
Improving Bidding and Playing Strategies in the
Trick-Taking game Wizard using Deep Q-Networks

Jonas Schumacher
Nexocraft GmbH
Bonn, Germany

jonas.schumacher@tu-dortmund.de

Marco Pleines
Dpt. of Computer Science, TU Dortmund University

Dortmund, Germany
marco.pleines@tu-dortmund.de

Abstract—In this work, the trick-taking game Wizard with a
separate bidding and playing phase is modeled by two interleaved
partially observable Markov decision processes (POMDP). Deep
Q-Networks (DQN) are used to empower self-improving agents,
which are capable of tackling the challenges of a highly non-
stationary environment. To compare algorithms between each
other, the accuracy between bid and trick count is monitored,
which strongly correlates with the actual rewards and provides
a well-defined upper and lower performance bound. The trained
DQN agents achieve accuracies between 66% and 87% in
self-play, leaving behind both a random baseline and a rule-
based heuristic. The conducted analysis also reveals a strong
information asymmetry concerning player positions during bid-
ding. To overcome the missing Markov property of imperfect-
information games, a long short-term memory (LSTM) network
is implemented to integrate historic information into the decision-
making process. Additionally, a forward-directed tree search is
conducted by sampling a state of the environment and thereby
turning the game into a perfect information setting. To our
surprise, both approaches do not surpass the performance of
the basic DQN agent.

Index Terms—Trick-Taking Games, Wizard, Partially Observ-
able Markov Decision Process, Deep Q-Networks

I. INTRODUCTION

Deep Reinforcement Learning (DRL) has been shown to
be a fruitful approach to optimize strategies in games with
perfect information such as Atari games [1] or board games
like Chess and Go [2]. At the same time, games with imperfect
information like card games still constitute a major challenge
for DRL algorithms [3]. The partial observability violates the
Markov property and is expected to require the integration
of historic information to be solvable by DRL approaches
[4]. Learning in a self-play multi-agent setting is highly non-
stationary, which may cause troublesome instability during
optimization. Another challenge is apparent when the agent
cannot take an action during the turn of another player,
which does not conform to a regular Markov Decision Process
(MDP). Therefore, the agent has to operate on two different
time scales. One requires the agent to just perceive the other
players’ turns, while the other one asks the agent to take action.
Moreover, trick-taking games pose the issue of observation
and action spaces that vary in size throughout a game. At
last, forward-directed search, common in two-person zero-sum
games, cannot directly be applied in imperfect-information
settings.

This work studies the trick-taking game Wizard with 4
players, which consists of 15 rounds shown in figure 1. Each
round from r = 1 to r = 15 starts with a dealing phase in
which one card is drawn to determine the trump suit (except
for the last round which has no trump suit) and exactly r cards
are dealt to each player. In the bidding phase, the players need
to estimate how many tricks they are going to take in the
subsequent playing phase. The first card in each trick sets the
lead suit which has to be followed by the other players. The
player who played the highest card wins the trick and begins
the next one. Wizard is played with 60 cards consisting of
a standard 52-card deck and 8 special cards. The 4 wizards
even beat the highest trump card and the 4 jesters are beaten
by even the lowest regular card. In the case of drawing one of
the special cards in the beginning, it is assumed that no trump
suit exists in that round. Only if players exactly hit their initial
bid x, they receive 20+10 ·x points in the evaluation phase at
the end of each round. If their final trick count y differs from
their initial bid x, they receive a penalty of −10 · |x− y|.

Due to the separate bidding and playing phase, Wizard is
a highly interesting environment for the application of DRL
algorithms. In bidding, players need to solve a prediction task
by anticipating what is going to happen in the playing phase
even though little information is available. The goal of this
work is to not only create powerful self-improving agents but
at the same time gain insights into the underlying imperfect-
information environment itself.

We demonstrate that the Deep Q-Network (DQN) algorithm
is able to handle the non-stationary environment induced by
self-play. The agent is robust and able to generalize by out-
performing a random and rule-based agent, while only facing
itself during training. For the DQN implementation, neither
supervised learning approaches nor human demonstrations are
considered to establish this outcome. To our knowledge, this
work is the first one to use a purely DRL-based approach to
optimize both bidding and playing.

We further study the integration of historic information to
restore the violated Markov property. A sequence-to-sequence
model is trained in isolation to encode the entire history of
played cards which is used to predict a diverse range of dif-
ferent tasks. This model’s hidden state is then used to augment
the DQN agent’s observation space, which surprisingly does
not improve its performance.

Dealing Bidding
MDP Evaluation

Playing MDP

First Trick Second Trick Last Trick

Cards dealt Last bid Last card
played

Reward

Fig. 1: Structure of one game round: each round consists of a dealing, bidding, playing, and evaluation phase. The bidding and the playing
phases are modeled by two interleaved (partially observable) MDPs.

At last, a model-based approach is examined. To this end,
the agent learns to predict a probability distribution of possible
true states of the environment. It then samples a state from
that distribution and performs a simple tree search to explore
terminal nodes of the game tree to improve its decisions.
However, performing such a tree search does not increase the
agent’s outcome either.

This paper proceeds as follows. Related work on similar
trick-taking games and their approaches are showcased next. In
the approach section, the Wizard environment will be modeled
by two interconnected POMDPs and the three approaches
that seek to improve bidding and playing strategies will be
introduced. Afterward, results for all three approaches will be
described. The surprising ineffective outcomes of the two latter
approaches and an apparent information asymmetry between
players and across different game rounds are discussed before
concluding this paper with future work.

II. RELATED WORK

In the past years, several approaches were proposed to trans-
fer the findings from perfect-information games to imperfect-
information games with some of them focusing on trick-
taking games in particular. Yeh et al. [5] focused exclusively
on the bidding phase of the cooperative card game Bridge.
They implemented a DQN algorithm using raw data as input
for the neural network. Baykal et al. used fully-connected
neural networks (FNN) to analyze the card game Batak.
Supervised learning was used for bidding, and a Monte-Carlo-
based Reinforcement Learning (RL) algorithm for playing [6].
Another common approach in literature consists of imitating
human expert moves by training the agent in a supervised
manner as was done in Rebstock et al. for the game of Skat
[7]. Backhus et al. examined the suitability of RL for the trick-
taking card game Wizard [8]. In bidding, two decision-makers
were implemented: one rule-based agent and one agent based
on an FNN. The FNN was trained in a supervised manner
by approximating the tricks actually received at the end of
each round. In playing, the authors used a model-based RL
approach originally proposed by Fujita et al. [9].

Regarding the historic preprocessing, Obenaus [10] an-
alyzed the trick-taking game Doppelkopf. An LSTM was
implemented to predict the next card going to be played using
the history as input.

For improving strategies at decision-time, Monte-Carlo Tree
Search (MCTS) is a promising path, but it cannot directly be
applied to imperfect-information games. Niklaus et al. [11]
instead evaluated two possible approaches called Determinized

MCTS and Information Set MCTS [12] on Jass. Similar works
have been conducted by Brown et al. [13] for Poker, by Ishi
et al. [14] for Hearts and by Buro et al. [15] for Skat. All
these works have in common that, before applying MCTS
techniques, a state estimation must be conducted. To that goal,
Solinas et al. [16] used both historic and general information
as input to an FNN to predict the distribution of cards.

III. APPROACH

After clarifying general assumptions about the agent-
environment interaction all three implemented models will be
explained.

A. Assumptions about the Agent-Environment Interaction

In Wizard, the final score of each player is determined by
the sum of points received in all 15 game rounds. It is therefore
assumed that agents always try to attain as many points as they
can in each round in order to win the overall game. This allows
analyzing game rounds independently instead of monitoring
the overall number of victories.

Due to the particular properties of the reward function
explained in the first section of this work, instead of the actual
reward received at the end of each game round, the accuracy
between bid and trick count is used to visualize the agents’
performance. This type of evaluation was chosen because it
always ranges between 0% and 100% and therefore allows to
compare performances across different game rounds.

Figure 1 shows how each game round is modeled by two
interconnected (partially observable) MDPs. Bidding is a one-
step MDP in which the agent uses a fully-connected neural
network (FNN) to map an input vector consisting of its
own cards, its position in the player order, the trump suit,
and the bids of the previous players to an action which is
interpreted as that player’s bid. Playing is a multi-step MDP
containing as many cycles as there are cards to be played.
Apart from the information already used in bidding, the input
vector now also contains the number of tricks already taken
in previous tricks, the player’s position, the suit to follow,
and the highest card in the current trick. The output of the
playing network is interpreted as the card to be played in that
specific trick. As the player’s choice of which card to play
is restricted most of the time, the possible actions, varying
in count throughout one round, have to be filtered using
invalid action masking [17]. Elements of the input vectors are
one-hot encoded. The bidding and playing MDPs share the
same reward signal which corresponds to the [0,1]-normalized
points the agents receive at the end of the round.

Fig. 2: Structure of the fully-connected neural network in the bidding
phase. For each of the r ∈ {1, 2, ..., 15} game rounds a separate
network with a different input and output shape is trained.

Fig. 3: Structure of the fully-connected neural network in the playing
phase. For each of the r ∈ {1, 2, ..., 15} game rounds a separate
network with a different input shape is trained. The output layer is
masked in order to remove inadmissible actions.

B. Deep Q-Networks

Training is done using the DQN algorithm introduced by
Mnih et al. [1]. The underlying implementation1 is based on
reference implementations from [4] and [18].

Figures 2 and 3 show the architecture of the neural networks
that are used for bidding and playing respectively. For each of
the 15 game rounds, two (one for bidding and one for playing)
FNN with three hidden layers are trained. The training is
conducted in self-play. While a game round proceeds, all four
players use the same neural network for decision-making and
the same replay buffer to save their individual experience
tuples. After each 10th game round the joint network is trained
and after each 20th game round, 10% of the target network
weights are replaced by weights from the trained network.

C. Historic Preprocessing

The basic DQN algorithm presented in the previous sub-
section implicitly contains some part of the game’s history
encoded in the input vector. In this subsection, the whole
history of played cards will be processed by a long short-
term memory (LSTM) network [19]. The hidden state from
that LSTM network will then be used as additional input to
the DQN algorithm.

Figure 4 shows the learning task of the LSTM which corre-
sponds to a sequence-to-sequence model. The input sequence
consists of the card that has been played, the player who
played it and the current trump suit. The output sequence also
consists of three elements: the information about which player
played which cards so far, which suit cannot be followed by

1https://github.com/jonas-schumacher/drl-pomdp

Fig. 4: Unfolded LSTM cell representing the historic preprocessing.
The input sequence of played cards is mapped to an output sequence
of specific tasks. The hidden cell state is later used as additional input
for the DQN agent.

Fig. 5: Different time scales in observing cards (used by the LSTM
agent in historic preprocessing) compared to playing cards (used by
the DQN agent in decision-making).

which player and which player played the highest card in the
current trick.

By processing the whole history of played cards, the agent
acts on the white time scale shown in figure 5. This means the
agent observes played cards even if it is not asked for action.
This contrasts with the basic DQN agent which acts on the
black time scale in figure 5.

D. Model-based Tree Search

For the last approach covered in this paper, the agent
performs a forward-directed tree search at decision-time to
improve its choices in the playing phase. The approach has
been inspired by [11] and [14]. To establish such a search
the agent needs a model of the environment, which means it
must know or approximate how its actions affect both the state
transition and the reward function of the environment.

However, in trick-taking games, the agent has uncertainty
about two components of the environment. First, the agent
does not know the true state of the environment (i.e., its
position in the game tree) due to the partial observability of
the environment. This is visualized in figure 6. The agent
cannot conduct a tree search to explore the grey nodes if
it does not know in which of the black nodes it is actually
located. Second, as the agent’s opponents are also part of the
environment, it does not know with certainty how they will
behave during the game. Therefore, the agent needs to pretend

Fig. 6: A generic game tree with two possibly realized paths shown
in bold black. The grey nodes depict possible future game states.

TABLE I: The state of the environment can be formulated by mapping
each card to a specific location.

In the deck In the hand of Played by Σ
P1 P2 · · · P1 · · ·

Card 1 0 1 0 · · · 0 · · · 1
Card 2 1 0 0 · · · 0 · · · 1
· ·

Card 60 0 0 1 · · · 0 · · · 1

to have full information about both the state and the strategy
of the other players.

Regarding the first challenge, a model of the environment
can be described by the location of each card as shown in table
I. Once the agent knows one specific state, it can simulate
subsequent states of the game by observing the other players’
actions. In this work, three possible ways of creating a model
have been implemented:

1) Using the ground truth from the environment
2) Sampling from a uniform distribution of possible states
3) Sampling based on the output of a neural network
Regarding the second challenge, it was assumed that the

other players follow the same strategy as the optimized player.
In the case of the self-play algorithm implemented in this
work, this assumption even corresponds to the truth.

Once the agent has sampled a state of the environment and
has an assumption about how the other players act, it can
perform a tree search. To this end, whenever the agent is called
upon action in the playing phase, it simulates the environment
and finishes the current game round. If another player is asked
to choose an action during that simulation, the agent uses its
own DQN network to simulate that decision. It performs one
simulation for each possible action and chooses the action that
results in the highest reward.

IV. EXPERIMENTAL ANALYSIS

The experiments in this section are divided into three
subsections. First, the results of the basic DQN agent are
presented. Second, the historic preprocessing using an LSTM
is shown. And third, the optimization at decision-time based
on a model of the environment is illustrated.

A. Deep Q-Networks

The hyperparameters that are used in DQN are mostly
identical for bidding and playing. They are inspired by the
aforementioned reference implementations and are further
tuned using trial-and-error. Notably, a much larger replay
buffer and batch size are vital.

• Gamma (γ): 1.0
• Exploration strategy: exponential ε-decay from 1.0 to

0.01 in 90% of training time
• Replay buffer size: 300, 000 (bidding) / 600, 000 (play.)
• Batch size: 1024
• Activation function in hidden layers: ReLU
• Learning rate: 0.0005
• Optimizer: Adam
As one example, figure 7 shows the accuracy during the

training of the last round (round 15) of the DQN agents. Each

Fig. 7: Accuracy of identical DQN agents during self-play training
of round 15 (last round). Performance differences across players are
caused by the stochasticity of the environment.

Fig. 8: Mean and standard deviation of 5 different runs of the final
accuracies for three different versions of the DQN algorithm.

data point shows the average accuracy of 4000 game rounds.
Agents perform almost identically because bidding positions
were chosen randomly and all agents use the the same neural
networks for decision-making.

Figure 8 shows the final accuracy of the DQN agent for
all 15 game rounds. Each colored curve shows the mean
and standard deviation of 5 optimization runs using different
seeds. The performance of the DQN agent was measured in
evaluation mode, which means an already trained agent with
a purely greedy strategy (ε = 0) was used. Each data point
is the average of 10,000 game rounds per bidding position
which corresponds to 40,000 game rounds in total. The black
chart is the initial DQN run and the red and blue charts are
retrained improvements using checkpoints of previous DQN
versions. For the retrained versions, training started with a
lower exploration value of ε = 0.3. What is salient here is the
pronounced U-shape of the final accuracies. It seems that the
agent struggles most in intermediate rounds, where the final
accuracy is around 65-67%. In the first round, it is constantly
on a level of 87% and in the last round, it reaches levels of
almost 80%.

Figure 9 compares the final accuracies of one of the initial
DQN runs presented in figure 8 to that of a rule-based agent
and a random agent each playing against three opponents of
the same type. The random agent in blue always chooses
actions at random and its performance strictly decreases from
1
2 = 50% to 1

16 ≈ 6%. The rule-based agent uses hard-
coded rules for decision-making which can be found in the

Fig. 9: Accuracy of different agent types across game rounds.

Fig. 10: Influence of the player’s bidding position on the final
accuracy.

contributed source code. In bidding, it evaluates its hand by
calculating the winning probability of each card. In playing,
it chooses an admissible card based on the difference of its
bid and trick count and its chances to win the current trick.
Notice that figure 9 and all following figures represent the
evaluation of one training run, i.e. using one seed only. This
is motivated by figure 8 which conveyed the fact that results
across multiple training runs show little variance.

The black curve from figure 9 represents an average over
all possible player positions. It can further be divided into
accuracies based on the bidding positions which are shown
in figure 10. The accuracy tends to increase with the player’s
position and this effect is especially strong in the first rounds
of the game.

Fig. 11: Performance of DQN agents against varying numbers of
random opponents. Accuracies shown in light colors are based on
the self-play DQN agent also shown in figure 9. For the solid curves,
DQN agents were retrained against random opponents.

Fig. 12: Performance of trained DQN agents against different num-
bers of rule-based opponents. Similar to figure 11, light curves show
accuracies of the self-play DQN agent whereas solid curves are
retrained DQN versions.

Figure 11 shows the performance of DQN agents against
different numbers of random agents. The pale curves corre-
spond to a direct evaluation of the trained DQN agents and
decline with the number of random agents participating in
the game. The solid curves are accuracies measured after an
additional DQN training against random agents using the same
hyperparameters as in self-play training. With this additional
training, the performance is only slightly worse than that of
the pure self-play DQN shown in black. Notice that this has no
effect on the accuracy of the random agents which is constantly
1

r+1 where r is the round to be played.
Figure 12 shows similar charts as figure 11 for the evalu-

ation against rule-based agents. Again, in the case of direct
evaluation, the performance of the DQN agent drops if more
rule-based agents participate in the game. However, even in
the case of 3 rule-based opponents, the DQN agent achieves
accuracies of more than 55% without ever having played
against rule-based agents before. This shows that the self-
play training was able to generalize toward a wider range
of possible opponents. If DQN agents are allowed to retrain
themselves, their performance even surpasses that of the self-
play DQN agent. This effect is strongest if more rule-based
agents are involved. Surprisingly, playing against DQN agents
has a positive effect on the accuracy of rule-based agents. Their
average accuracy per game round increases by 2 (in the case
of one DQN agent) to 6 (in the case of three DQN agents)
percentage points compared to their baseline performance.

B. Historic Preprocessing

The LSTM training consists of two parts. First, the LSTM
agent is trained in a supervised manner to learn a representa-
tion of the explicit history provided as input sequence. Second,
in the playing phase, the internal state of the agent shown in
figure 4 is concatenated to the input of the basic DQN agent.

During training, the following hyperparameters are used:

• Replay buffer size: 10, 000
• Batch size: 64
• Size of hidden cell: 50 / 100 / 150
• Learning rate: 0.005

Fig. 13: Final loss (averaged over 100 training epochs) of training
the LSTM network across different game rounds.

Fig. 14: Final accuracy of DQN agents in self-play when using
additional historic input from LSTM preprocessing.

Figure 13 shows the final loss of the LSTM training
averaged over 100 training iterations as a function of all
15 game rounds. The three graphs represent the size of the
hidden cell of the LSTM agent. As can be seen, a hidden size
of 150 is sufficient to perfectly map the input sequence to
the output sequence. This shows that a representation of the
game’s history is indeed learnable by an LSTM network.

Figure 14 shows the final accuracy of the DQN agent with
additional historic input in comparison to the basic DQN
agent without historic preprocessing. Except for the last round,
accuracies including a historic representation do not exceed the
basic DQN accuracy. On the contrary, including the history
seems to deteriorate the agent’s performance. In addition to
that, the size of the hidden cell does not have a strong impact
on the performance either.

C. Model-based Tree Search

The model-based approach comprises two parts: a state
of the environment is sampled and then a tree search is
conducted. For the state estimation using the ground truth and
the uniform sampling method no training is required.

For the sampling based on the output of a neural network,
a fully-connected neural network was trained in a supervised
manner. As input vector, it received the same information as
the DQN agent and as output it received the true state of the
environment. These hyperparameters are used for training:

• Replay buffer size: 600, 000
• Batch size: 1024

Fig. 15: Final loss (averaged over 100 training epochs) of training
the state estimator across different game rounds.

Fig. 16: Final accuracy of a DQN agent performing a tree search in
the playing phase.

• Shape of hidden layers: [200, 200, 300]
• Learning rate: 0.001

Figure 15 shows the final average loss across different
game rounds. The black curve represents the loss which
corresponds to the input of the basic DQN agent without
historic preprocessing. The other curves represent runs with
an extended input using information from the LSTM cell state
presented in the previous subsection. Two observations can be
made. First, the model of the environment gets more accurate
the more historic information is available. And second, finding
an accurate model seems to be most difficult for intermediate
rounds.

Figure 16 shows the final accuracies when making decisions
based on the results from the tree search. The first thing to
notice is that using uniform sampling or sampling without
historic information yields the worst results. But even sam-
pling from the outputs of a neural network with access to
historic information performs worse than the original DQN
algorithm (shown in black). Therefore, no sampling method
using imperfect-information was able to surpass the basic
DQN performance. Using the true state (shown in red) is of
course no realistic scenario because it pretends that the agent
has perfect information. However, the gap between the red
curve and the other curves can be interpreted as the value of
that missing information. It means that if the agent had perfect
information in the playing phase, it could reach accuracies
of up to 99% in later rounds of the game. What is equally
interesting is the gap between the red curve and the upper

bound of 100%. This gap represents the imperfect bidding
decisions, which apparently cannot be corrected by the playing
component of the agent.

V. DISCUSSION

Charlesworth et al. point out that “approaches such as
Deep Q-Networks struggle because multi-agent environments
are inherently non-stationary (due to the fact that the other
agents are themselves improving with time) which prevents
the straightforward use of experience replay that is necessary
to stabilize the algorithm” [20]. However, the results presented
in this work do not confirm that claim because the self-play
DQN algorithm was indeed able to perform well on the DRL
problem at hand.

The performance of the DQN agent and the other two
approaches as well as potential consecutive work are subse-
quently discussed.

A. Emerged Behaviors and the Value of Information

When comparing across different game rounds, the per-
formance anomaly (i.e., the u-shaped curve) in figure 8 is
especially salient. The initial decrease in performance is not
surprising because both random and rule-based baselines in
figure 9 have similar shapes. For the later increase, there
could be several explanations. The first is that there is more
knowledge in later game rounds. This is also supported by
the model-based approach in which the agent could more
easily learn a model of rounds 14 and 15 compared to rounds
12 and 13. More information means a better understanding
of the current situation and therefore a better performance.
The second explanation could be that the behavior of the
other agents is more predictable in later rounds because most
lead suits have to be followed. This would also explain the
especially good performance in the last round, in which no
trump suit exists. And third, it might be the case that agents
have more control in the playing phases of later rounds
because they involve more tricks and therefore more decisions.
This last explanation is supported by figure 16 of the model-
based approach, where it has been shown that an omniscient
player gets increasingly better the more decisions it can take
in the playing phase.

What has been shown in figure 10 is the additional value of
having a later position in bidding. Especially in game rounds
with fewer tricks to be played, players performed significantly
better if they knew the other players’ bids. Calculating the dif-
ference between the performance of identical players allowed
to quantify the value of information in imperfect-information
games.

Another interesting result is the evaluation against rule-
based agents in figure 12. It showed that DQN agents struggled
when playing against rule-based agents they had never faced
before. But given another training iteration, their performance
even surpassed their basic performance with no rule-based
agents involved. This could be explained by the fact that rule-
based agents are more predictable than DQN agents and the
environment becomes more stationary if less self-improving

Fig. 17: Winning share of DQN agents (solid bars) and rule-based
agents (light bars) in 10, 000 full games of 15 rounds.

DQN agents are involved. The same analysis revealed that,
regardless of whether DQN agents were retrained or not, rule-
based agents performed better the more DQN agents were
involved. This shows that, at least under the given assumption
of maximizing points instead of ranks, the Wizard environment
is not a strictly competitive, zero-sum game like Chess or Go.
If the total number of bids equals the number of tricks to be
played in a specific game round, agents might be incentivized
to help other agents reach their initial bid because everyone
profits from attaining a higher final accuracy.

B. The Effect of Maximizing Points on the Winning Probability

In the approach section it was argued that maximizing
the points in each individual round would also increase the
probability of winning the overall game. To support this claim,
the fully trained DQN agent was evaluated in 10, 000 full
games of 15 rounds.

Figure 17 shows the winning share for a varying number of
DQN agents playing against rule-based agents (after having
been retrained against them).

Unsurprisingly, the winning share of 4 rule-based agents
(left stacked bar) and 4 DQN agents (right stacked bar) in
self-play is approximately 1

4 = 25%). When one DQN agent
(Player A) participates in the game, it wins in 80% of all
games while its opponents reach 6 + 7 + 7 = 20%. In the
case of two DQN agents (Player A & Player B) their share
amounts to 46 + 43 = 89% against 5 + 6 = 11% for their
rule-based counterparts.

This evaluation conveys two important findings. First, max-
imizing points in individual rounds proved to be a good
objective function for also winning the overall game. Second,
in mixed-player games all agents perform worse the closer
they are positioned behind other DQN agents.

When evaluated against random agents, DQN agents’ win-
ning share amounts to more than 99.9% across all player
constellations leaving random agents chanceless.

C. Importance of Historic Input

Regarding the historic preprocessing, the LSTM network
proved to be a good architecture to process the game’s history
on a card-wise basis. The model was able to learn three diverse
tasks showing its ability to understand the trick structure and
value of cards without being explicitly programmed. However,

using the internal representation of the LSTM cell state as
additional input to the DQN agent did not improve its overall
performance. There could be several reasons for this. It could
be the case that the DQN agent already had enough historic
information implicitly contained in its observational input.
Another case could be that it was more difficult for the
DQN agent to extract the relevant information from a now
more extensive input vector. Increasing the network size and
learning time might improve the results. And finally, the
tasks to be solved by the LSTM might not have been fully
representative of the game’s history. In potential future work,
the LSTM network could be trained with different and more
diverse tasks. Another approach would be to directly combine
the DQN agent with a recurrent neural network which is
referred to as Deep Recurrent Q-Networks in literature [21].

D. Improvement at Decision-time using Tree Search

The model-based tree search approach could also not im-
prove the DQN results but revealed interesting properties of
the underlying game. Figure 15 showed that the amount of
information available to the agent first decreased and then
increased again for later game rounds. This could be due
to the fact that in the first game rounds, the agent can be
certain that most cards remain undealt in the deck. The more
cards are distributed among other players, the more difficult it
gets for the player to know where each card is located. This
effect is reversed in later game rounds when the agent can be
increasingly sure that no cards remain in the deck and can also
remember which cards have already been played. Comparing
the DQN agent to an omniscient player in figure 16 further
visualized the lack of the DQN agent to take optimal decisions
in the playing phase. What would be worth investigating in the
future is a way of combining the DQN decision-maker with the
model-based decision-maker. If little information is available,
e.g., in the bidding phase and during the first tricks, the DQN
agent could decide. In later tricks, when more information is
available, the tree-search component could take over.

VI. CONCLUSION

Due to the many challenges, the trick-taking game Wizard
analyzed in this paper is an intriguing testbed for studying
DRL algorithms. The DQN agent showed a consistent im-
provement during the self-play training of its bidding and
playing component. Notably, the trained DQN agent is robust
and able to generalize to an unseen rule-based agent, while
dealing with the highly non-stationary multi-agent setting. If
trained against that rule-based agent, it was able to increase
its own and its opponents’ performance simultaneously. This
conveyed the insight that the analyzed environment is not
strictly competitive. A deeper analysis of the player’s bidding
position revealed the value of knowing the bids of the previous
players. Independently from each other, both the DQN and the
model-based training showed a performance anomaly across
different game rounds. After an initial drop, the performance
increased again, which might be linked to the amount of
information available to the agents. The surprising findings

on the historic preprocessing and model-based approach leave
potential for future work.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[2] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no. 7676,
pp. 354–359, 2017.

[3] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction,
2nd ed. MIT press, 2018.

[4] M. Morales, Grokking deep reinforcement learning. Simon and
Schuster, 2020.

[5] C.-K. Yeh, C.-Y. Hsieh, and H.-T. Lin, “Automatic bridge bidding using
deep reinforcement learning,” IEEE Transactions on Games, vol. 10,
no. 4, pp. 365–377, 2018.

[6] O. Baykal and F. N. Alpaslan, “Reinforcement learning in card game
environments using monte carlo methods and artificial neural networks,”
in 2019 4th International Conference on Computer Science and Engi-
neering (UBMK). IEEE, 2019, pp. 1–6.

[7] D. Rebstock, C. Solinas, and M. Buro, “Learning policies from human
data for skat,” in 2019 IEEE Conference on Games (CoG). IEEE, 2019,
pp. 1–8.

[8] J. C. Backhus, H. Nonaka, T. Yoshikawa, and M. Sugimoto, “Application
of reinforcement learning to the card game wizard,” in 2013 IEEE 2nd
Global Conference on Consumer Electronics (GCCE). IEEE, 2013, pp.
329–333.

[9] H. Fujita and S. Ishii, “Model-based reinforcement learning for par-
tially observable games with sampling-based state estimation,” Neural
computation, vol. 19, no. 11, pp. 3051–3087, 2007.

[10] J. Obenaus, “Implementing a Doppelkopf card game playing ai using
neural networks,” Bachelor thesis: https://www.mi.fu-berlin.de/inf/
groups/ag-ki/Theses/Completed-theses/Bachelor-theses/2017/Obenaus/
BA-Obenaus.pdf, 2017, [Online; accessed 28-February-2022].

[11] J. Niklaus, M. Alberti, R. Ingold, M. Stolze, and T. Koller, “Challenging
human supremacy: Evaluating monte carlo tree search and deep learning
for the trick taking card game jass,” in International Conference on
Artificial Intelligence and Soft Computing. Springer, 2020, pp. 505–
517.

[12] P. I. Cowling, E. J. Powley, and D. Whitehouse, “Information set monte
carlo tree search,” IEEE Trans. Comput. Intell. AI Games, vol. 4, no. 2,
pp. 120–143, 2012.

[13] N. Brown, A. Bakhtin, A. Lerer, and Q. Gong, “Combining deep
reinforcement learning and search for imperfect-information games,” in
Conference on Neural Information Processing Systems (NeurIPS), 2020.

[14] S. Ishii, H. Fujita, M. Mitsutake, T. Yamazaki, J. Matsuda, and Y. Mat-
suno, “A reinforcement learning scheme for a partially-observable multi-
agent game,” Machine Learning, vol. 59, no. 1, pp. 31–54, 2005.

[15] M. Buro, J. R. Long, T. Furtak, and N. Sturtevant, “Improving state
evaluation, inference, and search in trick-based card games,” in Twenty-
First International Joint Conference on Artificial Intelligence, 2009.

[16] C. Solinas, D. Rebstock, and M. Buro, “Improving search with super-
vised learning in trick-based card games,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, 2019, pp. 1158–1165.

[17] C. Tang, C. Liu, W. Chen, and S. D. You, “Implementing action mask
in proximal policy optimization (PPO) algorithm,” ICT Express, vol. 6,
no. 3, pp. 200–203, 2020.

[18] M. Lapan, Deep reinforcement learning hands-on. Packt publishing,
2020.

[19] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 11 1997.

[20] H. Charlesworth, “Application of self-play deep reinforcement learning
to ”big 2”, a four-player game of imperfect information,” in AAAI-19:
Workshop on Reinforcement Learning in Games (RLG), 2019.

[21] M. J. Hausknecht and P. Stone, “Deep recurrent q-learning for partially
observable mdps,” in 2015 AAAI Fall Symposia, Arlington, Virginia,
USA, November 12-14, 2015. AAAI Press, 2015, pp. 29–37.

