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Abstract—In scenarios with aleatoric uncertainties, the 
reward got by an agent when executing the same action in the 
same state is random, which can reduce the stability and 
convergence speed of the reinforcement algorithms. However, in 
most scenarios, reward functions have regularity, and their 
expectations are determined, which can be got through models 
or sample statistics. This paper discusses the distribution 
relationship between reward functions and value functions in 
scenarios with aleatoric uncertainties and proves the feasibility 
of using reward expectations for reinforcement learning. Finally, 
experiments show that algorithms have better stability and 
convergence speed when using reward expectations than 
random rewards. 

Keywords—reinforcement learning, aleatoric uncertainty, 
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I. INTRODUCTION 

Deep Reinforcement Learning (DRL) has achieved 
significant success in the domains of unmanned driving [1], 
robot control [2], go [3]‒[5], video games [6], but it also faces 
challenges such as large state-action space, sparse and delayed 
rewards, noisy distractions, multi-agent exploration [7]. Go, 
video games and other tasks usually have the following three 
characteristics: first, the environmental states are completely 
observable; second, most of the state transition processes are 
clear and repeatable; third, the rewards are determined. 
However, affected by environmental noise and other factors, 
the state transition processes of many environments in the real 
world have aleatoric uncertainty. The aleatoric uncertainty 
will lead to the randomness of action rewards in reinforcement 
learning and make it more difficult for agents to learn effective 
policies. 

To solve the two types of uncertainty exploration problems, 
methods based on the UCB and the Thompson Sampling 
method are mainly used for exploration [7]. The aleatoric 
uncertainty cannot be eliminated compared with the epistemic 
uncertainty [8]. The Quantile Regression DQN (QR-DQN) [9] 
improves the performance of DQN by explicitly modeling the 
return distribution. Reference [10] proposed an algorithm to 
estimate the aleatoric uncertainty and the epistemic 
uncertainty using two neural networks. Decaying Left 
Truncated Variance (DLTV) [11] uses a decaying schedule to 
suppress the intrinsic uncertainty and uses the upper quantiles 
to calculate the exploration rewards. These algorithms not 
only improve the exploration efficiency but also cause more 
computation. Reward shaping [12] is a widely used method 

for setting reward functions in complex environments and 
multi-agent collaboration scenarios. Reference [13] improves 
the convergence speed of DRL algorithms with the Reward-
Randomized Policy Gradient (RPG) algorithm, and it also 
shows that different results can be explored under different 
reward functions. Therefore, reward shaping can not only 
improve the convergence speeds of reinforcement learning 
algorithms but also lead to the deviation of strategy 
convergence results. So using scores as reward function 
values is a common practice when there are clear scoring rules. 
However, the uncertainty of scores got directly in scenarios 
with aleatoric uncertainties will lead to the difficulty for 
convergences of the algorithms. 

The uncertain rewards in scenarios with aleatoric 
uncertainties are usually regular, and their expectations can be 
calculated from the samples. Especially in computer 
simulation systems, the reward expectations can be got 
directly from the models. The values of reward expectations 
are certain and unchanged compared with the uncertain 
rewards. If the reward expectations are used as the reward 
function values, the corresponding optimal policy will be 
certain. This paper discusses and proves the feasibility of 
using the reward expectations as the reward function values 
for the reinforcement learning algorithms in scenarios with 
aleatoric uncertainties. Experiments show that compared with 
the uncertain rewards got in the process of exploration, using 
the reward expectations as the reward function values can 
increase the stabilities and the convergence speeds of 
reinforcement learning algorithms. 

The main contributions of this work are listed as follows: 

 This paper analyzes the influence of the uncertain 
rewards on reinforcement learning in scenarios with 
aleatoric uncertainties, and puts forward the idea of 
using the reward expectations as the reward function 
values. 

 The feasibility of using the reward expectations in 
different cases is discussed. It is proved that the 
stabilities of the algorithms using the reward 
expectations are better than using the uncertain 
rewards got directly. 

 The effectiveness of the method is verified based on 
the DQN algorithm and the AC algorithm in a scenario 
with aleatoric uncertainties. 

This work was supported by the National Natural Science Foundation 
of China under Grant No. 61902427. 



II. BACKGROUND 

An agent sequential decision-making problem can usually 
be modeled by Markov Decision Process (MDP) which can be 
described by the tuple , , ,R PS A . S  is the collection of all 

states of the agent. A is the collection of optional actions of 
the agent. R  is the reward function, and  , ,R s a s  is the 
reward got by the agent when the state changes to s  after 
taking action a  in the state s . P is the state transition 
probability, and  | ,P s s a  is the probability that the agent will 
reach the state s  after taking action a  in the state s . The state 
transition meets the equation    1 0 1 1=| , , , , | ,t t t tP s s s s a P s s a  , 
that is, the next state is only related to the current state and 
action. Every time an agent makes a decision, it needs to 
choose actions according to the current state, and the goal of 
its strategy  : ~ |a s    is to maximize the cumulative reward. 

According to the state transition processes and rewards, 
MDP can be divided into three categories as shown in Fig. 1, 
in which s , a , r and p  represent the corresponding values of 

, , ,R PS A . In (a) and (b), the reward got by the agent after 
taking the same action in the same state is certain, while in (c), 
it is uncertain. The rewards got by the agent through 
interaction with the environment are the basis for its strategy 
optimization. When the state reached after one action is 
uncertain (similar to the k-arm slot machine), it will usually 
lead to uncertainty of the reward after the same state and 
action. In this case, the agent must explore to obtain the 
cognitive law in the rewards  , ,R s a s , that is, to master the 
probability distribution. If we do not grasp this law, it will lead 
the difficulty for convergences of the algorithms. 

Fig. 1. The state transition processes and rewards in MDP. 

Agents must execute actions in the same states many times 
to explore the above laws before obtaining them. Bayesian 
posterior probability and distributional value functions are 
usually used to model the epistemic uncertainty and the 
aleatoric uncertainty. However, in scenarios with aleatoric 
uncertainties, agents can only obtain fragmented cognition in 
the process of finite exploration. For example, in the war game, 
the attack result of the same equipment against the same 
opponent is not a certain value. It is usually highly random due 
to the influence of terrain characteristics and some other 
factors, but generally follows a certain probability distribution, 
which is a general cognition. When exploring in massive state-
action space, the agent may get poor reward feedback under a 
good strategy due to the aleatoric uncertainty. In this case, the 
samples will optimize the strategy in the wrong direction, 
resulting in the failure of this exploration. For another 
example, in the Frozen Lake [14] game show in Fig. 2, there 
may be a gust of wind to blow the agent onto any square after 
it chooses to move up, down, left or right. In this scenario, 
even if the agent chooses the correct moving direction, it may 
fall into the ice cave due to uncertainty, In this case, the 
feedback got by the agent is unfavorable to the strategy 

optimization. There are also similar situations in StarCraft II 
[15], [16], Dota2 [17] and some other games. 

Fig. 2. The Frozen lake games. 

In conclusion, the rewards agents got in scenarios with 
aleatoric uncertainties have high randomness. In this case, the 
dilemma of reinforcement learning is that the cognition 
obtained by finite exploration is often unreliable. To solve the 
problem, the reward expectations got from a priori model 
knowledge or samples are used to assist the exploration 
process. 

III. THE METHOD 

A. Difficulties in Scenarios with Aleatoric Uncertainties 

The action-value function  ,Q s a  of an MDP is the 
expected return starting from the state s , taking action a , and 
then following policy  , which can be defined as (1): 

        
1 1 0 0~ | , ~ | , 0

, , ,, |
t t t t t

t
t t ta s s P s a t
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
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The state-value function  V s  of an MDP is the expected 
return starting from state s , and then following policy  , 
which can be defined as (2): 

        
1 1 0~ | , ~ | , 0

, , |
t t t t t

t
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In (1) and (2),  0,1   is the weight of long-term rewards 
when calculating the cumulative return. The greater its value, 
the more attention it pays to long-term rewards. Based on (1) 
and (2), the Bellman equation can be got by recursion. The 
corresponding expressions are as follows: 

           ~ | , ~ |s,, , ,s P s a aR s a s Q sQ s a a            

           ~ |s , ~ | , , ,a s P s a R s aV s V ss      

It can be deduced from (3) and (4) that when the rewards 
got by the agent are certain as (a) and (b) in Fig. 1, the 
convergence speeds of algorithms using the action-value 
function or the state-value function in reinforcement learning 
are mainly affected by the probability distribution  ~ | ,s P s a  . 

But when the rewards got by the agent are uncertain as (c) in 
Fig. 1，it is also affected by the uncertainty. 

If  ,R s a  is used to represent the expectation of  , ,R s a s , 
(3) can be converted to (5). 
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Taking reinforcement learning based on the action-value 
function as an example, in the actual calculation process, the 
optimal action-value function    , max= ,aQ s a Q s a      is 
usually used for value function iteration. If  * ,Q s a is used to 
represent the target value of  ,Q s a  at each iteration, it can 
be calculated by (6). 

      * , , , max ,aQ s a R s a s Q s a       

In deep reinforcement learning, θ  is usually used to 
represent the parameters of a neural network. The size of the 
sample set used to optimize the neural network is B . State is  
and action ia  represent the state and action of the i-th sample 
respectively. As the error of θ ,  θL is calculated using mean 
square deviation as shown in (7). 
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When B  is constant,  θL  is mainly affected by the 
uncertainty of the reward  , ,i i iR s a s  and the action-value 

 ,iQ s a θ . The greater the uncertainty, the greater the 
uncertainty of  θL , the greater the disturbance to the strategy 
optimization, and the more difficult the strategy optimization 
is. In deep reinforcement learning, it will cause the uncertainty 
of the strategy gradient of the neural network and affect the 
convergence speed of the parameters of the neural networks. 

B. Convergences of Algorithms using Reward Expectations 

In scenarios with aleatoric uncertainties, although the 
same action in a specific state may reach different result states, 
the overall trend is clear, that is, the magnitude of the 
expectations is clear. If the expectations are used as the reward 
function values, will it improve the convergences of the 
reinforcement learning algorithms? 

When the reward function values are uncertain, the reward 
of each sample actually corresponds to different optimal 
strategies. On the contrary, if the certain reward expectations 
are used as the reward function values for reinforcement 
learning, the corresponding optimal strategy should be 
determined. If the reward expectations  ,R s a  is used as the 
reward function value instead of the uncertain rewards 
 , ,R s a s ,  * ,Q s a  can be calculated by (8). 

      * , , max ,aQ s a R s a Q s a       

Therefore, the action-value function  * ,Q s a  calculated by 
using  ,R s a  as the reward function value in (8) is an unbiased 

estimation of the one in (6).  ,R s a  is used to represent the 
expectation of  , ,R s a s . Similarly, uses  ,R s a  instead of 
 , ,R s a s  as the reward function, (9) can be derived in the 

same way as to (7). In (9),  θL  is only related to the 
uncertainty of the next action-value  ,iQ s a θ . 
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In the actual calculation processes, the uncertainty 
magnitudes of  , ,i i iR s a s  and  ,iQ s a θ  in (7) may be different, 
and there may be a certain correlation between them. The 
convergences of the algorithms using the uncertain rewards 
got directly and the reward expectations as the reward function 
values are discussed as follows. 

1) If the variance caused by reward uncertainty is much 
greater than that caused by state transition uncertainty: 
Inequality (10) holds. 
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Substituting (7) and (9) into (10), inequality (11) holds. 
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In this case, the variance of iteration using reward 
expectations is smaller, which can improve the stability of the 
algorithm. 

2) If the variance caused by reward uncertainty is much 
smaller than that caused by state transition uncertainty: 
Inequality (12) holds. 
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Substituting (7) and (9) into (12), approximately equation (13) 
holds. 
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In this case, the variances of iteration using the rewards got 
directly and using the reward expectations are approximately 
equal, and the stabilities of the corresponding algorithms are 
approximately equal. 

3) If the variance caused by reward uncertainty and that 
caused by state transition uncertainty are approximately 



equal: The variance and covariance are represented by   and 
  respectively. 

a) If  , ,i i iR s a s  and  ,iQ s a θ  are positively correlated: 
Inequality (14) holds. 
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Inequality (15) can be derived from (14). 
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Substituting (7) and (9) into (15), inequality (16) holds. 
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In this case, the variance of iteration using reward 
expectations is smaller, which can improve the stability of the 
algorithm. 

b) If  , ,i i iR s a s  and  ,iQ s a θ  are irrelevant: Inequality 
(17) holds. 

     , , max , 0i i i a iR s a s Q s a    =θ  

In this case, the same result can be got as that in a).
c) If  , ,i i iR s a s  and  ,iQ s a θ  are negatively correlated: 

The variances of iteration using the rewards got directly and 
using the reward expectations are is uncertain. This situation 
rarely occurs. 

To sum up, in most cases, by using the reward expectation 
instead of the uncertain reward got directly from the 
environment, the uncertainty of reward function values can be 
decoupled from the iterative process of action-value function, 
and the stability of reinforcement learning algorithm in 
scenarios with aleatoric uncertainties can be improved. 

C. Algorithms using Reward Expectations 

In real scenarios, especially in complex decision-making 
problems,  ,Q s a  and  V s  usually needs a lot of 
calculation, while the reward expectation functions are usually 
only related to some variables in the states. In this case, x  is 
used to represent the variables related to the reward 

expectation functions in s , that is, there is a function R  to 
make (18) true. 

    , ,, =R x a R s a x s   

The difficulty of the solving function R  is generally much 
less than that of strategy optimization. Taking the 
reinforcement learning algorithm to solve the war game 
problem described in part II as an example, this problem is a 
complex Multi-Agent Reinforcement Learning problem, and 
its strategy learning is very difficult. However, the result of an 
attack action is only related to a small number of factors such 
as elevation and terrain. This functional relationship between 
the attack results and related factors R is easy to obtain 
through the simulation system model or the statistics of the 
sample data got from the environment. In this case, it is 
feasible to solve the reward expectation function R  first and 
then use it as the reward function for reinforcement learning. 

In the actual calculation process, if the system model is 
known, R  can be obtained through the model directly. If the 
system model is unknown, the function R  needs to be solved 
first. When the system has no model, if R  is simple, it can be 
solved through sample statistics using (19). 

       ~ | ,, = , , ,s P s aR x a R s a s x s 
    

When the system has no model, if R  is complex, it can be 
modeled by using a neural network (called R net   here). The 
inputs of R net   are the status factors and actions related to 
rewards, and the outputs are the reward expectations. Taking 
the representative the DQN algorithm and the AC algorithm 
as examples, the algorithms using reward expectation function 
R   as the reward function are as follows. 

1) DQN algorithm using reward expectations: The 
parameter of action-value neural network Q  is represented 
by θ . The relationship between x  and s  is  x s . The 
exploration rate is  . The algorithm is shown as Algorithm 
1. 

2) AC algorithm using reward expectations: The 
parameters of policy neural network   and state-value neural 
network V  are represented by θ  and w  respectively. The 
relationship between x  and s  is  x s . The algorithm is 
shown as Algorithm 2 

 
Algorithm 1 DQN using reward expectations 
1: Input: a differentiable action-value function parameterization  ,Q s aθ , the reward expectation function  ,R x a  
2: Parameters: discount factor  , replay memory capacity N , network parameter update step sizes 0 θ , delay steps 

for action-value target network updates C  
3: Initialize replay memory D  to capacity N  
4: Initialize action-value function Q  with weights θ  

5: Initialize target action-value function Q̂  with weights  θ θ  
6: for episode 1,2,3   do 
7:     Initialize sequence 0s s  
8:     for 1,2,3t    do 
9:         With probability   select a random action ta otherwise select  *max ,t a ta Q s a θ  

10:         Execute action ta  in emulator and observe reward tr  and the next state 1ts   
11:         Preprocess  t tx s  
12:         If using (19) or R net   as the reward expectation function R , update R  with sample  ,t t tR x a r   



Algorithm 1 DQN using reward expectations 
13:         Predict reward expectation  ,t t tR R x a  
14:         Store transition  1, , ,t t t ts a R s   in D  
15:         Sample random minibatch of transitions  1, , ,j j t js a R s   from D  

16:         Set 
 1

               if episode terminates at step l

ˆmax ,               otherwith

j

j

j a j

R j
y

R Q s a  

 
 θ

 

17:         Perform a gradient descent step on   2
,  j j jy Q s a θ  with respect to the network parameter θ  according to

    , ,j j j j jy Q s a Q s a   θ θ θ θθ θ  

18:         Every C  steps reset Q̂ Q  
19:     end for 
20: end for 
 

Algorithm 2 AC using reward expectations 
1: Input: a differentiable policy parameterization  |a sθ , a differentiable state-value function parameterization  V sw  
2: Parameters: discount factor  , network parameter update step sizes 0 θ , 0 w  
3: Initialize policy function   with weights θ  
4: Initialize state-value function V  with weights w  
5: for episode 1,2,3   do 
6:     Initialize sequence 0s s  
7:     for 1,2,3t    do 
8:         Select an action ta  according to  |a sθ  
9:         Execute action ta  in emulator and observe reward tr  and the next state 1ts   

10:         Preprocess  t tx s  
11:         If using (19) or R net   as the reward expectation function R , update R  with sample  ,t t tR x a r   
12:         Predict reward expectation  ,t t tR R x a  
13:         Store transition  1, , ,t t t ts a R s   

14:         Valuate the advantage function  
   1

      if episode terminates at step l

                       otherwith
t t

t t t
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15:         Perform a gradient descent step on 2
tA  with respect to the network parameter w  according to  t tA V s  θw ww w  

16:         Perform a gradient descent step on  log |t ttA a sθ  with respect to the network parameter θ  according to 
 log |t t tA a s   θ θ θθ θ  

17:     end for 
18: end for 

IV. EXPERIMENTS AND ANALYSIS 

A. Introduction to the Experimental Environment 

To verify the efficiency of the method described in this 
paper, the experiment shown in Fig. 3 are carried out on the 
background of the war game described in part II. It simulates 
the path planning problem in the war game. Starting from grid 
S , the initial life value of the agent is 10 . At each step, the 
agent can move one grid to one of the neighbor grids, and will 
be attacked by the opponent at the same time. When the agent 
reaches the target point G  or its life value is 0 , the game ends, 
and the remaining life value of the agent is the final score. 

Fig. 3. The experiment based on war games. 

Each attack by the opponent is an uncertain value. The 
experiment simulates the uncertain attacks in two ways: 
normal distribution and uniform distribution. The probability 
distributions are shown in Table I. 

TABLE I.  ATTACK VALUE PROBABILITY DISTRIBUTIONS 

Attack 
Value 

Probability Distributions 

Normal distribution Uniform distribution 

0 0.0071 1/11 

1 0.0021 1/11 

2 0.0588 1/11 

3 0.1192 1/11 

4 0.1875 1/11 

5 0.2128 1/11 

6 0.1875 1/11 

7 0.1192 1/11 

8 0.0588 1/11 

9 0.0021 1/11 

10 0.0071 1/11 

In Fig. 3 (a), the grayscale of different grids indicates that 
the grids have different masking effects. The deeper the 
grayscale, the better the masking effect. The correction 



coefficient to the attack result is shown in Fig. 3 (b). At step 
t , if the agent's life value is tl , the masking effect correction 
coefficient of the grid where the agent is after moving is tm , 
and the random attack value by the opponent is tk  ( tk  follows 
the normal distribution or uniform distribution in Table I), the 
life of the agent after moving 1tl   can be calculated by (20). 

  1 max ,0t t t tl l r m     

For example, if the agent move right at step 0 , and the random 
attack value by the opponent is K , then the masking effect 
correction coefficient 0m  will be 1 , and the life of the agent 
after moving 1l will be 10 K .Compared with the traditional 
maze game, the agent in the experiment also needs to explore 
and learn the optimal path to the target grid. The difference is 
that in the maze experiment, when the agent acts in the same 
state, the feedback got by exploration at each step is certain , 
while in this experiment, the feedback is uncertain. For 
example, in this experiment, the moving up action in step 0  
is better than moving right. However, due to the uncertainty 
of the opponent's attack value, sometimes the feedback got by 
the agent when moving right will be better than that of moving 
up. Feedback from the environment is often used as reward 
directly. If the value got in this case is used as the reward 
function directly, the agent strategy will be optimized in the 
wrong direction, resulting in the difficulty of the strategy 
learning. 

B. Analysis of the Results of Different Algorithms 

To test the convergences of the DQN algorithm and the 
AC algorithm using reward expectations described in 3.2, the 
performances of the following four methods with different 
reward functions are compared in the experiment: 

1) Uncertain reward: The uncertain reward values  got 
by exploration are directly used as the reward function values. 

2) Model reward: Assuming that the system model is 
known, the reward expectations calculated through Fig. 3 (b) 
and Table I are used as the reward function values. 

3) Average reward: Assuming that the system model is 
known, The statistical mean of historical samples got by 
exploration is used as the approximate value of the reward 
function values, which are used as the reward function values. 

4) R net  reward: Assuming that the system model is 
unknown, a neural network is trained with the explored 
historical samples, and the neural network is used to predict 
reward expectations, which are used as the reward function 
values. This method is consistent with the algorithm given in 
part C of part III. 

The stability and convergence speed of the algorithms are 
measured by the change of loss values  θL  and scores got by 
the agents. The score curves of the DQN algorithm and the 
AC algorithm using the above four reward functions are 
shown in Fig. 4. 

Fig. 4. Comparison of the DQN algorithm and the AC algorithm using different reward functions. 

Comparing the score curves and loss curves in the results, 
it is proved that the algorithms using uncertain rewards as the 
reward functions are more vulnerable to the influence of 
reward uncertainty, especially algorithms using model 
rewards as the reward functions are most stable the scores of 
which increase faster and the loss values of which are smaller. 

When using the R net   reward as the reward functions, 
because the evaluation of the reward functions are not accurate 
at the beginning, the early convergence speeds and stabilities 
of the algorithms are generally lower than that of using model 
rewards. With the increase of the number of samples, the 
estimated values gradually approach the reward expectations, 
and the convergences of the algorithms using R net   reward 
are gradually close to that of the algorithms using model 
rewards. Because the R  function in the experiment is simple, 
using the average reward can also get the approximate value 

of reward expectation easily. So the convergence speeds and 
stabilities of the algorithms using the average reward are 
approximately equal to those using the R net   reward. 

Because the uncertainty of the normal distribution is 
weaker than that of the uniform distribution, the convergences 
of different algorithms are more different when the 
uncertainty follows the uniform distribution. This shows that 
the greater the uncertainty of the scenario, the greater the 
advantage of using R  function than using random reward. 

Because the DQN algorithm uses the maximum values of 
the action-value to iterate, and always maintains the 
exploration probability  , its variances are larger than that of 
the AC algorithm, so the stability and convergence speed of 
the algorithms based on the DQN algorithm are worse than 
those based on the AC algorithm. 



To sum up, both the DQN algorithm and the AC algorithm 
using reward expectations as reward function values have 
better convergence speeds and stabilities than that using 
uncertain reward got directly from the environment. 

V. CONCLUSION 

To solve the difficulty of high randomness of reward in 
scenarios with aleatoric uncertainties, this paper analyzes the 
influence of the uncertainty of reward function on the speed 
and result of strategy optimization. The method using the 
reward expectations which are certain instead of uncertain 
rewards got directly from the environments is proposed to 
decouple the solution process of reward and value function 
solution. The feasibility of the method is discussed and proved. 
Finally, the effectiveness of the method is verified by 
experiments. Experiments show that the reinforcement 
learning algorithms using reward expectations as reward 
function values can improve the stability and convergence 
speed of the algorithms in scenarios with aleatoric 
uncertainties. The method to solve the problem of reward 
uncertainty in scenarios with aleatoric uncertainties proposed 
in this paper focuses on the case that the reward function is 
positively correlated or irrelevant to the latter state value. At 
the same time, it is assumed that the reward value is only 
related to some factors in the state, and the function is known 
or its solution is less difficult. When the reward function is 
complex, how to solve it and how to combine it with the 
existing methods to solve difficulties in scenarios with 
aleatoric uncertainties are still problems that need to be further 
studied. 
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