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Abstract—Multiplayer contents play an essential role in ex-
tending the lifespan of the game and positively affect the player’s
experience. However, previous studies on procedural content gen-
eration focused on single-player games and few for multiplayer
games. Multiplayer games have different ethics and mechanics as-
sociated with competition or cooperation. Thus, content designers
are concerned about this interaction. In this paper, we propose
a new method for generating multiplayer levels that encourage
diverse cooperation among game players. Our contributions are
summarized as follows: 1) We designed four cooperation patterns
usable in controllable generation literature. 2) We proposed a
controllable level generator to deploy the proposed patterns
in the two-player cooperative cooking game, Overcooked!. 3)
We discussed effective methods for leading players’ cooperation
experience. Consequently, we found that the players’ interaction
is most fundamental at the multiplayer level. The results of
our study will lead to diverse cooperation experiences in future
multiplayer game content generation studies.

Index Terms—procedural content generation, genetic algo-
rithm, cooperative, multiplayer

I. INTRODUCTION

Procedural content generation (PCG) studies have shown
remarkable approaches in generating single-player game lev-
els. To leverage the effectiveness of automated content gen-
eration, several methods have been proposed for generating
content with several conditions set by a game designer [1–3].
Presently, studies on controllable PCG have achieved success
in placing game resources, e.g., designing a level layout and
allocating items. Furthermore, there are several approaches for
adjusting the difficulty of a game with respect to the player’s
level [4–6], and involving the game design theory in traditional
PCG approaches [7, 8]. These level generation studies are
only related to enhancing a player’s game experience; few are
considered in multiplayer games.

Several attempts to diversify multiplayer experience in both
industry and research have been considered because cooper-
ative mechanisms in multiplayer games lower entry barriers
and positively affect the player’s experience [9–11]. Notably,
there has been a rapid increase in multiplayer game scale in
the game industry, and team-based games have emphasized
teamwork differently in cross-game design. For instance, a
multiplayer online battle arena, such as League of Legends
and Dota 2 puts players in several different roles. Similarly,
games like Portal 2 and Overcooked! merge players with

(a) (b)

(c) (d)

Fig. 1: Game levels from the commercial Overcooked! game.

the same abilities, leading to flexible coordination with their
interaction. Different team-playing types and team-building
processes using various combinations have been in the spot-
light and increased the impact of the esports industry. Ad-
ditionally, training human-collaborative artificial intelligence
[12–14] and developing cooperative environments for these
works are promising topics on multiagent research in the game
research community [15–17].

Compared to single-player games, more elements are con-
sidered in designing a multiplayer content generator. Various
relationship and interaction issues, such as competition and
cooperation applied to multiplayer game design are consid-
ered. To solve this problem, research has been conducted to
standardize and use core characteristics of cooperation in mul-
tiplayer games. These core characteristics of cooperation could
be used as team performance measurement [18], cooperative
performance metrics [19], and educational tools [20]. Gener-
ally, the core elements of cooperation were applied to game
mechanisms in the form of characters and levels. Specifically,
to induce cooperation in commercial online games, roles are
explicitly determined by varying the ability of game characters
[19]. These different roles are irreplaceable and coordinate
players reliant on each other’s ability to solve a challenging
problem. Otherwise, a method that implicitly assigns the
player role through the game components is employed [11,
21]. From a level generation perspective, the generator controls



the movement and resources inside the level, so that the
problem cannot be solved by a solo player. That is, the level
is designed to intend natural cooperation among players.

Addressing the present PCG research on the multiplayer
domain, our contribution can be described as follows: First,
we studied core mechanics of cooperative playing and in-
corporated four methods for inducing cooperation. Then, we
presented a controllable level generator for the Overcooked!
game to deploy the cooperation methods in a specific game
by integrating the methods into the mechanism of this game.
Finally, we investigated the characteristics of each method us-
ing user studies and suggested effective methods for emerging
cooperation in multiplayer levels. Our work could be an afford-
able approach in multiplayer level generation research under
the current limitations on measuring cooperation discussed in
the following section.

The remainder of the paper is organized as follows: Section
II introduces related works and multiplayer game design
patterns. Section III presents various cooperation emerging
methods. We demonstrate the user study experiment in Section
IV. Finally, Section V presents the conclusion and future
studies.

II. BACKGROUND

A. Controllable Generation for Single-Player Games

Controllable generation has been an active research area
in the game PCG community. Several methods have been
used to generate a game level under some conditions. In the
search-based approach, the authors of [2, 22] suggested a
physics-based game PCG to build game-level architectures for
AngryBirds. They presented a parameterized fitness function
for a genetic algorithm to control the game difficulty and the
stable and feasible levels. For the controllable level generator
of [22], the authors of [23] presented a dynamic difficulty
adjustment method using agent-based evaluation. Moreover,
[24] first addressed PCGRL (PCG via RL), by applying rein-
forcement learning (RL) to generate game layouts. Recently,
the authors of [1] suggested a reward shaping method for
generating controllable game content that the in-game features
(e.g., distance and happiness of non-player characters) fit a
designer’s setting. Additionally, the authors of [4] proposed
an adversarial RL architecture in which a generator model
competes with a solver agent and controls the difficulty in a
level from easy to challenging using a factorized parameter.
Meanwhile, the authors of [8, 25] designed an objective func-
tion on the principle of Koster’s Theory of Fun [26] to enhance
a player’s game experience. Given this, studies on controllable
PCG are not limited to generating game content according
to an author’s preferences, thus advancing research in other
ways, such as improving individual players’ game experience.
However, present studies are focused on single-player games
such as GVGAI [3], SuperMarioBros [8], AngryBirds [2, 22,
23], Zelda, RollerCoasterTycoon, and SimCity [1]. Therefore,
studies on content generation for multiplayer games are at their
early stage.

B. Content Generation for Multiplayer Games

Compared to single-player games, additional relationships
should be considered when designing a multiplayer game. In
single-player games, there is only a relation between a player
and non-player objects; however, not only the objects, other
players can be an ally or an enemy in multiplayer games. This
difference makes the game designer concerned about how to
design a method for emerging cooperation between players. To
apply a multiplayer game mechanism to present PCG research,
finding design patterns representing core characteristics of co-
operation is necessary. Thus, we introduce several game design
patterns for multiplayer games and discuss the consideration
of multiplayer PCG.

Several attempts have been made to assess team cooperation
and to design the principles of cooperation in multiplayer
games. For example, six principles for solving a common
problem in a cooperative multiplayer game and a team perfor-
mance process to examine the team adaptation of individual
members were proposed in [18]. Among these principles,
role differentiation induces complementary between players
and gives the players individual responsibility for their task.
Furthermore, the authors of [19] also suggested six design
components (e.g., complementary, synergy, shared goal, and
rules for enforcing cooperation) which lead to cooperation in
games. To apply these principles in a game, we can design
inefficiency in players’ movements, limit a player’s available
resources, and/or use game entities to promote interaction
between players. Additionally, five design components for
an educational multiplayer game were proposed in [20]. To
enhance the play experience (PX), they assigned different
abilities (e.g., healing, nuking, tanking) to each player to
make them accountable. Compared with single-player games,
fun and difficulty in multiplayer games come from the level
of team coordination and interaction between players (e.g.,
conversation) instead of individual players’ performance.

Due to the nature of controllable PCG that requires mea-
surable indicators, the abstract feature in multiplayer games,
cooperation made it challenging to formalize and evaluate. The
difficulty in content generation in multiplayer games comes
from the proposed methodology. Recent PCG studies use an
objective function to evaluate generated content and search
for better candidates or train a generative model. To generate
cooperative content using this mechanism, the cooperation
between players should be measurable in a heuristic or agent-
based testing. Although related studies [12, 15] used planning
algorithms for agents in the game, this method pursues near-
optimal policy by considering only the effectiveness of a
solution. For this reason, it is not an exact method to multi-
player PCG algorithms as a level evaluator when we consider
the traditional multiplayer game design patterns. Moreover,
several attempts have been made to measure cooperation
between players in other domains. The data-driven method
[21] requires a large dataset. However, it is not easy to
generalize. Additionally, since self-assessment [18] must be
conducted with a human on every generated content, using



this method in a PCG study is difficult. Accordingly, in this
study, we suggest several design methods that can be used
in multiplayer games and demonstrate a content generation
method using them.

C. A Cooperative Game: Overcooked!

The game “Overcooked!”1 is a two-player cooperative cook-
ing game where every player gets an equal reward for playing.
The game has a simple goal, two or more players cook dishes
to get a score. The cooking process follows a sequence of
delivering ingredients, cooking on a pot, putting it on a dish,
and delivering the dish to the serving area. To get a high
score, players build cooperation strategies on the principle
of divide and conquer. While the players build a strategy,
they discuss their roles and movements through conversation
and their intuition. Fig. 1 shows the commercial Overcooked!
game. The levels are designed to promote cooperation between
players. The cooperation methods differ from the layout form
of a level and placement of game objects. In other words,
different cooperation settings can be conveyed with different
level layouts and placement of the game objects. Moreover,
because the game is a pure cooperative game, players only
have a common goal. For this reason, it is an appropriate
environment to emerge cooperation and evaluate our generated
levels. This game has been widely used in the multiagent
domain, e.g., human-robot coordination [12, 27] and inference
mental-state [17].

However, there are a few studies on generating multiplayer
game levels for Overcooked!. To generate cooperative levels
that are stylistically similar to hand-designed levels, the au-
thors of [15] investigated the mixed-integer linear program-
ming (MIP) method for searching latent spaces of generative
adversarial networks. They assumed that the team fluency
metric is each player’s contribution to the team and proper
workload assignment; team fluency is the coordinated meshing
of joint activities in teamwork. To evaluate and control the
team fluency, they specified coordination behaviors measurable
by considering the distribution of workload on each other.
Here, the differences between the numbers of subtasks (dishes,
ingredients, and orders) handled by each player were used
as indicators to measure the robot’s contribution to the team.
However, to properly assess the distribution of workload, the
constraints that both players must reach all subtasks degrade
the layout diversity. They dealt with only one shared kitchen
and did not consider the game experience from level layout
and role assignment. In other perspectives, the authors in [16]
sampled solvable levels from heuristically generated levels.
They investigated how the diversity of environment affects
the generalization of multiagent RL. These studies focusing on
just generating solvable levels did not consider the cooperation
design patterns for human game experience.

There are several ways to design the cooperation method
in the Overcooked! game. The key to designing this game is
giving responsibility to each player and leading them to set

1https://www.team17.com/games/overcooked

their individual goals. To solve this game efficiently, players
plan their movement and divide their workload, observing their
available resources and distances (situation assessment and
plan formation in [18]). On these principles, the game designer
leads the cooperation by (1) implicitly inducing the discus-
sion (e.g., meshing and long way), as shown in Figs. 1(c) and
(d). Specifically, the level designer gives players specific roles,
(2) explicitly giving a responsibility, as shown in Figs. 1(a)
and (b). We denote these approaches as implicit and explicit
methods, respectively. The difference between these methods
is that cooperation is nonmandatory for solving the level in the
implicit method, whereas it is required in the explicit method.
The design methods for multiplayer games diversify the co-
operation strategies and present various cooperation PXs. In
this study, we suggest several cooperation designs for level
generation and measure the actual effect on the PX perspective.
Following the controllable PCG literature, we suggest several
parameters for generating cooperative levels. We investigate
how these levels affect players’ emerging coordination in a
multiplayer game.

III. COOPERATIVE LEVEL GENERATION

A. The Cooperation Emerging Methods
As stated in previous section, we suggested implicit and ex-

plicit methods for designing cooperative levels. All resources
for cooking a dish were evenly spread in a map named Messy
after generating an unorganized level. Here, the levels do
unintentionally address the players to cooperate. Therefore,
the tasks are spread widely, making it difficult for players to
decide their tasks and strategies. Subsequently, the strategies
are owned to the players’ preferences and playing level.

Furthermore, there are two implicit (IM-) ways to address
cooperation. In implicit methods, cooperation is nonmanda-
tory, but the level designer leads players to recognize that
dividing their workload or traffic effectively solves the prob-
lem. First, IM1 gives the players a shared kitchen such that
tasks are unevenly placed. Note that the players easily collide
when doing the same task. Thus, team fluency is poor when
they collide frequently. Also, the players are led to dividing
their tasks or traffic line. Second, IM2 restricts the players’
traveling with a wall. However, the tasks are spread widely
similar to Messy; each player can access at least one resource
for each task. Although the players could solve the problem
individually, the wall induces inefficient traffic when traveling
all tasks alone. For that reason, the players could selectively
process their tasks to build an optimal strategy.

Meanwhile, there is a way to give their role explicitly (EX),
i.e., place the players in separate kitchens and make them
forcibly cooperate, passing game items. The proposed methods
are summarized as follow:

• Messy: Every task is spread near-randomly in a shared
kitchen. Players have to decide their strategy fully.

• IM1: Same tasks are grouped and spread in a shared
kitchen. It is easier to collide between players than Messy.

• IM2: A wall separates the players’ traffic. However,
cooperation is nonmandatory for serving a dish.



• EX: A wall separates the players’ traffic, dividing tasks
by the wall. Cooperation is mandatory.

To deploy four cooperation methods, we designed a control-
lable generator with a parameterized genetic algorithm. The
method is widely used in controllable PCG to manipulate
a level’s characteristic [2, 22], even on difficulty [23]. This
can be achieved by parameterizing a fitness function and
giving some variables representing features in a level. We
implemented our generator on the clone game proposed in
[12].

B. Controllable Generation for Overcooked!

Level Representation: Genetic algorithm is an evolution-
ary searching method to find optimal chromosomes with
the genetic procedure: selection, crossover, and mutation.
To represent grid-like game levels as chromosomes, tabular
representation has been used to encode game tiles into genes.
From Fig. 2, we define six-game blocks into numbers and
encode the game layout to numerical matrix. A game level
is represented using a 10 by 10 size two-dimensional (2D)
array chromosome. The chromosome can be loaded on the
environment using an auxiliary code, which converts the array
into a text file.

Blocks (Genes)

0 
(Empty)

1 
(Wall)

2 
(Pot)

3 
(Dishes)

4 
(Onions)

5 
(Outlet)

Players

Player 1 Player 2

Fig. 2: Six blocks to build a level. We define the genotype
into an integer value ranging from 0-5.

Population Initialization: A carefully designed initializa-
tion remarkably reduces the searching space in this domain
(e.g., AngryBirds [2]). We also use a population initializer that
selects game blocks with a predefined rule. Instead of placing
previously described six blocks using an uniform random
distribution, we use different probabilities that weight how
much each block is used – [0.7, 0.1, 0.05, 0.05, 0.05, 0.05]. The
probability sets how many each block is used in general. This
method benefits in searching for optimal levels robustly.

Crossover and Mutation: To find more optimal chromo-
somes, crossover and mutation are used as the key procedure
when enhancing a population. Figs. 3(a) and (b) show the
example of the genetic process in visual. Thus, game levels
are represented using a 2D array, and we use a tile-based
one-point crossover method. Once we sample two parents for
crossover, the 4 by 4 size tiles are randomly sampled for
each parent. Next, the tiles are exchanged for the sampled
location of each parent. In mutation, the random-resetting
method is used to replace a gene with a random block. Here,
the random block is sampled with a weighted probability for
effective searching, according to the following probabilities –
[0.4, 0.2, 0.1, 0.1, 0.1, 0.1].

Fitness Function: There are two strategy models for gen-
erating multiplayer game levels. One is designing the layout
that affects the player’s route directly. The other is placing

1 1 4 4 1 1 1 1 1 1
4 4 0 0 1 1 1 1 1 1
0 0 0 2 1 1 1 1 1 1
0 3 0 0 4 1 2 1 1 1
0 0 0 2 3 0 0 0 0 5
2 0 0 4 4 0 0 0 3 1
2 0 0 4 3 0 0 0 3 1
1 1 1 1 1 3 0 0 0 4
1 1 1 1 1 1 1 0 3 1
1 1 1 1 1 1 1 2 1 1

Chromosome A

Exchange

Chromosome B

1 0 0 0 0 0 0 0 0 0
1 4 0 5 0 0 0 0 0 2
1 0 0 0 1 1 0 0 0 0
1 0 0 0 0 0 0 1 1 0
1 1 1 3 0 0 1 0 0 1
1 4 1 2 1 1 0 0 0 0
0 0 0 0 0 0 0 3 0 1
0 0 1 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 2
0 0 1 1 1 1 1 4 3 1

1 0 0 0 0 0 0 0 0 0
1 4 0 5 0 0 0 0 0 2
1 0 0 0 1 1 0 0 0 0
1 0 0 0 0 0 0 1 1 0
1 1 1 3 0 0 1 0 0 1
1 4 1 2 1 1 0 0 0 0
0 0 0 0 0 0 0 3 0 1
0 0 1 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 2
0 0 1 1 1 1 1 4 3 1

Chromosome

1 
(p=0.2)

3 
(p=0.1)

(a) crossover (b) mutation

1 0 0 0 0 0 0 0 0 0
1 4 0 5 0 0 0 0 0 2
1 0 0 0 1 1 0 0 0 0
1 0 0 0 0 0 0 1 1 0
1 1 1 3 0 0 1 0 0 1
1 4 1 2 1 1 0 0 0 0
0 0 0 0 0 0 0 3 0 1
0 0 1 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 2
0 0 1 1 1 1 1 4 3 1

Room 2Room 1

1 0 0 0 0 0 0 0 0 0
1 4 0 5 0 0 0 0 0 2
1 0 0 0 1 1 0 0 0 0
1 0 0 0 0 0 0 1 1 0
1 1 1 3 0 0 1 0 0 1
1 4 1 2 1 1 0 0 0 0
0 0 0 0 0 0 0 3 0 1
0 0 1 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 2
0 0 1 1 1 1 1 4 3 11

1

1

(c) room division (d) post-processing

Fig. 3: (a) and (b) show the crossover and mutation examples
on the genetic algorithm. (c) shows how the rooms are
separated and counted in the fitness function. (d) shows the
post-processing that removes unusable resources.

the game resources in some positions that make the players
decide their route indirectly. To convey these models, we
build the parameterized fitness function, following to the
controllable PCG literature. Therefore, we design several terms
for controlling the level’s layout and task placement and to
evaluate a chromosome, as expressed in Eqs. 1-6.

fRC =| c− C | (1)

fRS =

{
σ(s1, s2, · · · , sc), if c > 1

1, otherwise
(2)

Eqs. 1-2 are related to a level’s layout. One way of gen-
erating a cooperative level is to design a game level into
separate rooms for interaction between players. This design
should be such that the room size is enough to get around.
To satisfy these conditions, we calculate the room count and
size as shown in Fig. 3(c). The room count and size are
measured by separated spaces and the empty block in each
space, respectively. Then, we design fitness for room count
fRC to current count c close to the target count C; fRS lowers
variance of room sizes (s1, s2, · · · , sc) into zero, making each
room size equal. This term alleviates the unequal distribution
in the size of play areas.

fBC =
1

T
·

T∑
t=1

| R(Tt)−Bt+1 | (3)

From Fig. 4, let task (T ) and resource (R) represent the
game mechanism. A task (Tt) represents a procedure for
cooking a dish to tasks (e.g., four action sequences in Section
II-C); the number (t) is allocated by the sequence order. The
resource list (R(Tt)) represents the available block list for



Tasks: T

T1: Pick an onion

R(T1, 1): Onion Block #1

R(T1, 2): Onion Block #2

Resources: R(T1)

...

...

Average Position: T1

Fig. 4: Task and resource diagram with the notations.

finishing a task (Tt). Moreover, each block in the resource list
is represented as R(Tt, r); r is the index in the list. Thus,
tasks consist of resource blocks for finishing them. Note that
the resources in a task (R(Tt)) is intuitively measured by the
blocks in a level. Then, the fBC (Eq. 3) is designed in a
similar matter to fRC and makes the quantity of the resources
in each task (R(Tt)) to fit our block count parameters Bi,
where i is the genotype for a block. Tasks 1-4 (T1−4) use
genotype (B2−5) as resources, respectively. Moreover, this
term is regularized by dividing it into four tasks (T ) so that
fBC do not overwhelm other terms when the number of tasks
increases.

fRD =

T∑
t=1

(
1

R(t)

R(t)−1∑
r=1

D(R(t, r), R(t, r + 1))) (4)

fTD = −
T−1∑
t=1

D(T̄t, T̄t+1) (5)

Eqs. 4-5 are related to the task and resource placements.
Observe that fRD determines the concentration of resources
in a task and fTD determines the distances between tasks.
fRD (Eq. 4) measures the distances between resources in each
task, locates them close if wRD is positive. It engages on
whether the players collide when they are doing the same
task for a shared kitchen. fTD (Eq. 5) measures the abstracted
position of the tasks (T̄t), by calculating the average position
of the resources in Tt. Then, it sums the distances between
T̄ts, locates them far from each other if wTD is positive. As
an effect, it induces inefficient traffic lines or separation of
tasks in the next section. Consequently, all terms with weight
parameters w are summed to balance them. For the detailed
implementation, refer to this code2.

Fitness =− (wRC · fRC + wRS · fRS

+ wBC · fBC + wRD · fRD + wTD · fTD)
(6)

C. Level Generation Experiment

We used our generator to generate these cooperative lev-
els, mentioned in the previous controllable generation. The
parameters for generating each level are described in Table
I. The level generation experiment is conducted according
to the following sequence: (1) Initialize a population with
100 chromosomes. Each chromosome has 100 genes and is
initialized with the weighted random function. (2) Repeat the

2https://github.com/bic4907/Cooperative-Overcooked-PCG

TABLE I: Parameters used to generate levels using the co-
operation emerging methods. The values are passed into the
fitness function.

Parameter Value

Messy IM1 IM2 EX

B5 1 1 2 1
C 1 1 2 2

wRD 0 0.3 0 0.3
wTD 0 0 0 0.09

B2−4 3
wRC 1.5
wRS 0.2
wBC 3.0

evolutionary process during 500 generations with our fitness
function in the previous section. (3) Sample the best chromo-
some in the population, and save it after post-processing in
Fig. 3(d). We repeat the above procedure for each cooperation
emerging method. Next, we set the probabilities of crossover
and mutation as 0.9 and 0.01, respectively. Roulette selection
and linearly incremental elitism (0 to 0.5) were used for
genetic algorithm hyper-parameters. We generated five levels
for each cooperation method, as shown in Fig. 5.

IV. EXPERIMENT AND RESULT

A. User Study Setup

Participants: We recruited 22 participants (ages between
21 and 31, M=26.00, SD=3.06) in the local students and
online game community. Most participants (86.4%) have never
played this game or have played it for less than an hour. Each
participant was compensated $50 for completing the study,
which lasted for about 90 min, including tutorial and rest.

Procedure: The experiment was conducted in the order of
(1) preliminary survey, (2) tutorial, (3) play and post-game
survey for each session (method), and (4) interview after all
games. Two participants participated in each experiment as a
team. First, both participants conducted a preliminary survey
asking about the player’s cooperative game experiences. In
the tutorial, each participant and the researcher played a
level unrelated to the proposed methods to understand basic
control and cooperation tasks. Then, the team plays a session
in a shuffled order using the balanced Latin square method
to reduce learning effects. For each session, two levels are
sampled and played among the five seeds in Fig. 5, and the
play duration is limited to 2 min for each level. The in-
game conversation between players is not controlled. Thus,
players were allowed to discuss the level naturally. After a
session, each player individually conducted the game experi-
ence questionnaire (GEQ) survey [28]. Then, we conducted an
open questionnaire about their strategy, the number of strategy
changes, and when their strategy was decided. Finally, after
all sessions, we asked participants what level they wanted to
play again.

Survey: GEQ has several modules for surveying a game.
Here, we used the core and social presence modules in our
user study experiment. The core and social modules consist of
seven and three indicators, respectively, each having detailed



Messy

IM1

IM2

EX

Fig. 5: Example of generated levels for each cooperation method. We use these levels on the user study experiment by loading
on the Overcooked! environment. Each player is randomly placed in a shared kitchen and placed in each room in a separate
kitchen.

intuitive 3-6 questions and measured according to the scoring
guide. The core and social modules mainly ask players about
their individual PX and interactions (e.g., behavioral, rapport),
respectively. The last two sessions (among four) were used in
the analysis. Most participants felt confused initially. However,
meaningful clues appeared after they have adapted to the task.
It is because most participants have little experience with the
game. They needed time for adapting to the game despite
the tutorial. We conducted the post-game survey and the
overall results are summarized in Table II. For the statistical
comparison, we selectively conducted a one-way ANOVA or
Kruskal-Wallis rank-sum test according to the data normality.
Then, the post-hoc test was conducted using Tukey HSD and
Conover test, respectively.

There is a consideration when we apply this questionnaire in
this game. The original purpose of the Psychological Negative
is to measure the dissension between players. However, this
intent changed because of the characteristic of this game, i.e.,
pure cooperation game. The reason is that Q.11-12 asked
each player how much they influenced or were influenced
by the other’s mood. These questions affected this indicator.
The players understood them as the connectivity with others
in a neutral manner, rather than screws. Accordingly, this
indicator measures how much interaction was found instead
of the original meaning.

Hypothesis: To investigate how the proposed methods
affected players’ strategies and PX, we built the following
research question (RQ) to check through.

• RQ1: What are the effective methods for emerging co-
operation?

• RQ2: How does the characteristic of levels affect the
player experience?

B. Result and Discussion

RQ1. What are the effective methods for emerging
cooperation?

We suggest two directions for designing a cooperation level.
IM1 and EX showed higher trends than the others in the
challenge and categories related to interaction. Through the
case study with statistical differences, we found useful patterns
for cooperation levels. To check the statistical differences
visually, see Fig. 6.

First, giving dependent tasks to players leads to a high
connectivity experience. A significant difference was shown
between EX and IM2 in Psychological Negative (p < 0.01,
H = 11.645). The major difference between both levels is
the necessity of cooperation. A player’s work was affected by
the other. Both players have their explicit roles and depended
on the task sequence. Some players told us that they were
satisfied by clear responsibility and chances for interaction, “I
felt content because role division was clear and teamwork was
fluent.” (P9), “There were lots of chances for communication
and cooperation, and I liked it.” (P10). Moreover, several
conversations followed when they discussed the timing of
passing an item and their requirements for processing a task.



TABLE II: Descriptive statistics, variance analysis on GEQ (Core and Social module). The arrow marks indicate the direction
of the positive effect in cooperation. For Psychological Negative, refer to the survey consideration in Section IV-A.

Questionnaire Mean (±SD) ANOVA Kruskal-Wallis

Messy IM1 IM2 EX F p H p

GEQ - Core Module
Competence 4.28 (0.82) 3.64 (0.87) 3.96 (0.90) 4.20 (0.77) - - 5.154 .160
Sensory and Imaginative Immersion 3.40 (0.64) 3.21 (0.87) 3.01 (0.97) 3.41 (0.78) .568 .639 - -
Flow 3.86 (0.82) 4.04 (0.53) 3.58 (0.92) 3.98 (0.61) .780 .511 - -
Tension/Annoyance 1.52 (0.82) 2.10 (0.77) 1.43 (0.52) 1.66 (1.00) - - 5.457 .141
Challenge 2.70 (0.91) 3.74 (0.59) 3.12 (0.79) 3.41 (0.91) 3.180 .034* - -
Negative affect 1.60 (0.75) 2.07 (0.77) 1.90 (0.85) 1.58 (0.61) - - 2.896 .407
Positive affect 4.36 (0.80) 3.90 (0.75) 4.14 (0.76) 4.38 (0.51) - - 3.326 .343

GEQ - Social Module
Psychological Empathy (↑) 3.79 (0.87) 4.23 (0.57) 3.80 (0.96) 4.30 (0.62) 1.404 .255 - -
Psychological Negative (↑) 2.68 (0.53) 3.02 (0.70) 2.10 (0.88) 3.22 (0.56) - - 11.645 .008**
Behavioural Involvement (↑) 4.15 (0.60) 4.41 (0.62) 3.60 (1.21) 4.61 (0.44) - - 6.989 .072

significant at *p < .05, **p < .01

Challenge
Psych. Empathy

Psych. Negative
Behav. Involv.

                                         (significant at *p < 0.05, **p < 0.01)

1

2

3

4

5
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te

***

Messy
IM1
IM2
EX

Fig. 6: Statistical comparison on Challenge, Psychological
Empathy/Negative and Behavioral Involvement in GEQ. The
white cross marks denote the average, and the dashed bar
denotes our suggestions.

Thus, giving a clear responsibility to each player is a major
design method in multiplayer games as mentioned in [20].

Second, the collision of chefs on the movements made the
players feel the level positively challenging. The statistical
difference was shown between Messy and IM1 in Challenge
(p < 0.05, F = 3.180). The collision made it difficult for
players to decide their strategy, thereby leading to the most
strategy changes, as shown in Table III. The reason follows
from the difficulty to predict collisions, and this induced
many trials and errors. Half of the participants chose IM1 as
they mostly want to try again. Some participants told us that
they wanted to try another strategy, “It was interesting that
the collisions in movements made the cooperation strategy
frequently changing. I want to try again because I think of
a more efficient way.” (P1), “I felt it was difficult to find an
optimal strategy. However, I can think out a better one if I try
it again.” (P19). Moreover, in the trial and error process, they
actively discussed their movement strategies, leading to a high
interaction experience along with EX.

Meanwhile, Messy and IM2 show relatively low rates in
interaction categories because they had a weak necessity
for cooperation. The players responded that they decided to
cooperate relatively late in these methods, even individually

playing in some cases (Messy: 1 team, IM2: 2 teams; zero for
others).

As such, there is a valuable finding from the results. Authors
of [15] attempted to enhance the team fluency by dividing
the cooking tasks equally since the level was evaluated by
robots and their performance was equal. Thus, the fun that
came from interactions is not considered. Our results show that
the cooperative level must be considered for the interactions
between players in the future. This is a new direction in a
multiplayer game level generation.

RQ2. How does the characteristic of levels affect the
player experience?

The major characteristic was the number of possible strate-
gies provided to players. In the divided kitchen levels (EX,
IM2), players were able to determine optimal strategies faster
than in the shared kitchen levels (IM1, Messy) because the
divided kitchen level had fewer cases where players considered
others. The open question statistics in Table III show that
dividing space helps the player to adapt to the game and easily
build an optimal strategy.

TABLE III: Average number of strategy changes during play.

Messy IM1 IM2 EX

Mean (±SD) 1.45 (0.93) 1.72 (0.90) 1.00 (0.63) 0.81 (0.75)

However, the level was unsuccessful in some respects. Some
participants told us that these levels help them adapt to the task
and were comfortable to playing “It was clear to divide the
role and I felt immersed in cooperative play.” (P4, P12), “I
felt this level was a good stage to aim for the highest score.”
(P13). Conversely, other participants said that the strategy was
coercive and repetitive “This level was not enjoyable because
it had fewer strategies than other levels.” (P3), “Since the
tasks were forcibly divided on the level, it was impossible to
play with my routine.” (P8), “The optimal strategy was quickly
built, so I could not share meaningful communication with the
another player.” (P14).

Consequently, a player with low expertise in the game felt
confused and dissatisfied with levels that had several strategies.
Here, reducing the number of strategies that players can build,



such as EX and IM2, was most efficient. The restriction on
chefs’ movements (i.e., divided kitchen) limits the players’
available tasks and traveling; it reduces the searching space
and burden of players. Otherwise, when players became ex-
perts at the game, there were positive assessments to IM1 and
Messy. The levels provided the players more choices for their
strategy, leading to relatively diverse communication to build
a strategy. Thus, we suggest providing a level that has intuitive
or selective strategies depending on the players’ expertise.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced new directions for generating
cooperation levels. To validate the proposed method, we used
a parameterized genetic algorithm to generate four kinds of
methods with different cooperation experiences. We applied
these methods to the Overcooked! game and conducted the
user study to investigate actual players’ PXs. Furthermore, we
suggested two methods for emerging cooperation effectively;
the key is leading conversations with game levels, e.g., giving
a dependent role to players and inducing collisions in their
movements. Our result implies that team fluency is not the
only key for multiplayer level generation; we will additionally
consider several interactions between players in the future.

Empirically, we observed the performance gaps between
team players (e.g., one is an expert and the other is at a
novice level), which affected the team fluency. In the future,
adaptive distribution of workload that considers asymmetric
player levels could be valuable work. Additionally, we will
investigate the relationship between the players’ behavior (e.g.,
verbal and actions) and the generated content.
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