
Reinforcement Learning using Reward Expectations
in Scenarios with Aleatoric Uncertainties

Yubin Wang
PLA SSF Information Engineering

University
Zhengzhou, China

bin2129670034@163.com

Hao Hu
PLA SSF Information Engineering

University
Zhengzhou, China

wjjhh_908@163.com

Yifeng Sun*
PLA SSF Information Engineering

University
Zhengzhou, China

yfsun001@163.com

Zhiqiang Wu
PLA SSF Information Engineering

University
Zhengzhou, China
herowzq@126.com

Jiang Wu
PLA SSF Information Engineering

University
Zhengzhou, China

liam181113@163.com

Weigui Huang
PLA SSF Information Engineering

University
Zhengzhou, China

weiguiwong@aliyun.com

Abstract—In scenarios with aleatoric uncertainties, the
reward got by an agent when executing the same action in the
same state is random, which can reduce the stability and
convergence speed of the reinforcement algorithms. However, in
most scenarios, reward functions have regularity, and their
expectations are determined, which can be got through models
or sample statistics. This paper discusses the distribution
relationship between reward functions and value functions in
scenarios with aleatoric uncertainties and proves the feasibility
of using reward expectations for reinforcement learning. Finally,
experiments show that algorithms have better stability and
convergence speed when using reward expectations than
random rewards.

Keywords—reinforcement learning, aleatoric uncertainty,
reward expectations, algorithm stability

I. INTRODUCTION

Deep Reinforcement Learning (DRL) has achieved
significant success in the domains of unmanned driving [1],
robot control [2], go [3]‒[5], video games [6], but it also faces
challenges such as large state-action space, sparse and delayed
rewards, noisy distractions, multi-agent exploration [7]. Go,
video games and other tasks usually have the following three
characteristics: first, the environmental states are completely
observable; second, most of the state transition processes are
clear and repeatable; third, the rewards are determined.
However, affected by environmental noise and other factors,
the state transition processes of many environments in the real
world have aleatoric uncertainty. The aleatoric uncertainty
will lead to the randomness of action rewards in reinforcement
learning and make it more difficult for agents to learn effective
policies.

To solve the two types of uncertainty exploration problems,
methods based on the UCB and the Thompson Sampling
method are mainly used for exploration [7]. The aleatoric
uncertainty cannot be eliminated compared with the epistemic
uncertainty [8]. The Quantile Regression DQN (QR-DQN) [9]
improves the performance of DQN by explicitly modeling the
return distribution. Reference [10] proposed an algorithm to
estimate the aleatoric uncertainty and the epistemic
uncertainty using two neural networks. Decaying Left
Truncated Variance (DLTV) [11] uses a decaying schedule to
suppress the intrinsic uncertainty and uses the upper quantiles
to calculate the exploration rewards. These algorithms not
only improve the exploration efficiency but also cause more
computation. Reward shaping [12] is a widely used method

for setting reward functions in complex environments and
multi-agent collaboration scenarios. Reference [13] improves
the convergence speed of DRL algorithms with the Reward-
Randomized Policy Gradient (RPG) algorithm, and it also
shows that different results can be explored under different
reward functions. Therefore, reward shaping can not only
improve the convergence speeds of reinforcement learning
algorithms but also lead to the deviation of strategy
convergence results. So using scores as reward function
values is a common practice when there are clear scoring rules.
However, the uncertainty of scores got directly in scenarios
with aleatoric uncertainties will lead to the difficulty for
convergences of the algorithms.

The uncertain rewards in scenarios with aleatoric
uncertainties are usually regular, and their expectations can be
calculated from the samples. Especially in computer
simulation systems, the reward expectations can be got
directly from the models. The values of reward expectations
are certain and unchanged compared with the uncertain
rewards. If the reward expectations are used as the reward
function values, the corresponding optimal policy will be
certain. This paper discusses and proves the feasibility of
using the reward expectations as the reward function values
for the reinforcement learning algorithms in scenarios with
aleatoric uncertainties. Experiments show that compared with
the uncertain rewards got in the process of exploration, using
the reward expectations as the reward function values can
increase the stabilities and the convergence speeds of
reinforcement learning algorithms.

The main contributions of this work are listed as follows:

 This paper analyzes the influence of the uncertain
rewards on reinforcement learning in scenarios with
aleatoric uncertainties, and puts forward the idea of
using the reward expectations as the reward function
values.

 The feasibility of using the reward expectations in
different cases is discussed. It is proved that the
stabilities of the algorithms using the reward
expectations are better than using the uncertain
rewards got directly.

 The effectiveness of the method is verified based on
the DQN algorithm and the AC algorithm in a scenario
with aleatoric uncertainties.

This work was supported by the National Natural Science Foundation
of China under Grant No. 61902427.

II. BACKGROUND

An agent sequential decision-making problem can usually
be modeled by Markov Decision Process (MDP) which can be
described by the tuple , , ,R PS A . S is the collection of all

states of the agent. A is the collection of optional actions of
the agent. R is the reward function, and  , ,R s a s is the
reward got by the agent when the state changes to s after
taking action a in the state s . P is the state transition
probability, and  | ,P s s a is the probability that the agent will
reach the state s after taking action a in the state s . The state
transition meets the equation    1 0 1 1=| , , , , | ,t t t tP s s s s a P s s a  ,
that is, the next state is only related to the current state and
action. Every time an agent makes a decision, it needs to
choose actions according to the current state, and the goal of
its strategy  : ~ |a s   is to maximize the cumulative reward.

According to the state transition processes and rewards,
MDP can be divided into three categories as shown in Fig. 1,
in which s , a , r and p represent the corresponding values of

, , ,R PS A . In (a) and (b), the reward got by the agent after
taking the same action in the same state is certain, while in (c),
it is uncertain. The rewards got by the agent through
interaction with the environment are the basis for its strategy
optimization. When the state reached after one action is
uncertain (similar to the k-arm slot machine), it will usually
lead to uncertainty of the reward after the same state and
action. In this case, the agent must explore to obtain the
cognitive law in the rewards  , ,R s a s , that is, to master the
probability distribution. If we do not grasp this law, it will lead
the difficulty for convergences of the algorithms.

Fig. 1. The state transition processes and rewards in MDP.

Agents must execute actions in the same states many times
to explore the above laws before obtaining them. Bayesian
posterior probability and distributional value functions are
usually used to model the epistemic uncertainty and the
aleatoric uncertainty. However, in scenarios with aleatoric
uncertainties, agents can only obtain fragmented cognition in
the process of finite exploration. For example, in the war game,
the attack result of the same equipment against the same
opponent is not a certain value. It is usually highly random due
to the influence of terrain characteristics and some other
factors, but generally follows a certain probability distribution,
which is a general cognition. When exploring in massive state-
action space, the agent may get poor reward feedback under a
good strategy due to the aleatoric uncertainty. In this case, the
samples will optimize the strategy in the wrong direction,
resulting in the failure of this exploration. For another
example, in the Frozen Lake [14] game show in Fig. 2, there
may be a gust of wind to blow the agent onto any square after
it chooses to move up, down, left or right. In this scenario,
even if the agent chooses the correct moving direction, it may
fall into the ice cave due to uncertainty, In this case, the
feedback got by the agent is unfavorable to the strategy

optimization. There are also similar situations in StarCraft II
[15], [16], Dota2 [17] and some other games.

Fig. 2. The Frozen lake games.

In conclusion, the rewards agents got in scenarios with
aleatoric uncertainties have high randomness. In this case, the
dilemma of reinforcement learning is that the cognition
obtained by finite exploration is often unreliable. To solve the
problem, the reward expectations got from a priori model
knowledge or samples are used to assist the exploration
process.

III. THE METHOD

A. Difficulties in Scenarios with Aleatoric Uncertainties

The action-value function  ,Q s a of an MDP is the
expected return starting from the state s , taking action a , and
then following policy  , which can be defined as (1):

        
1 1 0 0~ | , ~ | , 0

, , ,, |
t t t t t

t
t t ta s s P s a t

R s a sQ s a s s a a  



       

The state-value function  V s of an MDP is the expected
return starting from state s , and then following policy  ,
which can be defined as (2):

        
1 1 0~ | , ~ | , 0

, , |
t t t t t

t
t t ta s s P s a t

R s a s s sV s  



  

     

In (1) and (2),  0,1  is the weight of long-term rewards
when calculating the cumulative return. The greater its value,
the more attention it pays to long-term rewards. Based on (1)
and (2), the Bellman equation can be got by recursion. The
corresponding expressions are as follows:

           ~ | , ~ |s,, , ,s P s a aR s a s Q sQ s a a            

           ~ |s , ~ | , , ,a s P s a R s aV s V ss      

It can be deduced from (3) and (4) that when the rewards
got by the agent are certain as (a) and (b) in Fig. 1, the
convergence speeds of algorithms using the action-value
function or the state-value function in reinforcement learning
are mainly affected by the probability distribution  ~ | ,s P s a  .

But when the rewards got by the agent are uncertain as (c) in
Fig. 1，it is also affected by the uncertainty.

If  ,R s a is used to represent the expectation of  , ,R s a s ,
(3) can be converted to (5).



          

          
        

~ | , ~ |s

~ | , ~ | , ~ |s

~ | , , ~ |s

, , ,

= ,

,

,

, ,

, ,

s P s a a

s P s a s P s a a

s P s a a

Q R s a s Q s a

R

s

s a s Q s a

a

a

R s a Q s

 















   

     

   

     
     

  

 
  


 

Taking reinforcement learning based on the action-value
function as an example, in the actual calculation process, the
optimal action-value function    , max= ,aQ s a Q s a     is
usually used for value function iteration. If  * ,Q s a is used to
represent the target value of  ,Q s a at each iteration, it can
be calculated by (6).

      * , , , max ,aQ s a R s a s Q s a       

In deep reinforcement learning, θ is usually used to
represent the parameters of a neural network. The size of the
sample set used to optimize the neural network is B . State is
and action ia represent the state and action of the i-th sample
respectively. As the error of θ ,  θL is calculated using mean
square deviation as shown in (7).



        

   

       
     

    

2
[1,]

2

[1,]
~ | ,

[1,]
~ | ,

= , , max , ,

, , max ,

, + max ,

, , , max ,

max ,

i i

i i

i B i i i a i i i

i i i a i

i B
i i as P s a

i i i i i a i

i B
as P s a

R s a s Q s a Q s a

R s a s Q s a

R s a Q s a

R s a s R s a Q s a

Q s a















 




 

     
    
        

   


 

θ θ

θ

θ

θ

θ

θ 

 

 

L

2  
      

 

When B is constant,  θL is mainly affected by the
uncertainty of the reward  , ,i i iR s a s and the action-value

 ,iQ s a θ . The greater the uncertainty, the greater the
uncertainty of  θL , the greater the disturbance to the strategy
optimization, and the more difficult the strategy optimization
is. In deep reinforcement learning, it will cause the uncertainty
of the strategy gradient of the neural network and affect the
convergence speed of the parameters of the neural networks.

B. Convergences of Algorithms using Reward Expectations

In scenarios with aleatoric uncertainties, although the
same action in a specific state may reach different result states,
the overall trend is clear, that is, the magnitude of the
expectations is clear. If the expectations are used as the reward
function values, will it improve the convergences of the
reinforcement learning algorithms?

When the reward function values are uncertain, the reward
of each sample actually corresponds to different optimal
strategies. On the contrary, if the certain reward expectations
are used as the reward function values for reinforcement
learning, the corresponding optimal strategy should be
determined. If the reward expectations  ,R s a is used as the
reward function value instead of the uncertain rewards
 , ,R s a s ,  * ,Q s a can be calculated by (8).

      * , , max ,aQ s a R s a Q s a       

Therefore, the action-value function  * ,Q s a calculated by
using  ,R s a as the reward function value in (8) is an unbiased

estimation of the one in (6).  ,R s a is used to represent the
expectation of  , ,R s a s . Similarly, uses  ,R s a instead of
 , ,R s a s as the reward function, (9) can be derived in the

same way as to (7). In (9),  θL is only related to the
uncertainty of the next action-value  ,iQ s a θ .



 
     

    

 

    

2

[1,]
~ | ,

2

2
[1,]

~ | ,

, , max ,

max ,

max ,
=

max ,

i i

i i

i i i i a i

i B
as P s a

a i

i B
as P s a

R s a R s a Q s a

Q s a

Q s a

Q s a









 




 

    
        
   
       

θ

θ

θ

θ

θ  

 

L

 

In the actual calculation processes, the uncertainty
magnitudes of  , ,i i iR s a s and  ,iQ s a θ in (7) may be different,
and there may be a certain correlation between them. The
convergences of the algorithms using the uncertain rewards
got directly and the reward expectations as the reward function
values are discussed as follows.

1) If the variance caused by reward uncertainty is much
greater than that caused by state transition uncertainty:
Inequality (10) holds.


    

       

2
[1,]

2
2

[1,] ~ | ,

, , ,

max , max ,
i i

i B i i i i i

i B a i as P s a

R s a s R s a

Q s a Q s a



   

   
      θ θ



 


Substituting (7) and (9) into (10), inequality (11) holds.


      

      

2
[1,]

2
[1,]

, , max , ,

, max , ,

i B i i i a i i i

i B i i a i i i

R s a s Q s a Q s a

R s a Q s a Q s a









     
    

θ θ

θ θ




 

In this case, the variance of iteration using reward
expectations is smaller, which can improve the stability of the
algorithm.

2) If the variance caused by reward uncertainty is much
smaller than that caused by state transition uncertainty:
Inequality (12) holds.


    

       

2
[1,]

2
2

[1,] ~ | ,

, , ,

max , max ,
i i

i B i i i i i

i B a i as P s a

R s a s R s a

Q s a Q s a



   

   
      θ θ



 


Substituting (7) and (9) into (12), approximately equation (13)
holds.


      

      

2
[1,]

2
[1,]

, , max , ,

, max , ,

i B i i i a i i i

i B i i a i i i

R s a s Q s a Q s a

R s a Q s a Q s a









    




    

θ θ

θ θ




 

In this case, the variances of iteration using the rewards got
directly and using the reward expectations are approximately
equal, and the stabilities of the corresponding algorithms are
approximately equal.

3) If the variance caused by reward uncertainty and that
caused by state transition uncertainty are approximately

equal: The variance and covariance are represented by  and
 respectively.

a) If  , ,i i iR s a s and  ,iQ s a θ are positively correlated:
Inequality (14) holds.

     , , max , 0i i i a iR s a s Q s a    θ  

Inequality (15) can be derived from (14).

        , , max , max ,i i i a i a iR s a s Q s a Q s a       θ θ   

Substituting (7) and (9) into (15), inequality (16) holds.


      

      

2
[1,]

2
[1,]

, , max , ,

, max , ,

i B i i i a i i i

i B i i a i i i

R s a s Q s a Q s a

R s a Q s a Q s a









     
     

θ θ

θ θ






 

In this case, the variance of iteration using reward
expectations is smaller, which can improve the stability of the
algorithm.

b) If  , ,i i iR s a s and  ,iQ s a θ are irrelevant: Inequality
(17) holds.

     , , max , 0i i i a iR s a s Q s a    =θ  

In this case, the same result can be got as that in a).
c) If  , ,i i iR s a s and  ,iQ s a θ are negatively correlated:

The variances of iteration using the rewards got directly and
using the reward expectations are is uncertain. This situation
rarely occurs.

To sum up, in most cases, by using the reward expectation
instead of the uncertain reward got directly from the
environment, the uncertainty of reward function values can be
decoupled from the iterative process of action-value function,
and the stability of reinforcement learning algorithm in
scenarios with aleatoric uncertainties can be improved.

C. Algorithms using Reward Expectations

In real scenarios, especially in complex decision-making
problems,  ,Q s a and  V s usually needs a lot of
calculation, while the reward expectation functions are usually
only related to some variables in the states. In this case, x is
used to represent the variables related to the reward

expectation functions in s , that is, there is a function R to
make (18) true.

    , ,, =R x a R s a x s   

The difficulty of the solving function R is generally much
less than that of strategy optimization. Taking the
reinforcement learning algorithm to solve the war game
problem described in part II as an example, this problem is a
complex Multi-Agent Reinforcement Learning problem, and
its strategy learning is very difficult. However, the result of an
attack action is only related to a small number of factors such
as elevation and terrain. This functional relationship between
the attack results and related factors R is easy to obtain
through the simulation system model or the statistics of the
sample data got from the environment. In this case, it is
feasible to solve the reward expectation function R first and
then use it as the reward function for reinforcement learning.

In the actual calculation process, if the system model is
known, R can be obtained through the model directly. If the
system model is unknown, the function R needs to be solved
first. When the system has no model, if R is simple, it can be
solved through sample statistics using (19).

       ~ | ,, = , , ,s P s aR x a R s a s x s 
    

When the system has no model, if R is complex, it can be
modeled by using a neural network (called R net  here). The
inputs of R net  are the status factors and actions related to
rewards, and the outputs are the reward expectations. Taking
the representative the DQN algorithm and the AC algorithm
as examples, the algorithms using reward expectation function
R  as the reward function are as follows.

1) DQN algorithm using reward expectations: The
parameter of action-value neural network Q is represented
by θ . The relationship between x and s is  x s . The
exploration rate is  . The algorithm is shown as Algorithm
1.

2) AC algorithm using reward expectations: The
parameters of policy neural network  and state-value neural
network V are represented by θ and w respectively. The
relationship between x and s is  x s . The algorithm is
shown as Algorithm 2

Algorithm 1 DQN using reward expectations
1: Input: a differentiable action-value function parameterization  ,Q s aθ , the reward expectation function  ,R x a
2: Parameters: discount factor  , replay memory capacity N , network parameter update step sizes 0 θ , delay steps

for action-value target network updates C
3: Initialize replay memory D to capacity N
4: Initialize action-value function Q with weights θ

5: Initialize target action-value function Q̂ with weights  θ θ
6: for episode 1,2,3  do
7: Initialize sequence 0s s
8: for 1,2,3t   do
9: With probability  select a random action ta otherwise select  *max ,t a ta Q s a θ

10: Execute action ta in emulator and observe reward tr and the next state 1ts 
11: Preprocess  t tx s
12: If using (19) or R net  as the reward expectation function R , update R with sample  ,t t tR x a r 

Algorithm 1 DQN using reward expectations
13: Predict reward expectation  ,t t tR R x a
14: Store transition  1, , ,t t t ts a R s  in D
15: Sample random minibatch of transitions  1, , ,j j t js a R s  from D

16: Set
 1

 if episode terminates at step l

ˆmax , otherwith

j

j

j a j

R j
y

R Q s a  

 
 θ

17: Perform a gradient descent step on   2
, j j jy Q s a θ with respect to the network parameter θ according to

    , ,j j j j jy Q s a Q s a   θ θ θ θθ θ

18: Every C steps reset Q̂ Q
19: end for
20: end for

Algorithm 2 AC using reward expectations
1: Input: a differentiable policy parameterization  |a sθ , a differentiable state-value function parameterization  V sw
2: Parameters: discount factor  , network parameter update step sizes 0 θ , 0 w
3: Initialize policy function  with weights θ
4: Initialize state-value function V with weights w
5: for episode 1,2,3  do
6: Initialize sequence 0s s
7: for 1,2,3t   do
8: Select an action ta according to  |a sθ
9: Execute action ta in emulator and observe reward tr and the next state 1ts 

10: Preprocess  t tx s
11: If using (19) or R net  as the reward expectation function R , update R with sample  ,t t tR x a r 
12: Predict reward expectation  ,t t tR R x a
13: Store transition  1, , ,t t t ts a R s 

14: Valuate the advantage function  
   1

 if episode terminates at step l

 otherwith
t t

t t t
t

R V s j

R V s V s
A

 

 



  

w

w w

15: Perform a gradient descent step on 2
tA with respect to the network parameter w according to  t tA V s  θw ww w

16: Perform a gradient descent step on  log |t ttA a sθ with respect to the network parameter θ according to
 log |t t tA a s   θ θ θθ θ

17: end for
18: end for

IV. EXPERIMENTS AND ANALYSIS

A. Introduction to the Experimental Environment

To verify the efficiency of the method described in this
paper, the experiment shown in Fig. 3 are carried out on the
background of the war game described in part II. It simulates
the path planning problem in the war game. Starting from grid
S , the initial life value of the agent is 10 . At each step, the
agent can move one grid to one of the neighbor grids, and will
be attacked by the opponent at the same time. When the agent
reaches the target point G or its life value is 0 , the game ends,
and the remaining life value of the agent is the final score.

Fig. 3. The experiment based on war games.

Each attack by the opponent is an uncertain value. The
experiment simulates the uncertain attacks in two ways:
normal distribution and uniform distribution. The probability
distributions are shown in Table I.

TABLE I. ATTACK VALUE PROBABILITY DISTRIBUTIONS

Attack
Value

Probability Distributions

Normal distribution Uniform distribution

0 0.0071 1/11

1 0.0021 1/11

2 0.0588 1/11

3 0.1192 1/11

4 0.1875 1/11

5 0.2128 1/11

6 0.1875 1/11

7 0.1192 1/11

8 0.0588 1/11

9 0.0021 1/11

10 0.0071 1/11

In Fig. 3 (a), the grayscale of different grids indicates that
the grids have different masking effects. The deeper the
grayscale, the better the masking effect. The correction

coefficient to the attack result is shown in Fig. 3 (b). At step
t , if the agent's life value is tl , the masking effect correction
coefficient of the grid where the agent is after moving is tm ,
and the random attack value by the opponent is tk (tk follows
the normal distribution or uniform distribution in Table I), the
life of the agent after moving 1tl  can be calculated by (20).

  1 max ,0t t t tl l r m     

For example, if the agent move right at step 0 , and the random
attack value by the opponent is K , then the masking effect
correction coefficient 0m will be 1 , and the life of the agent
after moving 1l will be 10 K .Compared with the traditional
maze game, the agent in the experiment also needs to explore
and learn the optimal path to the target grid. The difference is
that in the maze experiment, when the agent acts in the same
state, the feedback got by exploration at each step is certain ,
while in this experiment, the feedback is uncertain. For
example, in this experiment, the moving up action in step 0
is better than moving right. However, due to the uncertainty
of the opponent's attack value, sometimes the feedback got by
the agent when moving right will be better than that of moving
up. Feedback from the environment is often used as reward
directly. If the value got in this case is used as the reward
function directly, the agent strategy will be optimized in the
wrong direction, resulting in the difficulty of the strategy
learning.

B. Analysis of the Results of Different Algorithms

To test the convergences of the DQN algorithm and the
AC algorithm using reward expectations described in 3.2, the
performances of the following four methods with different
reward functions are compared in the experiment:

1) Uncertain reward: The uncertain reward values got
by exploration are directly used as the reward function values.

2) Model reward: Assuming that the system model is
known, the reward expectations calculated through Fig. 3 (b)
and Table I are used as the reward function values.

3) Average reward: Assuming that the system model is
known, The statistical mean of historical samples got by
exploration is used as the approximate value of the reward
function values, which are used as the reward function values.

4) R net  reward: Assuming that the system model is
unknown, a neural network is trained with the explored
historical samples, and the neural network is used to predict
reward expectations, which are used as the reward function
values. This method is consistent with the algorithm given in
part C of part III.

The stability and convergence speed of the algorithms are
measured by the change of loss values  θL and scores got by
the agents. The score curves of the DQN algorithm and the
AC algorithm using the above four reward functions are
shown in Fig. 4.

Fig. 4. Comparison of the DQN algorithm and the AC algorithm using different reward functions.

Comparing the score curves and loss curves in the results,
it is proved that the algorithms using uncertain rewards as the
reward functions are more vulnerable to the influence of
reward uncertainty, especially algorithms using model
rewards as the reward functions are most stable the scores of
which increase faster and the loss values of which are smaller.

When using the R net  reward as the reward functions,
because the evaluation of the reward functions are not accurate
at the beginning, the early convergence speeds and stabilities
of the algorithms are generally lower than that of using model
rewards. With the increase of the number of samples, the
estimated values gradually approach the reward expectations,
and the convergences of the algorithms using R net  reward
are gradually close to that of the algorithms using model
rewards. Because the R function in the experiment is simple,
using the average reward can also get the approximate value

of reward expectation easily. So the convergence speeds and
stabilities of the algorithms using the average reward are
approximately equal to those using the R net  reward.

Because the uncertainty of the normal distribution is
weaker than that of the uniform distribution, the convergences
of different algorithms are more different when the
uncertainty follows the uniform distribution. This shows that
the greater the uncertainty of the scenario, the greater the
advantage of using R function than using random reward.

Because the DQN algorithm uses the maximum values of
the action-value to iterate, and always maintains the
exploration probability  , its variances are larger than that of
the AC algorithm, so the stability and convergence speed of
the algorithms based on the DQN algorithm are worse than
those based on the AC algorithm.

To sum up, both the DQN algorithm and the AC algorithm
using reward expectations as reward function values have
better convergence speeds and stabilities than that using
uncertain reward got directly from the environment.

V. CONCLUSION

To solve the difficulty of high randomness of reward in
scenarios with aleatoric uncertainties, this paper analyzes the
influence of the uncertainty of reward function on the speed
and result of strategy optimization. The method using the
reward expectations which are certain instead of uncertain
rewards got directly from the environments is proposed to
decouple the solution process of reward and value function
solution. The feasibility of the method is discussed and proved.
Finally, the effectiveness of the method is verified by
experiments. Experiments show that the reinforcement
learning algorithms using reward expectations as reward
function values can improve the stability and convergence
speed of the algorithms in scenarios with aleatoric
uncertainties. The method to solve the problem of reward
uncertainty in scenarios with aleatoric uncertainties proposed
in this paper focuses on the case that the reward function is
positively correlated or irrelevant to the latter state value. At
the same time, it is assumed that the reward value is only
related to some factors in the state, and the function is known
or its solution is less difficult. When the reward function is
complex, how to solve it and how to combine it with the
existing methods to solve difficulties in scenarios with
aleatoric uncertainties are still problems that need to be further
studied.

REFERENCES
[1] A. R. Fayjie, S. Hossain, D. Oualid, and D. J. Lee, "Driverless Car:

Autonomous Driving Using Deep Reinforcement Learning in Urban
Environment,", 2018, pp. 896-901.

[2] A. H. Tan, F. P. Bejarano, and G. Nejat, "Deep Reinforcement
Learning for Decentralized Multi-Robot Exploration with Macro
Actions,", 2021.

[3] D. Silver et al., "Mastering the game of Go with deep neural networks
and tree search," Nature, vol. 529, no. 7587, pp. 484-489, 2016.

[4] D. Silver et al., "Mastering the game of Go without human knowledge,"
Nature, vol. 550, no. 7676, pp. 354-359, 2017.

[5] J. Schrittwieser et al., "Mastering Atari, Go, chess and shogi by
planning with a learned model," Nature, vol. 588, no. 7839, pp. 604-
609, 2020.

[6] S. Risi and M. Preuss, "From Chess and Atari to StarCraft and Beyond:
How Game AI is Driving the World of AI,". vol. 34 Heidelberg:
Springer Nature B.V, 2020, pp. 7-17.

[7] T. Yang et al., "Exploration in Deep Reinforcement Learning: A
Comprehensive Survey,", 2021.

[8] A. D. Kiureghian and O. Ditlevsen, "Aleatory or epistemic? Does it
matter?" Struct. Saf., vol. 31, no. 2, pp. 105-112, 2009.

[9] W. Dabney, M. Rowland, M. G. Bellemare, and R. Munos,
"Distributional Reinforcement Learning with Quantile Regression,",
2017.

[10] W. R. Clements, B. Van Delft, B. Robaglia, R. B. Slaoui, and S. Toth,
"Estimating Risk and Uncertainty in Deep Reinforcement Learning,",
2019.

[11] B. Mavrin, S. Zhang, H. Yao, L. Kong, K. Wu, and Y. Yu,
"Distributional Reinforcement Learning for Efficient Exploration,",
2019.

[12] T. Aotani, T. Kobayashi, and K. Sugimoto, "Bottom-up multi-agent
reinforcement learning by reward shaping for cooperative-competitive
tasks," Applied Intelligence, vol. 51, no. 7, pp. 4434-4452, 2021.

[13] Z. Tang et al., "Discovering Diverse Multi-Agent Strategic Behavior
via Reward Randomization,", 2021.

[14] http://gym.openai.com/envs/FrozenLake-v0/.

[15] O. Vinyals et al., "Grandmaster level in StarCraft II using multi-agent
reinforcement learning," Nature, vol. 575, no. 7782, pp. 350-354, 2019.

[16] O. Vinyals et al., "StarCraft II: A New Challenge for Reinforcement
Learning,", 2017.

[17] C. Berner et al., "Dota 2 with Large Scale Deep Reinforcement
Learning,", 2019.

