
MultiTree MCTS in Tabletop Games
James Goodman

Game AI Research Group
Queen Mary University of London

james.goodman@qmul.ac.uk

Diego Perez-Liebana
Game AI Research Group

Queen Mary University of London
diego.perez@qmul.ac.uk

Simon Lucas
Game AI Research Group

Queen Mary University of London
simon.lucas@qmul.ac.uk

Abstract—We introduce MultiTree Monte Carlo Tree Search
(MT-MCTS), in which a tree is constructed independently for
each player. This permits deeper search for the acting agent’s
own move, at the cost of a poorer opponent model and the loss
of conditioning a move on the specific action of another player.

We test MT-MCTS in eleven different tabletop board and card
games, with varying numbers of players. The main benefit occurs
in simultaneous-move games, where independent trees better
model the information structure. We find that in other games
MT-MCTS can outperform vanilla MCTS, which incorporates all
players in a single tree, but that this advantage usually decreases
as the computational budget increases, and the cost of poor
opponent modelling outweighs the gain from deeper search.

Index Terms—MCTS, Multiplayer, Tabletop Games, Opponent
Modelling

I. INTRODUCTION

Modern tabletop games have different characteristics to
classic AI test-beds such as Chess, Go, or Checkers. Instead of
being 2-player zero-sum games of perfect information, they are
N-player (for N ≥ 2) games, often with imperfect information.
Formally they are zero-sum as only one player can win, but
there are elements of general-sum nature in that players usually
have a score, which many players will seek to maximise as
a secondary objective to winning, and it is often possible
for players to gain points without taking them from others.
Further, some of these games, especially those that fall into
the genre of ‘Eurogames’ [1], are less directly adversarial, in
that the action one player takes has little direct impact on the
position of others. We use the term ‘adversarial’ for games
in which the action of one player has a direct impact on the
position of another, either in material held or availability of
moves. For example in the game of Dominion, each player
buys new cards to build their private deck, which affects their
options on later turns. A few of these options can directly
attack opponents but most are ‘internal’ to the player’s own
position, as they build an engine used to buy victory point
cards later and are not ‘adversarial’ in our sense. The game
usually ends when the last ‘Province’ victory point card is
bought, and the game can be seen as a race between the players
to get their engine firing as fast as possible. In this respect,
eurogames can have single-player aspects [2].

In perfect-information 2-player games, minimax search, or
Monte Carlo Tree Search have been very successful [3]–[6].
These construct a game-tree from the current state to decide
on the best move to take, either by full enumeration (with
pruning), or by stochastic sampling. A common factor is that

opponent nodes are included in the tree, with the assumption
that in a zero-sum environment opponents act to minimise our
score or win chance.

The insight we build on is that the inclusion of every
opponent move in the tree gives a large branching factor
and a shallow search, with many of the leaves identical with
respect to the moves of the acting agent. In the context of the
lower adversariality of some eurogames this may be counter-
productive. This is not a new insight, and is behind several
techniques in the literature, such as Best Response Search
(BRS), Opponent Move Abstraction (OMA) and Opponent
Pruning Paranoid Search (OPPS), to name three that are closest
to this work [7]–[9].

We consider the impact of constructing separate trees for
each player in the game during MCTS, which we term Multi-
Tree MCTS (MT-MCTS). Instead of a single tree containing
nodes for all player actions, an independent tree is constructed
for each player to model their actions. Each MCTS iteration
adds a new node to each tree using a single trajectory, with
decisions made by a player using the information in their
tree. This increases the depth of each tree by avoiding the
combinatorial explosion at each ply as each opponent action
is explored. If there are A actions at each node and a search
depth of d, then the nodes in the tree, N = O(Ad). If k
players have equal numbers of turns, then d = kα, where α is
the depth of the tree in terms of self-moves; and α = O( 1k ).

This deeper search comes at the cost of an inability to make
move-conditional responses. If Y is a good response to A, but
not for actions B and C, then the opponent tree will not learn
to take action Y after A as this decision is not conditioned on
A being the previous action. Instead, the opponent model uses
statistics averaged over trajectories including all A, B and C.

We hypothesize that in modern tabletop games the benefit of
increased planning depth may outweigh the costs of not detect-
ing such move-specific adversarial responses. This benefit is
expected to increase as the player count increases, as this pro-
portionally reduces the search depth in self-actions for vanilla
MCTS. We test this using a set of 11 games implemented in
the Tabletop Games Framework (TAG, www.tabletopgames.ai)
for varying numbers of players.

We find that there are some games in which MT-MCTS
does perform well, but that this not universal across all 11
games. In some games an extreme version of MCTS in which
the moves of the opponent are ignored completely within tree
search can perform best.



II. BACKGROUND

A. MCTS

Monte Carlo Tree Search (MCTS) [5], [10], [11] has been
used in many games. It searches the forward game tree by
sampling. On each iteration four steps are followed:

1) Selection. Select an action to take from the current node.
If all actions have been selected at least once then the
best one is picked using the Upper Confidence for Trees
equation [12]: J(a) = Q(a) +K

√
log(N)
n(a) s The action a

with largest J(a) is selected. N is the total number of
visits to the node; n(a) is the number of those visits that
took action a; Q(a) is the mean score for all visits to the
node that took action a; K controls the trade-off between
exploitation, and exploration choosing actions with few
visits so far. This step is repeated down the tree until a
node is reached with previously untried actions.

2) Expansion. Pick one of the untried actions (using an
expansion policy, which may be random), and expand
this, creating a new node in the game tree.

3) Rollout. From the expanded node, take actions using a
rollout policy (which may be random) for a number of
steps (or the end of the game) to obtain a final score.

4) Back-propagation. Back-propagate this final score up the
tree through all nodes visited this iteration. Each node
records the mean score of all iterations that take a given
action from that node as Q(a) that will affect future
Selection steps. Once the time budget has been used the
action at the root node with either the highest score or
most visits is executed.

B. Tabletop Games Framework (TAG)

TAG is a framework for the implementation of modern
Euro-style board and card-games [13]. These games are of
research interest both because of their high popularity, and
because they often have high levels of hidden information,
stochasticity and support more than two players. The 11
games used are listed below, for more detailed summaries see
https://boardgamegeek.com/:

• TicTacToe. The trivial perfect information 2-player game
used as an illustrative baseline.

• Poker (1810). Uses Texas Hold’em rules.
• Dots and Boxes (1889). A perfect information game in

which players take turns to connect adjacent dots.
• Uno (1971). Players match suits and numbers to discard

all cards from their hand before their opponents.
• Love Letter (2012). A game of role deduction. Players

target opponents to gain information or knock them out.
• Diamant (2005). A simultaneous-move push-your-luck

game. Players decide whether to continue exploring a
mine. Treasure can be found, or the mine may collapse.

• Dominion (2008). A Deck-building card game in which
a player first needs to build an ‘engine’, and then use this
to gain victory point cards.

• Sushi GO! (2013). Simultaneous-move set collection.

• Colt Express (2014). Players plan a partially observable
sequence of actions to rob a train.

• Virus (2015). Players play cards from their hand to
construct a healthy body of four organs (cards), and use
Virus cards to infect the organs of other players.

• Exploding Kittens (2015). Players are knocked out if they
draw an Exploding Kitten. Cards can be played to peek
at and manipulate cards in the draw deck.

III. PREVIOUS WORK

Constructing a tree per player to determine their likely move
is a form of opponent modelling. The key works we build
on are covered below; excellent recent surveys of opponent
modelling techniques are [14], [15].

A. Reduced Opponent Computation

Classic search algorithms, be they exhaustive (e.g. minimax)
or sampled (e.g. MCTS), treat all players equally in the tree.
For N players, assuming each moves in sequence, there are
N − 1 plies in the tree that consider opponent moves before
returning to the acting agent. For large branching factors
the tree does not reliably reach the agent’s next move and
spends the computational budget on the intervening opponent
moves. Schadd et al. [7] took this insight in three multiplayer
perfect information games to develop Best Response Search
(BRS). Given a move ordering function this collapses all the
intervening opponent moves to the single best opponent move,
with the others taking no action. In BRS every odd ply is a
self-move, and every even ply an opponent-move, converting
the game into a 2-player zero sum game, which increases the
search depth and allows αβ-pruning to be used.

BRS was found to beat MaxN [16] and Paranoid [17]
search approaches for N > 2, and later extended to BRS+, in
which the other opponents take random actions to ensure that
the game state remains legal during search [18]. MaxN and
Paranoid both construct a single tree with nodes for all players.
In MaxN statistics at each node use the back-propagated value
specific to the player at that node, so that other players are
modelled as maximising their own win probability. Paranoid
instead assumes that other players aim to minimise our score.

OPPS generalises BRS+ with three parameters; n, the
number of opponents who are given an action space of size l1
in the tree, with the remainder given a (smaller) action space of
size l2 [9]. As with BRS, a move ordering function is required
to select the specific l1, l2 actions.

Opponent Move Abstraction (OMA) [8] uses the same
insight, that it may be beneficial to focus more of the com-
putational budget on self-moves than opponent responses, in
MCTS. OMA constructs a full tree containing all players,
but aggregates statistics for self-moves across nodes which
have the same sequence of self-actions from the root. This
set of aggregated statistics is then interpolated with the single
node statistics (i.e. just for the observed sequence of self- and
opponent-actions from the root), so that asymptotically only
the full tree statistics are used. OMA does not require a move
ordering function.



MT-MCTS differs from OMA by constructing a single tree
per player, only using the aggregated statistics, and in also
applying these aggregated statistics to opponent decisions.

All of the above algorithms have been tested in perfect in-
formation environments with sequential turn-taking by players.
Two of the games used here are perfect information (Tic-
TacToe; Dots and Boxes). The rest are imperfect information
with large amounts of hidden information; usually the draw
decks and opponent hands. For most of these (see Section V)
we use Information Set MCTS (IS-MCTS) with redetermin-
isation (shuffling) of unknown information at the root on
each iteration, and each node corresponding to an information
set from the perspective of the acting player [19]. Formally
IS-MCTS has no guarantees of converging to an optimal
(Nash Equilibrium) strategy due to the leakage of information
known to the root player into the implicit opponent models at
opponent decisions further down the tree [20]. However, this
becomes a problem only asymptotically, and in practice with
small computational budgets the algorithm can work well.

B. Multiple Trees in MCTS

Cowling et al. [19] construct one tree per player in Multiple
Observer Information Set MCTS (MO-ISMCTS). Their pur-
pose is to construct each tree using information sets from the
perspective of a different player, so that the modelled opponent
actions use information available to them, but not to the acting
player. Like us, MO-ISMCTS updates all trees using a single
trajectory, making decisions for each player using the statistics
in their tree and adding one node to each tree per iteration.
However, each tree in MO-ISMCTS contains the actions of all
players where these are visible to the tree-player. In contrast
we only include the actions of the tree-player.

IV. MULTITREE MCTS

In MultiTree MCTS the overall shape of the MCTS al-
gorithm described in Section II-A is unchanged. However,
because each iteration descends multiple trees, one per player,
it is possible for some of these to be in the Rollout phase,
while others are in the Selection or Expansion phases. Hence
the major change is to interleave these three phases on a single
trajectory as outlined in Algorithm 1.

We require a transition function T (s, a) : st+1 = T (st, at),
where st, at are the state at turn t and the action taken from
that state; a player function P (s), that returns the player whose
turn it is in state s; πroll(s), πexp(n), πtree(n) policies to use
in each of the rollout, expansion and selection phases, where
n is the current node in the search tree. We are careful to
distinguish the underlying state, s, from the tree node n, as
there is no 1:1 correspondence between these in IS-MCTS due
to different determinisations at the root on each iteration. This
difference is exacerbated in MT-MCTS as different visits to
a node may have included different actions by other players.
Hence, πexp and πtree both return the action a to be taken,
and the node n that this leads to in the current tree.

Starting from a root state on each iteration (line 1), we
initialise a root node for each player and store this in an array

Algorithm 1: One iteration of MultiTree MCTS
Input: Transition T (s, a), Player P (s), maxRoll, root

state, player count Φ, πroll(s), πexp(s), πtree(s)
Output: EndNode[i] ∀i ∈ 1..Φ, end state

1 Initialise roll = 0, s =root state,
2 ∀i ∈ 1..Φ : Node[i] = Node(),EndNode[i] = NULL;
3 while roll ≤ maxRoll ∧ s.isNotTerminal() do
4 p = P (s)
5 n = Node[p]
6 if n == NULL then
7 roll = roll + 1
8 a = πroll(s)
9 else if n has untried actions then

10 (a, n) = πexp(n)
11 EndNode[p] = n
12 Node[p] = NULL
13 else
14 (a, n) = πtree(n)
15 Node[p] = n
16 s = T (s, a)

17 foreach p ∈ 1..Φ do
18 if Node[p] ̸= NULL then
19 EndNode[p] = Node[p]

of current nodes (line 2). For the current player (line 4) we
determine what phase they are in (lines 6, 9, 13).

In the selection phase the tree policy (vanilla UCT is used)
picks an action and descends the current tree (line 14). The
new node reached is stored in the array of current nodes for
when the trajectory returns to this player (line 15).

In the expansion phase an action is picked (a uniform
random expansion policy is used) and a new node created
and stored in an array of final nodes reached (line 11). The
current node for the player is set to null to mark that the
trajectory has left their tree and moved into the rollout phase
(line 12).

In the rollout phase an action is picked using the rollout
policy (a simple random policy over valid actions is used).

The action selected for the current player advances the game
state, s (line 16). This whole loop is repeated until the game
ends, or the budget of rollout actions is reached (line 3). MT-
MCTS does not require domain-specific knowledge in the
form of a move-ordering heuristic function. Its complexity
in terms of forward model calls is unchanged from vanilla
MCTS, as the single trajectory updates each tree.

The EndNode array stores the last node in each player’s tree
(the one created as a result of expansion). Where a player has
not reached the Expansion phase, the EndNode is set to the
last node reached in the tree (lines 17-19). Standard back-
propagation then takes place independently on each player
tree from the corresponding EndNode. The value that is back-
propagated is the value of the final state, s to the player
concerned (see further details in Section V).



At any node we may not have the same set of actions
available on each visit, as this can depend on actions taken
by other players as well as the precise root determinisation.
To avoid over-exploring rarely seen actions, we use the same
technique as [19], and maintain separate statistics for N(a),
the number of visits for which action a could have been taken,
as well as n(a), the number of times the action was taken.
N(a) is used in place of N in the UCT equation.

V. EXPERIMENTS

We investigate five different MCTS variants:
• MaxN. This constructs a single tree including nodes

for all players. Statistics at each node use the back-
propagated value (score) specific to the player at that
node.

• Paranoid (PN). As MaxN, but the back-propagated value
for all opponents is -1 times the value for the root player.

• Self-MCTS (Self). This constructs a single tree including
only nodes for the root player. Other players act randomly
on their turns. It can be considered an extreme version of
MT-MCTS that treats the game as if it is single-player.

• MultiTree (MT). This uses the MT-MCTS algorithm
described in Section IV. In each tree the back-propagated
value is that of the player in that tree, analogous to MaxN.

• MultiTree Paranoid (MTP). As for MT, but assuming
other players act to minimise our score.

In all cases the heuristic used to value a state at the end of an
iteration is the current game score; with a bonus of 50% if the
player has won, and a malus of 50% if they have lost. The only
games not to have a game score are TicTacToe and Exploding
Kittens, which have instant win/lose conditions instead of the
winner being the player with the highest score at game-end.
For TicTacToe a score of +1 for a win, 0.5 for a draw and
-1 for a loss is used. For Exploding Kittens a heuristic of the
number of other players knocked out of the game is used.

Using the underlying game score takes advantage of a
common feature of modern board games without the need
to construct and tune game-specific heuristic functions. The
alternative approach of running all rollouts to game end is
possible, but the length of the games leads to weaker and
sparser reward signals and lower overall playing strength in
initial experiments.

There is a risk that this game score may be ‘deceptive’ in
the sense of [21], with short-term reward at the expense of
long-term gain. This is evident in Dominion where an early
pursuit of game score is easily beaten by a more strategic
focus on acquiring useful action cards first, and only starting
to buy victory point cards much later. This does not affect a
comparison between the MCTS variants, but can mean they
find a relatively poor optimum and can be beaten by a human
player, or by MCTS with a game-specific heuristic function
that takes these factors into account.

To pick the remaining MCTS parameters, we use previous
work on MCTS tuning on these games in TAG that shows
the two most important dimensions in MCTS-parameter space

Quadrant Games

No Rollout, IS-MCTS Uno, Love Letter
Rollout = 30, IS-MCTS Colt Express, Dominion, Exploding Kittens,

Poker, Diamant
No Rollout, PI-MCTS Dots and Boxes, Virus
Rollout = 30, PI-MCTS TicTacToe, Sushi GO!

TABLE I: Tuned quadrants for each game

are whether IS-MCTS is used, and the length of rollouts [22].
Based on this tuning we use parameters from four quadrants:

• IS-MCTS, No rollout
• Perfect Information MCTS (PI-MCTS), No rollout
• IS-MCTS, Rollout of 30 actions
• PI-MCTS, Rollout of 30 actions

PI-MCTS uses a single random determinisation at the root
node for all iterations. This is not the actual game state,
which is unknown to the players. PI-MCTS assumes hidden
information is perfectly known, but this can work surprisingly
well in some games [23]. The standard UCT selection rule is
used, with K normalised to the maximum game score, and a
maximum tree depth of 30.

The TAG framework controls the main game state, and
passes a copy of this to each agent when a decision is required,
with all hidden information randomised. The agent returns its
action selection, and the copy of the game state is discarded.
This avoids information sharing between agents. When a set
of games is run, the position of each agent is randomised so
that the order of decision-making varies across games. This
may be important if there is an advantage to going first for
example. Three sets of experiments were run (all on a 2.6 GHz
Intel Xeon Gold 6240 CPU):

1) Fixed MaxN opponent. An initial set of experiments
comparing MT, MTP, Self and PN against fixed oppo-
nents using MaxN in each game and player count. One
player uses the variant, and all others use MaxN. This was
repeated in each of the four MCTS parameter quadrants
with a 40ms budget and 1000 games.

2) Full tournaments. Round Robin tournaments were run
for each game with all 20 agents (each of the five variants
from each of the four quadrants), with a 40ms budget.
5000 games were run for each setting.

3) Tuned Quadrant tournaments. Round Robin tourna-
ments for each game using the five agents from the best
quadrant for that game. For each game the quadrant that
gives the best average performance in that game is used.
(Table I details the quadrants used.) Budgets of 40ms,
200ms and 1s were used. As only five agents are used,
the player count is capped at five to avoid duplicating
agents. Between 2k and 40k games were run for each
tournament, depending on game and budget. Uno was not
run at a 1s budget due to time and memory constraints.

VI. RESULTS AND DISCUSSION

The first two sets of experiments have issues that affect
their interpretation as explained in VI-A. The Tuned Quadrant



Fig. 1: Each MCTS variant plays individually against MaxN
in Colt Express. The baseline in grey/black is the expected
win rate at each player count the variant is equal in strength
to MaxN. Error bars show 95% confidence intervals. This
suggests that MultiTree MCTS is effective if we do not use
any rollout.

Fig. 2: Results of a Round Robin Tournament between all 20
agents in Colt Express. Zero rollout in the left two quadrants
performs poorly, rendering the relative benefit of MultiTree
MCTS in this case in Figure 1 moot.

tournaments are most informative, and we discuss these in
Sections VI-B to VI-E.

A. Fixed MaxN opponent and full tournaments

Major problems with interpretation of these results arise
because only performance against a default MaxN opponent
is measured, and because we look at this separately in each of
the four quadrants. This has the advantage of changing a single
variable at a time, but can give different effects depending on
the quadrant. For example, Figure 1 shows the results for Colt
Express. In the two quadrants with no rollout, MT, MTP and
Self all do very well against MaxN. However, in the other
two quadrants (with rollout of 30) this effect disappears for
2/3-players, and is much reduced in magnitude for 4-6 players.

Figure 2 shows the results of the Round Robin tournament
between all 20 agents for the same game. A zero rollout is poor
in Colt Express, and the fact that using MT or Self policies
gives a strong boost to performance over MaxN in this case
in Figure 1 is less important than the relatively small change
in performance seen when we use a longer rollout length, in
which playing strength is stronger across the board.

A better view of the impact of the MCTS variants comes
from considering their effect when the remaining MCTS
parameters are fixed at values tuned for the game, and when
we look at an average performance against all other variants.

B. Tuned Quadrant Tournaments

This is the rationale behind the third set of experiments.
For each game the quadrant that gives the best average
performance is used (Table I).

Figure 3 shows the best performing variants for each game,
player count and budget. In most cases MT and MTP perform
similarly, as do MaxN and Paranoid, so for clarity these have
been combined. In most games MT-MCTS (‘M’) is at least
competitive, with a win-rate equal to the winner within 95%
confidence intervals. In Poker, SushiGo! and Diamant it is the
best overall algorithm.

We can broadly partition the games into three groups. One
in which MT-MCTS does not provide any benefit over vanilla
MCTS (‘V’) for any computational budget (TicTacToe, Dots
and Boxes, Dominion, Exploding Kittens, Uno); a group in
which MT-MCTS works well at lower budgets only (Poker,
Sushi GO!, Virus); and a group in which MT-MCTS and
Self-MCTS are always dominant (Colt Express, Diamant,
LoveLetter).

We now look at each of these groups in turn. The full data
from one game in each is presented as an exemplar of the
pattern in Figures 1, 2, 4. The full set of results, with figures
for each game are available in supplemental material online1.

C. MT-MCTS good at lower budgets only

MT-MCTS works well in Poker, Sushi GO! and Virus
at lower budgets and is overtaken or matched by MaxN at
larger budgets. Figure 4 shows the detailed results for Poker.
This supports the initial hypothesis that the benefit of greater

1https://www.tabletopgames.ai/results/MT-MCTS-202204.html



Fig. 3: The best performing variants for each game, player count and time budget. ‘V’ (for vanilla) is used for MaxN or
Paranoid, ‘M’ for MT or MTP, and ‘S’ for Self. More than one coloured box show no significant difference in win rate at
a 95% confidence level. Grey boxes are for non-supported player counts, or experiments not run (Uno). These are roughly
sorted with games for which vanilla MCTS is best at the top, to those for which considering opponent moves is least useful.

Fig. 4: Tuned Quadrant Tournament results for Poker with computational budgets of 40, 200 and 1000ms. As the budget
increases the benefit of MT-MCTS declines with MaxN becoming dominant. This decline is less pronounced as the number
of players increases. Self-MCTS declines in relative performance as the budget increases.

search depth can help even at the cost of a poor modelling of
an adversarial opponent. As the budget increases MaxN can
search to a useful depth while modelling the benefit of actions
conditional on those of an opponent (and vice versa).

As the player count increases, the benefit of MT-MCTS
takes longer to decline (compare the trajectory of the orange
MT line in the plots of Figure 4). This is expected as the more
players included in a single tree, the less deep an agent can
search with respect to its own decisions.

Poker and Virus are ‘adversarial’ in that opponent actions
directly affect one’s own available actions (Poker) or material
position (Virus, in which players play cards to infect others’
organs and reduce their points). Sushi GO! is less expected
as here players construct sets of cards in their own tableau,
and cannot directly affect other players. However, it is one
of two games in the set in which all players take their
actions simultaneously, and the single tree of vanilla MCTS
is incorrect with its innate assumption that other players will

be able to take into account one’s own card-play. This may
explain why MT-MCTS is the best overall variant here.

D. MT-MCTS good at all budgets
A related pattern can be seen in Colt Express, Diamant, and

to a lesser extent in Love Letter. At lower budgets Self-MCTS
and MT-MCTS are the competitive variants with MaxN/PN
performing poorly. Figure 5 shows the detailed results for Colt
Express. At higher budgets Self-MCTS declines in relative
performance, with MT-MCTS doing better. For all player
counts above 2, Figure 5 also shows MaxN/PN increasing in
relative performance at 1000ms, but not sufficiently to surpass
the other variants.

This is consistent with the argument in VI-C. At smaller
time budgets the benefit of searching deeper for an agent’s own
plan is greater than any loss from ignoring opponent counter-
actions. As the budget increases this balance shifts, and the
benefit of deeper search under the incorrect assumption of a
single-player environment has diminishing returns.



Fig. 5: Tuned Quadrant Tournament results for Colt Express. Self-MCTS is the best performer, but its advantage declines as
the computational budget increases. MaxN and Paranoid increase in performance with budget, but are poor even at 1000ms.

Colt Express has two phases. A planning phase in which
players play cards (some hidden from opponents) that form an
order stack, followed by an execution phase that implements
this stack in sequence (alternating between players). There is
a particular benefit in a deeper tree search focusing only on
one’s own actions in the first phase, as this requires a coherent
set of actions (a plan) to be formed. This result of Self and
MT-MTCS working well is therefore expected.

Diamant is the second simultaneous move game in the set,
but with a branching factor of two, as each round players
decide simply on whether to ‘Stay’ or ‘Leave’. Like Sushi GO!
it is one in which MT-MCTS performs most strongly overall.
Independent trees for each player are better for modelling the
first decision of other players which should not be conditional
on the other (unknown) actions, even though actions on later
turns should formally be conditioned on previous actions of
all players.

E. MT-MCTS not helpful
In several games MT-MCTS is downright harmful, or

provides no benefit over vanilla MCTS. One subset consists
of perfect information, non-simultaneous games: Tic-Tac-Toe,
Dots and Boxes. These are exactly the games where we
expect MT-MCTS to be poor. In Dots and Boxes a bad
move is immediately exploitable by the other players, and
vanilla MCTS methods that condition on opponent moves are
essential. MaxN and PN play a perfect game of TicTacToe
at 40ms, and either draw or win. MT-MCTS in either form
loses the occasional game against them and is strictly worse,
although not within the statistical significance bounds used in
Figure 3. In this trivial game with a maximum tree depth of 9,
assuming the opponent acts randomly is not a good strategy
and there is no trade-off with depth of search.

All variants do equally well in Exploding Kittens, despite
the existence of instant-win situations, in which modelling an
adversarial response might be expected to help. The reasons
for this are not clear, but may be related to the very stochastic
environment.

The unexpected game in this set is Dominion, in which there
is little direct player interaction, and the game is mostly a race

to get the victory points available. This is a game that MT-
MCTS and Self-MCTS were expected to do well in. In this
group the exemplar is reverse-cherry-picked to avoid giving
the impression that all games fit the pattern. Figure 6 shows
the detail of tournament winners by player and budget count.
Unexpectedly we see a decline in MaxN and PN performance
in 2-player Dominion with an increasing budget, but the
expected increase in performance for 3/4-players, along with
the concomitant fall in performance of Self-MCTS. Dominion
is a relatively long game in turns which limits the number of
games in each tournament, and hence the wider error bars in
Figure 6, but the changes are still clear, even if the reason for
them is not.

VII. CONCLUSIONS

We have introduced a new variant of MCTS that constructs
one tree independently for each player, including only their
own actions. This permits deeper tree search that focuses on
the agent’s own plan, at the expense of less effective modelling
of how other players may respond, in line with the inspiration
behind [8]. We have tested this in a variety of 11 modern
tabletop games with differing player counts. MT-MCTS is of
particular benefit in games with simultaneous moves, where its
independent trees better model the information available for
the current decision. For relatively low computational budgets,
MT-MCTS or an extreme version, Self-MCTS, that assumes
a single-player game environment, are superior to standard
MCTS in many games. However, games in which there may
be specific counter-moves an opponent can make (TicTacToe,
or Dots and Boxes) do not benefit from this and performance
can be very poor. As the computational budget increases, the
average balance shifts in favour of standard MCTS, although
the details are highly game-specific.

One limitation in this work is that MCTS parameters have
been tuned over just four settings (quadrants) based on average
performance with a 40ms budget, although these settings are
suggested from previous work over a much richer search space.
This quadrant is used for all player counts, MCTS variants and
budgets. For a fairer comparison, MCTS parameters should be
tuned independently for each variant, game, budget and player



Fig. 6: Tuned Quadrant Tournament results for Dominion. This shows very different patterns for 2-player versus 3/4 players.
In the latter increasing budget harms Self-MCTS and helps MaxN/PN as expected. With 2-players MaxN/PN get significantly
worse with budget. This example illustrates that not all games follow the overall pattern.

count. None of the games showed changes in best performing
quadrant with player count, and Figure 2 is representative, but
it is possible that the best parameters for a game could be
significantly different at 1000ms than the 40ms used for this
initial tuning. This is for future work.

Other areas for future work are to understand in more detail
why some games are robust to any MCTS variant, while
others are very sensitive; and to compare MT-MCTS explicitly
with OMA [8], which weights the contribution of the full
conditional action tree with a Self-only tree.

One other avenue is to consider whether there are specific
parts of a game in which MT-MCTS or Self-MCTS can be
used producutively, shifting to vanilla MCTS at other times.
An example here is Colt Express with its distinct Planning
and Execution phases; using MT-MCTS in the first and vanilla
MCTS in the second may perform better than either alone.

ACKNOWLEDGMENT

This work was funded by the EPSRC CDT in Intelligent
Games and Game Intelligence (IGGI) EP/S022325/1.

REFERENCES

[1] S. Woods, Eurogames: The design, culture and play of modern European
board games. McFarland, 2012.

[2] K. Burgun, “Why Many Eurogames Are Inherently Single-Player
Games,” Feb. 2015. [Online]. Available: https://keithburgun.net/
why-eurogames-are-inherently-single-player-games/

[3] P. J. Jansen, “Using Knowledge about the Opponent in Game-Tree
Search.” CARNEGIE-MELLON UNIV PITTSBURGH PA SCHOOL
OF COMPUTER SCIENCE, Tech. Rep., 1992.

[4] J. Schaeffer, “A gamut of games,” AI Magazine, vol. 22, no. 3, pp.
29–29, 2001.

[5] R. Coulom, “Efficient selectivity and backup operators in Monte-Carlo
tree search,” in International conference on computers and games.
Springer, 2006, pp. 72–83.

[6] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis,
“Mastering the game of Go without human knowledge,” Nature,
vol. 550, no. 7676, pp. 354–359, Oct. 2017. [Online]. Available:
http://www.nature.com/doifinder/10.1038/nature24270

[7] M. P. Schadd and M. H. Winands, “Best reply search for multiplayer
games,” IEEE Transactions on Computational Intelligence and AI in
Games, vol. 3, no. 1, pp. 57–66, 2011, publisher: IEEE.

[8] H. Baier and M. Kaisers, “Guiding Multiplayer MCTS by Focusing on
Yourself,” in IEEE Conference on Games (CoG), 2020.

[9] ——, “Opponent-Pruning Paranoid Search,” in International Conference
on the Foundations of Digital Games, 2020, pp. 1–7.

[10] G. Chaslot, J.-T. Saito, B. Bouzy, J. Uiterwijk, and H. J. Van Den Herik,
“Monte-carlo strategies for computer go,” in Proceedings of the 18th
BeNeLux Conference on Artificial Intelligence, Namur, Belgium, 2006,
pp. 83–91.

[11] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I.
Cowling, P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis,
and S. Colton, “A Survey of Monte Carlo Tree Search Methods,”
IEEE Transactions on Computational Intelligence and AI in Games,
vol. 4, no. 1, pp. 1–43, Mar. 2012. [Online]. Available: http:
//ieeexplore.ieee.org/document/6145622/

[12] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in
European conference on machine learning. Springer, 2006, pp. 282–
293.

[13] R. D. Gaina, M. Balla, A. Dockhorn, R. Montoliu, and D. Perez-Liebana,
“Design and Implementation of TAG: A Tabletop Games Framework,”
arXiv preprint arXiv:2009.12065, 2020.

[14] S. V. Albrecht and P. Stone, “Autonomous agents modelling other agents:
A comprehensive survey and open problems,” Artificial Intelligence, vol.
258, pp. 66–95, 2018.

[15] S. Nashed and S. Zilberstein, “A Survey of Opponent Modeling in Ad-
versarial Domains,” Journal of Artificial Intelligence Research, vol. 73,
pp. 277–327, 2022.

[16] C. Luckhart and K. B. Irani, “An Algorithmic Solution of N-Person
Games.” in AAAI, vol. 86, 1986, pp. 158–162.

[17] N. R. Sturtevant and R. E. Korf, “On pruning techniques for multi-player
games,” AAAI/IAAI, vol. 49, pp. 201–207, 2000.

[18] M. Esser, M. Gras, M. H. Winands, M. P. Schadd, and M. Lanctot, “Im-
proving best-reply search,” in International Conference on Computers
and Games. Springer, 2013, pp. 125–137.

[19] P. I. Cowling, E. J. Powley, and D. Whitehouse, “Information Set Monte
Carlo Tree Search,” IEEE Transactions on Computational Intelligence
and AI in Games, vol. 4, no. 2, pp. 120–143, Jun. 2012. [Online].
Available: http://ieeexplore.ieee.org/document/6203567/

[20] T. Furtak and M. Buro, “Recursive Monte Carlo search for imperfect
information games,” in Computational Intelligence in Games (CIG),
2013 IEEE Conference on. IEEE, 2013, pp. 1–8.

[21] D. Anderson, M. Stephenson, J. Togelius, C. Salge, J. Levine, and
J. Renz, “Deceptive games,” in International Conference on the Ap-
plications of Evolutionary Computation. Springer, 2018, pp. 376–391.

[22] J. Goodman, D. Perez, and S. M. Lucas, “Visualising Multiplayer Game
Spaces,” IEEE Transactions on Games, 2021, publisher: IEEE.

[23] J. R. Long, N. R. Sturtevant, M. Buro, and T. Furtak, “Understanding
the Success of Perfect Information Monte Carlo Sampling in Game Tree
Search.” in AAAI, 2010.


