
Turning Zeroes into Non-Zeroes:
Sample Efficient Exploration with Monte Carlo

Graph Search
Marko Tot, Michelangelo Conserva, Diego Perez Liebana

Queen Mary University of London
London, United Kingdom

Sam Devlin
Microsoft Research

Cambridge, United Kingdom

Abstract—Monte Carlo Tree Search (MCTS) has proven to
be a staple method in Game Artificial Intelligence for creating
agents that can perform well in complex environments without
requiring domain-specific knowledge. The main downside of
this planning based algorithm is the high computational budget
needed to recommend an action. The fundamental cause of this
is a vast search space caused by a high branching factor, and the
difficulty to create a good heuristic function to guide the search
without leveraging domain-specific knowledge. Recent advances
in the field proposed a new planning based method called Monte
Carlo Graph Search (MCGS), which uses a graph instead of
a tree to plan its next action, reducing the branching factor
and consequently increasing the performance of the search. In
this paper, we propose several modifications that optimize the
performance by increasing the sample efficiency of MCGS. The
use of frontier for node selection, improving the rollout phase by
doing stored rollouts, and a generalized approach to guide the
search by incorporating a domain-independent online novelty
detection method. Together these enhancements enable MCGS
to solve sparse reward environments while using a significantly
lower computational budget than MCTS.

I. INTRODUCTION

Monte Carlo Tree Search (MCTS) [1] is a family of
algorithms based on Statistical Forward Planning (SFP). They
operate by searching for the optimal action to take given the
current state of the environment and work by constructing a
tree of possible future states that are used to select the best
action.

The main downside of Monte Carlo methods is the number
of rollouts needed to get a precise estimate of the state value,
which takes up a large portion of the computational budget
and limits their use in real-time tasks. As these rollouts are
typically done with a random policy for enacting actions, i.e.
the agent chooses its actions without any heuristics, these
methods rely on the Law of Large Numbers to get a precise
estimate of the values for each action given a particular state
[2]. To ascertain the value of a node, Monte Carlo methods
need to do the rollout step for every new node they encounter,
so their performance is directly reliant on the number of new
nodes. Even if a single step in the environment is fast, the sheer
amount of rollouts required to choose a single action limits
the applicability of these methods, especially in sparse reward
environments that require a lot of exploration. In sparse reward
environments, most of the rollouts don’t obtain any valuable

information, thereby effectively wasting the computational
budget.

Monte Carlo Graph Search (MCGS) is a modification of the
standard MCTS algorithm, in which the tree structure created
by the search is changed into a more generic graph. This
modification has proven to increase performance in environ-
ments where the reward signal is rich [3]. However, MCGS has
not previously been applied to sparse reward environments, in
which MCTS methods are known to struggle.

This study presents a combination of enhancements that can
be added to the current state of the art MCGS algorithm to
decrease the necessary computational budget while surpassing
the performance of the currently available solutions. This is
achieved by increasing the sample efficiency of the search
through improving the exploration rate. We propose the ad-
dition of three modifications, a maintained frontier of nodes
to reduce the overhead of the algorithm, storing of the nodes
during the rollouts, which pushes the frontier further away
from the currently explored space, and a novelty metric that is
used as the primary factor for selection phase before a reward
is obtained. Together these enhancements enable MCGS to
solve sparse reward environments while using a significantly
lower computational budget than MCTS.

II. RELATED WORK

MCTS performs the search by building a tree of future
possible game states and can be summarised in four steps,
reported in Figure 1. These four steps compose one iteration,
and iterations are repeated until the computational budget is
depleted, and the best action obtained from the tree structure
is enacted.

i) Selection. Starting from the root node, i.e. the current
state of the game st, a child selection policy descends
through the tree until it reaches a leaf node s′j .

ii) Expansion. The selected leaf node is expanded by adding
child node/nodes, based on the actions available to the
agent from that state.

iii) Rollout. A Monte Carlo simulation using a random rollout
policy is used to approximate the return from the new
child state. Ĵ (s′j) =

∑∞
t=0 R(s′j+t, πRandom)

iv) Backpropagation. The result of the rollout is used to
update the value of the trajectory from the expanded node



up until the root. This value is subsequently used by the
selection policy during the next iteration.

Fig. 1: Monte Carlo Tree Search steps.

The reason in favour of using trees for performing the search
lies in the theoretical simplicity of such a structure, which
allows defining simple yet effective rules for applying search
methods. However, the assumption of a tree structure does
not accurately portray the underlying structure of a game state
space. This simplicity of the tree structure comes at the cost
of redundancy of states [3], as different trajectories may lead
to the same state [4] and result in the same states appearing
multiple times in the tree, unnecessarily increasing the size of
the structure. Reducing the total number of nodes in the graph
leads to a lower number of rollouts required to evaluate them,
which in turn reduces the required computational budget.

When two identical nodes are merged, the tree becomes a
graph. Transposition tables [5] have been used in tree search
methods, as a way of combining identical nodes. Utilising this
new state-space created by merging nodes required adaptation
of the selection and backpropagation steps [6]. On one hand,
this transformation causes the search space to lose part of
its simplicity and increase the computational overhead of the
algorithm. On the other hand, the budget required to search
over the state-action space can be dramatically reduced. An
example of such transformation is shown in Figure 2.

Fig. 2: The graph obtained by merging identical states.

Techniques that reduce the number of states in the structure
are particularly useful in environments where the reward signal
does not give enough insight to guide the algorithm. Many
of these environments have sparse rewards, where for almost
all of the states, the agent does not get any reward. This
means that the agent is not receiving informative feedback

for the actions it takes, practically transforming MCTS into
an uninformed search algorithm, and uninformed search is
directly affected by the size of the state-space. Recent work
has also shown promise of using novelty in MCTS to guide
the exploration. Determining novel states can be an effective
way of enhancing the selection process in cases where nodes
have the same value. Several criteria have been used in order
to determine the novelty of the state. Heuristic novelty [7]
separates the nodes into novel and not-novel based on the
received rewards. ϕ-Exploration bonus algorithm [8] detects
novel states based on the probability distribution of variables,
while feature-based pseudo count builds on top of this idea but
instead of using atomic variables uses probability distribution
over composite features. An example of a feature for a game
of chess could be ”Black still has both knights” [9].

However, the addition of novelty methods with planning
based algorithms has only been used on top of an already
existing heuristic evaluation, still relying on domain knowl-
edge and handcrafting of the reward signal for the specific
environment. While this enhancement shows that novelty can
provide additional information to the agent, it doesn’t tackle
the issue of sparse rewards. Furthermore, the use of graph
based planners has not been explored in sparse reward envi-
ronments where sample efficiency and exploration techniques
are of a much higher priority.

III. METHOD

Our proposed algorithm is a highly modified version of the
state of the art SFP algorithm called Graph Based Planner
(GBP) [3]. GBP uses a graph structure as the basis for the
search, with Upper Confidence Bound for Trees (UCT) [10]
formula for the selection step, without doing any rollouts.
By skipping the rollout step this algorithm spends most of
its computational budget on expanding new nodes, which
allows it to explore a large state space. However this way
of exploration also heavily impacts the memory consumption
of the algorithms, as each expanded node needs to be added
to the graph.

Another available planner which uses graphs is Stochastic
Graph Based Planner (S-GBP) [3], which uses the GBP as its
basis but also incorporates the rollouts and also keeps value
bounds for each of the nodes instead of a single value.

As MCTS allows multiple identical states to exist in the
tree, the size of the created structures doesn’t effectively rep-
resent the explored state space. Graph search brings two main
benefits: it allows aggregation of states and easy detection of
obsolete actions.

The agent interacts with the environment through different
actions. At each step of the game, it must choose one of
the given actions in order to progress the game to the next
state. Some actions, however, might not have any impact on
the game due to special circumstances. Using action ’Drop
object’ while carrying no objects, doing ’Move Forward’ while
being in front of a wall, trying to unlock the door without
carrying the correct key, or being in the middle of a cut-
scene where actions might not have any effect on the game.



While still being registered as actions, the game will progress,
but the underlying game state might not change.Any action
that doesn’t affect the game state is an obsolete action. If an
obsolete action is registered during the expansion phase while
using MCGS, the node is not added to the graph, and the
rollout and backpropagation phases can be skipped as those
states have already been evaluated, and the value was already
backpropagated through the graph.

We present three different modifications that increase the
sample efficiency of the basic MCGS.

A. Frontier

A common technique for selecting a node for expansion
in the Monte Carlo family of algorithms, also used in GBP,
is the UCT formula, which balances the exploration and
exploitation of the game space. We propose an alternative
node selection approach consisting of maintaining a set of
leaf nodes (frontier) that are yet to be expanded. Every node
added to the graph is also added to the frontier. The selection
of the node is done according to Equation 1, which includes
the UCT formula as well as added random noise.

SelectedNode = argmax
s∈S

(ucb(s) + ϵ) (1)

where ϵ ∼ N (0, σ), σ = maxn∈∫ ucb(s), and S represents the
set of selectable nodes in the frontier. The frontier also allows
for a simpler process of updating the graph and determining
which nodes are reachable from the root node. Since the
complexity of the graph structure can make certain nodes in
the graph disconnected from the root after each step in the
environment, those nodes have to be omitted from the node
selection process in the next step. Even though marked as unfit
for the node selection process, these nodes are still kept in the
graph as a potential merging of the states could render those
nodes reachable again through a different action trajectory.

B. Stored rollouts

In MCGS, rollouts are done in order to ascertain the value
of a specific node. A valuable addition to the rollout step
could be adding the nodes visited throughout the rollout to
the graph. This technique has previously been tested with the
MCTS [11]. On one hand adding additional nodes to the under-
lying structure during the rollout phase provides a meaningful
difference in the exploration of the state space. On the other
as the information about the visited states needs to be stored
in the structure, increasing the memory consumption of the
algorithm. When used with MCTS, every state visited during
the rollout is added to the tree structure. Those trajectories
are likely to be non-optimal due to the randomness of the
rollouts and redundancy of the state. Compared to MCTS,
the graph structure in MCGS allows for inter-connectivity
between nodes and does not require us to store every visited
state, just the newly explored ones, and the optimality of the
path generated during the rollout can be modified by detecting
obsolete actions and merging the states. Alleviating some of
the memory issues as well.

C. Novelty

Novelty is detected by online analysis of the states using
a count-based technique. During the search, after a new state
has been encountered, features of the state are compared to the
ones already stored in the graph. For each feature, we count
how many times its value has been seen in the graph, and the
feature of that state is regarded as novel if its occurrence rate
is below a certain threshold. For every novel feature in the
state, the corresponding node in the graph is given a novelty
bonus. Including novelty as a factor adds a new component to
the selection step (Equation 2).

SelectedNode = argmax
s∈S

(ucb(s) + ϵ+ novelty(s)) (2)

Novelty inheritance is also enabled. If a node is reached
from a novel node it gets 50% of the parent’s node novelty.
This encourages further exploration from the area where a
novelty was found. Including novelty in the algorithm creates
a reward signal that guides the algorithm to select nodes
from the frontier which are new and different, consequently
improving exploration.

Novelty methods can also be combined with adding the
nodes during the rollout. A potential issue with maintaining
the graph created in this way would be the requirement to
store a large number of nodes. Restricting the addition of
nodes to only add the trajectories which contain novel states
could alleviate the issue of rapidly increasing graphs, i.e.
decrease the memory consumption, while preserving most of
the benefits regarding the exploration.

Based on these modifications we present several different
ablations of the algorithm1 based on types of enhancements
that were enabled:

• MCGS - Monte Carlo Graph Search with the frontier
• MCGS+R - MCGS with stored rollouts
• MCGS+N - MCGS with novelty search
• MCGS+RN - MCGS with stored rollouts and novelty
• MCGS+R*N - MCGS with stored novel rollouts and

novelty

IV. ENVIRONMENT

In this study, we chose MiniGrid [12] for the evaluation
of the agent. MiniGrid is a staple environment for assessing
the performance of the algorithms on grid-based levels [13]–
[16]. The agent has been tested in three different versions of
the environment, Empty, DoorKey and Stochastic DoorKey.
In the Empty environment, the agent needs to reach the goal
located in the grid, while in the DoorKey version there is an
additional requirement of picking up the key, unlocking the
door, and then reaching the goal. The stochastic setting also
adds a chance of action failure for each enacted action.

The state representation, i.e. the observation given to the
agent, consists of features extracted from the environment,
and the grid that represents the map. The choice of state

1The code is available at: https://github.com/markotot/MonteCarloGraphSearch



representation is crucial for the creation and maintenance of
the graph and influences the performance of the algorithm as
different state representations create different graph structures.

An example of using the novelty method in MiniGrid can
be seen in Figure 3. This state is not novel based on the Has
Key feature, where the value False is present in 572 of out
602 nodes in the graph. On the other hand, if the value was
True, the state would be regarded as novel due to the low
occurrence rate. The effect of utilising novelty search with the
reward signal in MiniGrid is presented in Figure 4, where each
cell in the heat map represents the mean value of the signal
the agent received for that position after backpropagation.

Fig. 3: Novelty detection in MiniGrid environment

(a) Level (b) Reward (c) Novelty (d) Combined

Fig. 4: Level layout and the corresponding value signals.

V. EXPERIMENTS

Figure 5 showcases the difference between the structures
created after only a couple of iterations of MCTS and MCGS,
caused by detecting obsolete actions and merging of the iden-
tical nodes in a sample MiniGrid level. These two structures
contain the same amount of information, the only difference
is in the redundancy of nodes in the tree.

Fig. 5: Difference in the tree and the graph structures caused by
merging identical states and detecting obsolete actions

A. Empty environment

Table I shows the comparison between the state of the art
planning algorithms and MCGS with different modifications
on an Empty 16 × 16 environment. We chose vanilla UCT
based MCTS, with the exploration constant set to 1, as the
baseline, and GBP and S-GBP [3] as they represent the
most recent work on MCGS that was created for the similar,
gridworld environment in mind. The cut-off was set to 99
steps: if the agent can’t reach the goal in 99 steps, the game
ends. One step in the environment corresponds to one action.

The performance of the agent is measured with two indica-
tors: whether the goal was reached at all, and how many steps
were used to do so. All algorithms were run on the same
budget of 8000 forward model calls (FMC) per step.

TABLE I: Different versions of MCGS compared with state of the
art planning methods, tested in Empty 16x16 environment.

Algorithm Steps Mean± STD Solve rate
MCTS 99± 0.0 0%
GBP 26.0± 0.0 100%

S-GBP 33.7± 0.8 100%
MCGS 34.1± 1.33 100%

MCGS+R 30.0± 1.24 100%
MCGS+N 31.4± 3.68 100%

MCGS+RN 29.1± 2.24 100%
MCGS+R*N 29.7± 2.85 100%

Even in this simple setting, MCTS fails to solve the envi-
ronment in any of the runs. All of the MCGS variants however
manage to finish all of the levels. With the small state space of
only 782 different states, all graph based algorithms have been
able to explore every state with little difference in the average
number of steps required to solve the level. Adding novelty
bonuses, or rollout nodes doesn’t impact the performance of
the algorithm in this simple environment.

It is also evident that GBP has the best performance in this
environment. As the number of different states is very low,
it is more effective to skip the rollouts completely and brute
force the search.

To analyse the effects of a larger state space on the perfor-
mance of the algorithms, the environment was changed from
Empty to DoorKey.

B. DoorKey environment

DoorKey environment is difficult for planning algorithms
that use no domain-specific heuristic for two reasons. Firstly,
the large grid makes the sparsity of the reward problem much
more evident. Some of the level layouts require the agent to
do up to 60 actions to get the reward. Secondly, the presence
of the inventory, i.e. the ability of the agent to pick up, and
more importantly drop the key. This interaction allows the state
space to expand extensively as dropping the key on any spot
in the grid creates a whole new set of states. These two factors
combined make this environment truly difficult for a planning
algorithm, as the chance of the agent traversing the grid from
the key to the door without dropping the key somewhere on the
way due to random rollouts is extremely low. For a uniform
random rollout of 50 actions, which is used for MCGS, the



TABLE II: Different versions of MCGS compared with state of the art planning methods, tested in DoorKey 16x16 environment.

Algorithm Checkpoint Discovered Solved Step Nodes New node
Key

Found
Door

Opened
Goal

Found
Mean± STD Mean± STD per FMC (%)

GBP 100% 100% 96% 64% 80± 20 103, 403± 24, 246 16.17
S-GBP 100% 96% 68% 0% 99± 0 44, 610± 10, 229 0.17
MCGS 100% 40% 24% 16% 95± 10 8, 939± 1, 048 1.18

MCGS+R 100% 92% 60% 56% 81± 22 32, 304± 9, 559 4.99
MCGS+N 100% 100% 96% 92% 60± 22 6, 276± 2, 113 1.31

MCGS+RN 100% 100% 100% 100% 45± 9 31, 371± 7, 924 8.64
MCGS+R*N 100% 100% 96% 96% 55± 20 6, 006± 1, 985 1.34

probability that the key isn’t dropped during the rollout is 1 in
2225. Changing to this environment increased the state space
from 782 to approximately 600, 000.

Each algorithm was run 25 times, each time on a different
level layout, with a budget of 8000 FMC per iteration. The
results are presented in Table II. The solved rate and the mean
number of steps were used to determine the effectiveness of
the algorithms at completing the level, while the number of
nodes measured the memory consumption of the algorithm.
In addition, the discovery rate for three different checkpoints
has been measured: Key Found, Door Opened, Goal Found.
Each of them represents if the state where the agent collected
the key, opened the door, or found the goal was encountered
during the search. Note that discovering these checkpoints
does not give any reward to the agent, they have only been used
for assessing the search efficiency of each method. Finding the
goal checkpoint indicates that the agent discovers the goal state
during the search, while solving the environment on the other
hand means that the agent actually reached the goal.

It is evident that basic MCGS isn’t able to solve the majority
of the levels, reaching the step limit on most of the level
layouts (84%). Large state space and the sparsity of the
rewards cause the rollouts to be ineffective in obtaining any
useful information about the value of the states, in order to
guide the further search. The addition of novelty bonuses or
storing nodes that are encountered during the rollouts increases
the performance of the algorithm and allows it to solve
some of the levels, showing that on their own, both of these
modifications can be used to improve exploration. MCGS+R,
solves 56% of the levels, while MCGS+N was able to reach
the goal in 92% of the tested levels. Using both modifications
at the same time improves the performance of the search even
further. Adding all of the nodes found during the rollout, in
conjunction with novelty bonuses reaches the overall solve
rate of 100%. The benefit is also evident from the lowest
average number of steps. Combining the two enhancements
also provides a high new node per FMC of 8.64%, the highest
between all of the rollout based methods. This means that the
exploration rate is 7 times higher compared to MCGS which
doesn’t utilise stored rollouts or novelty and 50 times higher
than S-GBP. Having the advantage of being able to select the
node far away from the root which comes from storing rollout
nodes, with knowing which of these nodes are promising
enabled by novelty detection creates a cohesion that boosts
the performance more than each enhancement separately.

Finally, there is a huge increase in the number of nodes
that are added to the graph in the modification with the
rollouts. This can greatly impact the memory consumption
of the algorithm which also has to be taken into account.
As the complexity of the environment grows so will the
state space and potentially the state representation as well,
so keeping the number of stored nodes low while maintaining
the performance is certainly a point of interest. One tested
modification includes only adding the paths to the novel
nodes during the rollout phase (MCGS+R*N). This procedure
decreases the number of stored nodes to a level similar to
not adding rollout nodes while outperforming both single
modification algorithms. However, this constraint does affect
the ability of the algorithms to solve the hardest levels which
can be seen when comparing the solve rate and the increase
in the number of steps required to solve the environment.

Both MCGS+RN and MCGS+R*N outperform the current
state of the art planning methods. Given enough computational
budget to search a significant portion of the space, GBP can
solve 64% of the levels. Without spending the budget on
rollouts, this method can search through a large amount of
space, creating 103, 403 nodes, which amounts to 16% of the
whole state space. We have to be mindful of the number of
nodes stored in the graph as well. As this is 3 times higher
than in MCGS+RN (31, 371), and 15 times higher compared
to MCGS+R*N (6, 006) the memory consumption is also
significantly higher for GBP. S-GBP often discovers the goal
but does not solve the environment. It also on average stores
44, 610 nodes, significantly fewer nodes compared to GBP, but
also still more than both MCGS+RN and MCGS+R*N.

To further compare approaches, additional metrics for each
of the subgoals are presented separately in Table III. Step
metrics represent the performance of the agent in regards
to optimality, with the ideal result being 1.0, meaning every
subgoal was discovered in the first iteration of the algorithm.
The number of FMC reflects the computational budget in
which the algorithm can solve the environment.

Both MCGS variants outperform the state of the art plan-
ning algorithms in both metrics. MCGS+RN is the most
sample-efficient on average spending 53, 893 FMC to discover
the goal, while MCGS+R*N presents itself as a promising
alternative solution, which allows for a trade-off between
computational budget and memory consumption while main-
taining most of the optimality of MCGS+RN. Compared to
MCGS+RN, it used several times more FMC but reduced the



TABLE III: Subgoal discovery metrics for GBP, S-GBP, MCGS+RN and MCGS+R*N in DoorKey 16x16 environment.

Algorithm Key Discovered Open Door Discovered Goal Discovered
Mean± STD Mean± STD Mean± STD

Step FMC Step FMC Step FMC
GBP 8.5± 3.7 663± 771 22.9± 6.3 38, 681± 69, 664 38.0± 10.4 442, 645± 201, 733

S-GBP 1.0± 0.0 840± 869 15.8± 21.9 118, 790± 171, 800 46.1± 30.6 364, 422± 256, 963
MCGS+RN 1.1± 0.3 1, 944± 2, 697 3.7± 3.3 24, 852± 26, 735 6.8± 5.7 53, 893± 45, 323
MCGS+R*N 1.0± 0.0 1, 509± 1, 476 12.5± 13.7 95, 051± 108, 925 19.6± 17.1 155, 486± 135, 296

TABLE IV: Main MCGS versions compared with state of the art planning method, tested in a stochastic DoorKey 16x16 environment.

Algorithm Checkpoint Discovered Solved Step Nodes New node
Key

Found
Door

Opened
Goal

Found
Mean± STD Mean± STD per FMC (%)

S-GBP 100% 88% 56% 0% 99± 0 36, 081± 8, 606 4.62
MCGS+R*N 100% 100% 80% 80% 74± 22 4, 821± 3, 014 0.81
MCGS+RN 100% 100% 100% 100% 59± 17 29, 894± 9, 071 6.25

number of stored nodes by a similar factor. This trade-off could
be useful when the state representations become large enough
that high memory consumption becomes an issue.

Although MCGS+RN shows the best performance it is
necessary to mention that the average number of steps to
complete the level is still not optimal. After 50 runs with
different seeds on the same 16x16 DoorKey environment, the
average number of steps required to solve the environment was
53.5± 7.8, while the optimal route takes 40 steps.

There are two reasons for this sub-optimal solution. First, it
takes the algorithm multiple steps to explore the environment
and discover the goal, i.e. it depletes the computational budget
several times before discovering it. Until the agent discovers
the goal, it is purposelessly moving around the environment.
For a harder level layout, where the optimal route would take
40 steps, the average number of steps required to discover the
goal was 7.2 with the standard deviation of 6.9. Secondly, due
to the random rollouts, there is a high chance the path itself
is not optimal, which is manifested by the agent occasionally
spending an action to drop the key along its path to the goal.
The average discovered path length was 46.3± 4.8, 6.3 more
than the optimal route. Combined, these two factors are the
cause of the disparity between the optimal and the obtained
solution. Figure 6 shows the comparison between optimal
solution and the solutions from different seeds of MCGS+RN.

C. Stochastic DoorKey environment

The most effective variants, MCGS+RN and MCGS+R*N
were then tested on a non-deterministic version of the
DoorKey environment. In this setting, every action has a 20%
chance of failure, meaning that instead of the selected action,
the agent might perform a DoNothing action. Table IV shows
the performance of the algorithms when presented with an
environment with stochastic elements. The GBP version of
the algorithm was excluded from the comparison as it was not
able to operate in a stochastic environment. Each algorithm
was run 25 times, each time on a different level layout, with
a budget of 8000 FMC per iteration.

The average amount of steps required to solve the environ-
ments increases by approximately 30% for both MCGS+RN
and MCGS+R*N. The 20% increase comes as a result of the

Fig. 6: Impact of agent seed on the performance of MCGS+RN.

paths to the goal essentially being 20% longer due to the action
failure chance. The cause for the other 10% is most likely due
to critical actions like Picking up the key, Opening the door
or Moving through the door being failed, and therefore not
considered as potential options. This is also reflected in much
higher standard deviation, as missing critical states during the
expansion or rollouts can be detrimental.

VI. CONCLUSION AND FUTURE WORK

In this study, we presented a new planning algorithm
that surpasses the current state of the art in the domain of
sparse environments. Taking advantage of the graph structure
to eliminate node redundancy through merging nodes and
disregarding obsolete actions already creates a good basis
due to the reduction in the branching factor. We proposed
several additions that work symbiotically to allow for planning
methods to be effectively used in sparse reward environments.
Combining the use of the frontier for the selection step, with
storing the nodes during the rollout, and adding a novelty
bonus as the intrinsic exploration incentive increases the sam-
ple efficiency of MCGS creating an effective way of searching



through large state spaces. Our results demonstrate that com-
bining these modifications shows a significant decrease in the
computational budget necessary to discover, and later on reach
the goal compared to standard MCTS and current state of the
art planning based methods.

Novelty bonuses based on occurrences of features of the
state space in the graph provide a generalizable way of giving
additional information to the agent and decreases the number
of FMC until the goal is reached by a large margin. To
further enhance the exploration it could be possible to take
into account not only novelty through occurrences of states,
but also look for the empowerment of the agent through graph
analysis, and the change in state features caused by specific
actions to add a surprise factor as well [17], [18].

Storing rollouts throughout the search also manifested as
a key part of the algorithm. It significantly improved the
performance in conjunction with the novelty bonuses. Storing
each path visited during the rollouts expanded the frontier
greatly and enabled the search to continue from a state
further from the root node. Nonetheless, the experiments
have presented a high variance during the execution of the
algorithm, partially due to the non-optimal paths caused by
random rollouts. Disabling certain actions during a portion of
the rollouts, or having dynamically adjusted rollout lengths
could reduce the variance and give more consistent results
over multiple seeds [19]. Following the notion of exploration
vs exploitation, using a portion of the computational budget
to optimize the best-known path while still using the rest to
explore the environment may also lead to an improvement
in the path length of the discovered solution. Optimizing
the length of the solution path with the addressed issue of
the lower computational budget would further improve the
effectiveness of MCGS in the environments in which it has
been struggling.

A further line of research could also include testing the
effects of different exploration incentives such as novelty and
stored rollouts in multiplayer environments. It would be inter-
esting to compare the MCGS and the benefits its enhancements
provide with the standard planning based methods in both
adversarial and cooperative settings.

VII. ACKNOWLEDGEMENT

Marko Tot is supported by the 2020 Microsoft Research
PhD Scholarship Program. This paper is also funded by
EPSRC CDT in Intelligent Games and Game Intelligence
(IGGI) EP/S022325/1.

REFERENCES

[1] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in games, vol. 4, no. 1, pp. 1–43,
2012.

[2] C. P. Robert and G. Casella, Monte Carlo Integration. New York,
NY: Springer New York, 2004, pp. 79–122. [Online]. Available:
https://doi.org/10.1007/978-1-4757-4145-2 3

[3] E. Leurent and O.-A. Maillard, “Monte-carlo graph search: the
value of merging similar states,” in Proceedings of The 12th Asian
Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, S. J. Pan and M. Sugiyama, Eds., vol.
129. PMLR, 18–20 Nov 2020, pp. 577–592. [Online]. Available:
https://proceedings.mlr.press/v129/leurent20a.html

[4] B. E. Childs, J. H. Brodeur, and L. Kocsis, “Transpositions and move
groups in monte carlo tree search,” in 2008 IEEE Symposium On
Computational Intelligence and Games, 2008, pp. 389–395.

[5] A. Kishimoto and J. Schaeffer, “Distributed game-tree search using
transposition table driven work scheduling,” Proceedings International
Conference on Parallel Processing, pp. 323–330, 2002.

[6] A. Saffidine, T. Cazenave, and J. Méhat, “Ucd: Upper confidence bound
for rooted directed acyclic graphs,” Knowledge-Based Systems, vol. 34,
pp. 26–33, 2012.

[7] M. Katz, N. Lipovetzky, D. Moshkovich, and A. Tuisov, “Adapting
novelty to classical planning as heuristic search,” in ICAPS, 2017.

[8] J. Martin, S. S. Narayanan, T. Everitt, and M. Hutter, “Count-based
exploration in feature space for reinforcement learning,” in Proceedings
of the 26th International Joint Conference on Artificial Intelligence, ser.
IJCAI’17. AAAI Press, 2017, p. 2471–2478.

[9] H. Baier and M. Kaisers, “Novelty and mcts,” in Proceedings of
the Genetic and Evolutionary Computation Conference Companion,
ser. GECCO ’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 1483–1487. [Online]. Available: https://doi.org/10.
1145/3449726.3463217

[10] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,”
in Machine Learning: ECML 2006, J. Fürnkranz, T. Scheffer, and
M. Spiliopoulou, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 282–293.

[11] D. J. N. J. Soemers, C. F. Sironi, T. Schuster, and M. H. M. Winands,
“Enhancements for real-time monte-carlo tree search in general video
game playing,” in 2016 IEEE Conference on Computational Intelligence
and Games (CIG), 2016, pp. 1–8.

[12] M. Chevalier-Boisvert, L. Willems, and S. Pal, “Minimalistic grid-
world environment for openai gym,” https://github.com/maximecb/
gym-minigrid, 2018.

[13] Y. Flet-Berliac, J. Ferret, O. Pietquin, P. Preux, and M. Geist, “Adver-
sarially guided actor-critic,” in ICLR, 2021.

[14] N. R. Ke, A. Singh, A. Touati, A. Goyal, Y. Bengio, D. Parikh, and
D. Batra, “Learning dynamics model in reinforcement learning by
incorporating the long term future,” 2019.

[15] E. Leurent and O. Maillard, “Practical open-loop optimistic planning,”
CoRR, vol. abs/1904.04700, 2019. [Online]. Available: http://arxiv.org/
abs/1904.04700

[16] M. Jiang, E. Grefenstette, and T. Rocktäschel, “Prioritized level replay,”
in Proceedings of the 38th International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, M. Meila
and T. Zhang, Eds., vol. 139. PMLR, 18–24 Jul 2021, pp. 4940–4950.
[Online]. Available: https://proceedings.mlr.press/v139/jiang21b.html

[17] D. Gravina, A. Liapis, and G. Yannakakis, “Surprise search: Beyond
objectives and novelty,” in Proceedings of the Genetic and Evolutionary
Computation Conference 2016, ser. GECCO ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 677–684. [Online].
Available: https://doi.org/10.1145/2908812.2908817

[18] E. Hartuv and R. Shamir, “A clustering algorithm based on graph
connectivity,” Information Processing Letters, vol. 76, no. 4, pp.
175–181, 2000. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0020019000001423

[19] R. Gaina, S. Lucas, and D. Perez Liebana, “Tackling sparse rewards in
real-time games with statistical forward planning methods,” Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1691–
1698, 07 2019.


