, M. Kroiss, I. Danihelka, A. Huang, L. Sifre, T. Cai, J. P. Agapiou,
M. Jaderberg, A. S. Vezhnevets, R. Leblond, T. Pohlen, V. Dalibard,
D. Budden, Y. Sulsky, J. Molloy, T. L. Paine, Ç. Gülçehre, Z. Wang,
T. Pfaff, Y. Wu, R. Ring, D. Yogatama, D. Wünsch, K. McKinney,
O. Smith, T. Schaul, T. P. Lillicrap, K. Kavukcuoglu, D. Hassabis,
C. Apps, and D. Silver, “Grandmaster level in starcraft II using multi-
agent reinforcement learning,” Nat., vol. 575, no. 7782, pp. 350–354,
2019.

[2] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse, R. Józefowicz, S. Gray,
C. Olsson, J. Pachocki, M. Petrov, H. P. de Oliveira Pinto, J. Raiman,
T. Salimans, J. Schlatter, J. Schneider, S. Sidor, I. Sutskever, J. Tang,
F. Wolski, and S. Zhang, “Dota 2 with large scale deep reinforcement
learning,” CoRR, vol. abs/1912.06680, 2019.

[3] RoboLeague, “Roboleague,” 2021, available at https://github.com/
roboserg/RoboLeague retrieved February 28, 2022.

[4] RLBot, “Rlbot wiki: Getting started,” 2021, available at https://github.
com/RLBot/RLBot/wiki retrieved February 28, 2022.

[5] Y. Verhoeven and M. Preuss, “On the potential of rocket league for
driving team ai development,” in 2020 IEEE Symposium Series on
Computational Intelligence (SSCI), 2020, pp. 2335–2342.

[6] M. Mozgovoy, M. Preuss, and R. Bidarra, “Guest editorial special issue
on team AI in games,” IEEE Trans. Games, vol. 13, no. 4, pp. 327–329,
2021.

[7] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv:1707.06347, 2017.

[8] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa, “Robocup:
The robot world cup initiative,” in Proceedings of the First International
Conference on Autonomous Agents, AGENTS 1997, Marina del Rey,
California, USA, February 5-8, 1997, W. L. Johnson, Ed. ACM, 1997,
pp. 340–347.

[9] M. J. Hausknecht and P. Stone, “Deep reinforcement learning in pa-
rameterized action space,” in 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2016.

[10] E. Antonioni, V. Suriani, F. Riccio, and D. Nardi, “Game strategies for
physical robot soccer players: A survey,” IEEE Trans. Games, vol. 13,
no. 4, pp. 342–357, 2021.

[11] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in deep
reinforcement learning for robotics: a survey,” in 2020 IEEE Symposium
Series on Computational Intelligence, SSCI 2020, Canberra, Australia,
December 1-4, 2020. IEEE, 2020, pp. 737–744.

[12] B. Balaji, S. Mallya, S. Genc, S. Gupta, L. Dirac, V. Khare, G. Roy,
T. Sun, Y. Tao, B. Townsend, E. Calleja, S. Muralidhara, and D. Karup-
pasamy, “Deepracer: Autonomous racing platform for experimentation
with sim2real reinforcement learning,” in 2020 IEEE International
Conference on Robotics and Automation, ICRA 2020, Paris, France,
May 31 - August 31, 2020. IEEE, 2020, pp. 2746–2754.

[13] J. Blumenkamp, A. Baude, and T. Laue, “Closing the reality gap with
unsupervised sim-to-real image translation for semantic segmentation in
robot soccer,” CoRR, vol. abs/1911.01529, 2019.

[14] R. Traoré, H. Caselles-Dupré, T. Lesort, T. Sun, N. D. Rodrı́guez, and
D. Filliat, “Continual reinforcement learning deployed in real-life using
policy distillation and sim2real transfer,” CoRR, vol. abs/1906.04452,
2019.

[15] O. Pedersen, E. Misimi, and F. Chaumette, “Grasping unknown ob-
jects by coupling deep reinforcement learning, generative adversarial
networks, and visual servoing,” in 2020 IEEE International Conference
on Robotics and Automation, ICRA 2020, Paris, France, May 31 - August
31, 2020. IEEE, 2020, pp. 5655–5662.

[16] K. Rao, C. Harris, A. Irpan, S. Levine, J. Ibarz, and M. Khansari,
“Rl-cyclegan: Reinforcement learning aware simulation-to-real,” in 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2020, Seattle, WA, USA, June 13-19, 2020. Computer Vision
Foundation / IEEE, 2020, pp. 11 154–11 163.

[17] D. Ho, K. Rao, Z. Xu, E. Jang, M. Khansari, and Y. Bai, “Retinagan:
An object-aware approach to sim-to-real transfer,” in IEEE International
Conference on Robotics and Automation, ICRA 2021, Xi’an, China, May
30 - June 5, 2021. IEEE, 2021, pp. 10 920–10 926.

[18] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrish-
nan, L. Downs, J. Ibarz, P. Pastor, K. Konolige, S. Levine, and V. Van-
houcke, “Using simulation and domain adaptation to improve efficiency
of deep robotic grasping,” in 2018 IEEE International Conference on
Robotics and Automation, ICRA 2018, Brisbane, Australia, May 21-25,
2018. IEEE, 2018, pp. 4243–4250.

[19] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. C. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in Neural Information Processing Systems 27: Annual
Conference on Neural Information Processing Systems 2014, December
8-13 2014, Montreal, Quebec, Canada, Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds., 2014, pp. 2672–
2680.

[20] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from sim-
ulation to the real world,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS 2017, Vancouver, BC, Canada,
September 24-28, 2017. IEEE, 2017, pp. 23–30.

[21] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. Mc-
Grew, A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas, J. Schnei-
der, N. Tezak, J. Tworek, P. Welinder, L. Weng, Q. Yuan, W. Zaremba,
and L. Zhang, “Solving rubik’s cube with a robot hand,” CoRR, vol.
abs/1910.07113, 2019.

[22] A. Juliani, A. Khalifa, V. Berges, J. Harper, E. Teng, H. Henry,
A. Crespi, J. Togelius, and D. Lange, “Obstacle tower: A generalization
challenge in vision, control, and planning,” in Proceedings of the 28th
International Joint Conference on Artificial Intelligence, IJCAI 2019,
2019, pp. 2684–2691.

[23] S. Mish, “Rocket league notes,” 2019, available at https://samuelpmish.
github.io/notes/RocketLeague/ retrieved February 28, 2022.

[24] Timo Huth, “Dodges explained. power & more - rocket science #14,”
2018, available at https://www.youtube.com/watch?v=pX950bhGhJE re-
trieved February 28, 2022.

[25] J. Cone, “It is rocket science! the physics of ’rocket league’
detailed,” 2018, available at https://www.gdcvault.com/play/1024972/
It-IS-Rocket-Science-The retrieved February 28, 2022.

[26] Timo Huth, “Why are wheel hits so odd? - rocket science #10,” 2017,
available at https://www.youtube.com/watch?v=pTAVP00xwF4 retrieved
February 28, 2022.

[27] Vehicle Physics Pro, “How simple suspensions work,” available at https:
//vehiclephysics.com/advanced/how-suspensions-work/ retrieved Febru-
ary 28, 2022.

[28] Rocket Sledge, “How demos actually work in rocket league,”
2020, available at https://www.gamersrdy.com/blog/2020/06/11/
how-demos-actually-work-in-rocket-league/#:∼:text=Demos%
20were%20not%20intended%20to,broken%20for%20a%20long%
20time retrieved February 28, 2022.

[29] M. Pleines, F. Zimmer, and V. Berges, “Action spaces in deep rein-
forcement learning to mimic human input devices,” in IEEE Conference
on Games, CoG 2019, London, United Kingdom, August 20-23, 2019.
IEEE, 2019, pp. 1–8.

[30] J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
in 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Pro-
ceedings, Y. Bengio and Y. LeCun, Eds., 2016.

[31] R. Agarwal, M. Schwarzer, P. S. Castro, A. Courville, and M. G.
Bellemare, “Deep reinforcement learning at the edge of the statistical
precipice,” in Thirty-Fifth Conference on Neural Information Processing
Systems, 2021.

[32] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proceedings of the 26th Annual International Conference
on Machine Learning, ICML 2009, Montreal, Quebec, Canada, June 14-
18, 2009, ser. ACM International Conference Proceeding Series, A. P.
Danyluk, L. Bottou, and M. L. Littman, Eds., vol. 382. ACM, 2009,
pp. 41–48.

[33] V. Gullapalli and A. Barto, “Shaping as a method for accelerating
reinforcement learning,” in Proceedings of the 1992 IEEE International
Symposium on Intelligent Control, 1992, pp. 554–559.


