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Memory-Augmented Episodic Value Network
Fanyu Zeng, Member, IEEE, Guangyu Xing, and Guang Han

Abstract—In this paper, we propose memory-augmented
episodic value network (M-EVN) to learn a differentiable
planning-based policy with episodic memory in maze games. The
episodic memory module associates the environmental state to
its corresponding state value function, and outputs a weighted
sum of state value functions with similar states to improve the
agents’ navigation performance in partially observable mazes.
In addition, we introduce a Net-in-Net architecture to make
M-EVN differentiable by error backpropagation and learn an
explicit planning computation. We train M-EVN in 2D maze
games, and the experimental results show that the M-EVN agent
outperforms the original value iteration network (VIN) in the
partially observable maze games.

Index Terms—Episodic Memory, Value Network, Deep Rein-
forcement Learning, Visual Navigation.

I. INTRODUCTION

DEEP reinforcement learning (DRL) [1] is widely used in
video games, robot operation, agent navigation and other

fields [2], [3], [4]. Most DRL works based on neural network
structures [5], [6], [7] adopt the structure of convolutional
layers and fully connected layers, in which the convolutional
layers are used to extract the features of the environment state,
and the fully connected layer maps the environmental features
into the probability distribution of the actions, and finally
trains a mapping relationship between the state and the actions,
namely the policy. The learning method of aforementioned
neural networks reduces the loss function by continuously
selecting the suitable actions for navigation agent to obtain
good policy. However, such navigation policy is difficult to
generalize to new environments, hence that policy is called
reactive policy [8]. Reinforcement learning solves markov
decision problems, and essentially solves a sequential decision
problem where the influence of subsequent decisions on the
current decision needs to be considered. Nevertheless, the
reactive policy does not express the impact of subsequent
decisions on the current decision. Therefore, the reaction
formula lacks planning ability [8].

To address the issue of the lack of planning ability of
the reactive policy, Tamar et al. [8] embedded a planning
module into a differentiable neural network, called value
iteration network (VIN). VIN is a differentiable value iterative
approximation algorithm, and its computational process can
be regarded as a convolutional neural networks [9] based on
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end-to-end error backpropagation [10]. In addition, the reason
why human beings can adapt to complex environments is that
they own memory [11], and memory is very important for
agents to realize more advanced behaviors [12]. Introducing
memory into the deep reinforcement learning model can make
full use of prior knowledge, and make agents directly utilize
the information collected from past events to guide their
behavior. Moreover, memory enables agents to have certain
degree of active cognition and reasoning ability, and helps
agents navigate in the complex environments better.

In recent years, researchers have proposed several memory-
augmented neural networks (MANNs), including memory
network [13], [14], episodic memory [15] and differentiable
neural computer [16]. Compared with the other two MANNs,
episodic memory has several advantages [17]: (1) improving
the efficiency of agent’s samples in complex state space; (2)
learning based on small amount of samples; (3) effective ap-
proximation of state value function; (4) establishing long-term
dependence between actions and rewards. Episodic memory
stores past observations in episodic memory and absorbs new
experiences into future actions. Specifically, environmental
features and the past state values are stored in episodic
memory, and the value function estimation of the current state
is calculated by combining the values of similar states. [17],
[18]. To improve agent’s navigation performance in partially
observable environments, episodic memory is introduced into
the value iteration network to enhance the agent’s navigation
ability.

In this paper, we improve the agent’s navigation perfor-
mance in partially observable maze games, and a reinforce-
ment learning navigation augmented with episodic memory
is proposed. First, episodic memory is introduced into value
iteration network, and its mathematical model is analyzed in
details. In addition, the calculation process of episodic memory
is regarded as the convolutional computation process. Then,
a Net-in-Net architecture is constructed, and the proposed
algorithm updates parameters using error backpropagation.
Finally, the experimental results show that compared with the
value iteration network without episodic memory, the memory-
augmented epiosidc value network performs better in the same
partially observable maze.

A memory-augmented episodic value network (M-EVN) is
proposed in this work, and its contributions are summarized
as follows:

(1) For better navigation performance in a partially observ-
able maze games, we store the past encoded states and the
corresponding values into episodic memory. Then, calculating
the approximate state value function based on its similar state
estimations.

(2) A Net-in-Net architecture, which can be regards as
a convolutional computation, is proposed to make M-EVN
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Fig. 1: The basic structure of convolutional neural networks, which include convolutional layers, pooling layers, and fully
connected layer.

differentiable and have planning ability.
The remainder of this paper is organized as follows: Section

II presents the related works, including convolutional neural
networks, value iteration network, and episodic memory. Then,
Section III describes memory-augmented episodic value net-
work in details. In Section IV, the experimental results are
presented and discussed, which shows the advantage of M-
EVN. Finally, the conclusions are summarized in Section V.

II. RELATED WORKS
A. Convolutional Neural Networks

In recent years, deep learning [9], [19], [20] have been
used in supervised learning [21], [22], unsupervised learning
[23] and reinforcement learning [3], [7]. The most-used neural
network architecture of deep learning is convolutional neural
networks. Convolutional neural networks are widely used in
various deep learning algorithms, such as AlexNet [24], VGG
[25], Googlenet [26], ResNet [27], DesNet [28], MobileNet
[29], ShuffleNet [30] and GAN [31].

As shown in Fig. 1, the basic structure of convolutional
neural networks include convolutional layer, pooling layer and
fully connected layer. The convolutional layer convolves the
input image and extracts its image features, the pooling layer
conducts subsample operation on image features to reduce
their dimensions, and the fully connected layer finally clas-
sifies the learned features. Fig. 1 contains two convolutional
layers, two pooling layers and one fully connected layer. The
convolutional layers and the pooling layers work together to
learn convolved image features, and the fully connected layer
outputs the probability of classification/decision.

The convolutional layer is the core of convolutional neural
networks [9], [32], which include an amount of different
convolutional cores, and is used to learn the local features
of images. The pooling layer is connected to the convolu-
tion layer, and it subsamples the convolved feature maps.
Moreover, the frequently-used pooling layes include average
pooling layer and max pooling layer. The fully connected layer
is connected to multiple convolutional layers and pool layers,
and each of its neurons is connected with all the neurons in the
previous layer. The fully connected layer acts as a classifier
which maps the feature vectors outputed by the pooling layer
to actions’ probability, and the action with the maximum
probability corresponds to the current optimal action.

Assuming that the size of input image is m × n and its
channel is l, the output of the convolutional layer has l′

channels and its convolutional kernel is (W 1,W 2, ...,W l′).

After the input images convolved by the convolutional layer,
the feature maps outputed can be expressed as follows [8]:

hl′,i′,j′ = σ(
∑

l,i,j W
l′

l,i,jXl,i′−i,j′−j) (1)

where σ is the activation function.
Then, the feature maps of the convolutional layer is fed into

the pooling layer, and the pooling layer outputs as follows [8]:

hmaxpool
l,i,j = maxi′,j′∈N(i,j) hl,i′,j′ (2)

where N(i, j) is the k neighborhoods around pixel (i, j).
Finally, the feature maps from the pooling layer is fed into

the fully connected layer for the probability distribution of
diferent actions, and the action corresponding to the maximum
probability is chosen as the policy output.

B. Value Iteration Network

Tamar et al.[8] introduced value iteration network, which
is a fully differentiable neural network with a ’planning
module’ embedded within. In Fig. 2, the VIN reframes value
iteration as the computation of convolutional neural network,
and regards Q function as each channel in convolutional layer,
and its discounted probability corresponds to the weight of
convolutional kernel. The equation of VIN is expressed as
follows [8]:

Q̄
(k)
ā,i′,j′ =

∑
i,j

(WR
ā,i,jR̄i′−i,j′−j +WV

ā,i,j V̄
(k−1)
i′−i,j′−j)

V̄
(k)
i,j = max

ā
Q̄

(k)
ā,i,j

(3)

where i, j ∈ [m] corresponds to cells in the m × m maze,
R̄, Q̄, V̄ is the estimated reward, action value function and
state value function, respectively. ā is the action index of the
feature map Q̄. WR and WV are the convolutional weights
for the reward function and state value function, respectively.
In the next iteration, the previous value function V̄ stacked
with the current reward R̄ is fed into the convolutional layer
and max pooling layer for K iterations, as shown in Fig. 2.

VIN regards each iteration of VI module as passing the
previous state value function V̄ and reward function R̄ into
convolutional layers and max pooling layers. Hence, VIN is
differentiable and can be updated using error backpropagation
algorithm.
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Fig. 2: The structure of VI. VI is regarded as the computation of convolutional neural networks.

C. Episodic Memory

Episodic memory [17], [33] refers to the memory of an
individual at a specific time and place. The classic structure
of episodic memory is differentiable neural dictionary (DND)
[15]. As shown in Fig. 3, DND uses a semi-table repre-
sentation of value function to store n simple memory units
Mi = (Ki, Vi), the key Ki and its corresponding value Vi are
correlated, and they have the same number of vectors.

Fig. 3: The structure of DND. The DND has a memory module
(keys, values), where keys and values are dynamically sized
arrays of vectors, each containing the same number of vectors.

The DND is a buffer pool of past experiences with slowly
changing state representations, and can rapidly update value
function estimates. The advantages of episodic memory are as
follows [15], [17]:
(1) improving the efficiency of training data;
(2) approximating better value function estimation in a com-
plex state space;
(3) learning based on small amount of training data;
(4) establishing long-term dependence between action and
reward.

DND can provide better approximation for the value func-
tion in reinforcement learning. For each action a ∈ A,
Ma = (Ka, Va) is stored in DND, where Ka and Va are
dynamically sized array of vectors, each containing the same
number of vectors. DND associates keys with corresponding
value and has two operations: lookup and write.

The lookup operation maps a key h to an output value o:

o =
∑

i wivi (4)

where vi is the i-th element of array Va, and wi is the
normalized parameter. The output wi of a lookup in a DND is
a weighted sum of the values in the memory, whose weights

are given by normalized kernels between the lookup key and
the corresponding key in memory.

wi = k(h, hi)/
∑

j k(h, hj) (5)

where hi is the i-th element of array Ka, and k(x, y) is
gaussian or inverse kernels between vectors x and y.

Write operations store key-value pairs into memory. More-
over, if a key already exists in DND, only the corresponding
value is updated.

III. METHOD

In this section, the proposed method are introduced. In III-
A, the memory-augmented episodic value network is formu-
lated. Then, in III-B, we present the neural network architec-
ture of the M-EVN for agent navigation in details.

A. Problem Formulation

The structure of M-EVN is shown in Fig. 4, and the
computation of M-EVN includes three steps: firstly, stacking
the previous value function map and reward map to obtain the
current action value function by policy evaluation, and then
computing the new state value function. Secondly, multiple
similar state values can be found by searching episodic mem-
ory. Finally, these similar state values are calculated through
a Net-in-Net module to get the final optimal value function
estimation.

Combining VIN with episodic memory, each state value
function is estimated by similar states. In addition, a Net-in-
Net architecture is proposed to make M-EVN differentiable.
The policy evaluation equation is as follows:

Q̂(s, a) = R(s, a) + γ
∑

s′ P (s′|s, a)V̂M (s′)

= R(s, a) + γ
∑

s′ P (s′|s, a)
∑N

i=1 wi(s
′)V̂ (i)

(6)

where R(s, a) is the reward, P (s′|s, a) is the transition prob-
ability function that encodes the probability of the next state
s′ given the current state s and action a. Vn(s′) is the value
function for the next state s′, and γ is the discount ratio.

Given a memory module M and a state s′, we refine the N
most similar states Ms′ ⊂ M according to a distance metric
d(•, s′). Then a memory-based value estimation is calculated
as follows:

V̂M (s′) =
∑N

i=1 wi(s
′)V̂ (i) (7)
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Fig. 4: The flowchart of M-EVN. M-EVN includes a Net-in-Net architecture.

where
∑N

i=1 wi(s
′) = 1, and the distance metric d(•, s′) uses

euclidean distance. Eq. 7 is a Net-in-Net architecture which
can be regarded as convolutional computation. As shown in
Fig. 4, the Net-in-Net module has planning ability similar to
the original VIN. In addition, the Net-in-Net module and the
episodic memory are based on VIN, hence M-EVN can learn
a differentiable planning-based policy.

According to the above analysis, policy evaluation of M-
EVN can be written as follows:

Q̂(s, a) = R(s, a) + γ
∑

s′ P (s′|s, a)V̂M (s′)

= R(s, a) + γ
∑

s′ P (s′|s, a)
∑N

i=1 wi(s
′)V̂ (i)

(8)

Hence, the optimal value function estimation of M-EVN is
as follows:

V̂n+1 = maxa Q̂(s, a)

= maxa(R(s, a) + γ
∑

s′ P (s′|s, a)
∑N

i=1 wi(s
′)V̂ (i))

(9)
Then, using temporal difference (TD) to construct the loss

function of M-EVN. The n-step TD loss function can be
written as follows:

L(w) = E[(r + maxa′ Q̂(s′, a′w)− Q̂(s, a, w)] (10)

where r is the sum of n-step discounted reward, and w is the
parameters of its neural network. s′ and a′ are the n-step state
and action, respectively.

B. Neural Network Architecture

The neural network architecture used in M-EVN is shown
in Fig. 5. The input images are 8 × 8 grayscale, and two
continuous input images are convolved by the convolutional
kernel with the size of 3× 3 and the step size of 1 to obtain
image features F . Then, the reward map R is obtained by the
same convolution kernel convolved with F , and the reward

map R and the memory-based value estimation V̂M are stacked
to be vector [R, V̂M ]. Further, [R, V̂M ] is convolved with the
same kernal to output the action value function map Q, and
the state value function V̂ is computed by max pooling.

According to the distance metric d(•, s′), N most similar
state value function maps V̂ of the current state are searched
from DND. Then V̂ are convolved with the convolution kernel
of size of 3×3 and step size of 1 to obtain the memory-based
value function estimation V̂M . In addition, the environment
gives the agent rewards as the feedback of its actions when
the agent interacts with environment. Hence, the environment
generates new reward map R. The new reward map stacks the
value estimation based on episodic memory again to start a
new iteration to improve the learning effectiveness.

IV. EXPERIMENTS
To verify the effectiveness of memory-augmented episodic

value network in reinforcement learning navigation, VIN agent
and M-EVN agent were used to conduct navigation experi-
ments in 2D Gridworld [34] maze game. A certain number of
training times were set for each maze game, and the successful
number was recorded when the agent successfully reaches
target object. In addition, the navigation performace of VIN
agent and M-EVN agent were recorded, respectively.

A. Experimental Settings

We perform the experiments using TensorFlow, and train M-
EVN on an Nvidia GeForce GTX 1080Ti GPU and an Intel
Xeon E5-2696 v3@2.30GHz×36 CPU.

The hyperparameters used in M-EVN are shown in Table
I. The training times are set to 2000, meaning that the agent
trains 2000 times in each maze game. DND capacity is 500,
which means that DND has 500 memory units, namely ”key-
value” pairs; The DND size is 100, which means the length
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Fig. 5: The architecture of M-EVN, which includes convolution and max pooling operation.

(a) 9×9 (b) 15×15

(c) 35×35 (d) 55×55

Fig. 6: 2D Gridworld. (a) 9×9 gridworld, (b) 15×15 gridworld, (c) 35×35 gridworld, (d) 55×55 gridworld. From figure (a)
to figure (d), the scale of Gridworld increases. The green box, the red box and the black area represent the agent, the target
and obstacle area, respectively.

of each memory unit is 100. In addition, the learning rate is
2×10−3, the discount ratio is 0.99, and the number of internal
iterations is 10.

TABLE I: Hyperparameters in M-EVN

Learning rate 2× 10−3

Training times 2000
Discount ratio γ 0.99
DND capacity 500
DND size 200
Iteration number 10

As shown in Fig. 6, the sizes of Gridwold game used in

experiments are 9×9, 15×15, 35×35 and 55×55, respectively.
For the navigation mazes, the navigation difficulty increases
with the size of the maze. To facilitate the display of the mazes
with different sizes, different mazes are scaled to the same size.

The green box represents the agent, the red box represents
the target object, the black area along the edge of Gridworld is
its boundary, and the black area inside Gridworld are obstacles.
The agent’s objective in Gridworld is to find the red box, and
the agent has four available actions: turn left, turn right, move
forward and move backward. If the agent reaches the correct
target object, it succeeds; and if the agent collides with the
obstacles, it fails.
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(a) 9×9 (b) observation depth:3 (c) observation depth:5

Fig. 7: 9×9 maze. (a) fully observable maze, (b) 3× 3 partially observable maze, (c) 5× 5 partially observable maze.

(a) 15×15 (b) observation depth:3 (c) observation depth:5

Fig. 8: 15× 15 maze. (a) fully observed environment, (b) 3× 3 partially observed maze, (c) 5× 5 partially observed maze.

TABLE II: Performance on 2D Gridworld with obstacles

Model Depth 9×9 15×15 35×35 55×55

VIN d3 (%) 3.16 0.02 0.83 0.12
d5 (%) 11.20 0.78 0.92 0.12

M-EVN d3 (%) 6.50 4.74 0.85 1.00
d5 (%) 7.30 2.56 0.97 1.80

All the mazes used in the navigation experiments are
partially observable, and the observation depth are 3 and 5,
respectively. Taking 9×9 maze and 15×15 maze for example,
as shown in Fig. 7, the white area represents the environment
states which can be observed by the agent, while the black area
represents the environment states which cannot be observed by
the agent. Fig. 7(a) shows the fully observable environment
of 9 × 9 maze, in which the agent can observe the states of
the whole maze. Fig. 7(b) shows the maze environment with
observation depth 3, and the black area is the environment
states that the agent cannot observe. Fig. 7(c) shows the maze
environment with observation depth 5. Compared with the
maze with observation depth 3, the maze with observation
depth 5 has smaller black area and larger white area, hence
the agent can observe more environment states. Moreover, Fig.
8 shows the 15×15 maze, where the observable area decreases
as the maze grows with certain observation depth.

B. Experimental Results and Analysis
The experimental results, as shown in Table II, show the

navigation performance of VIN and M-EVN in 9×9, 15×15,

35 × 35 and 55 × 55 mazes with observation depth 3 and
5, respectively. In addition, the values in bold represent the
higher accuracy in a maze with observation depth 3 and 5.

In Table II, except for the 9×9 maze with observation depth
5, the navigation performance of M-EVN agent is significantly
better than that of VIN agent in the same maze with the same
observation depth. Episodic memory stores past observations
and absorbs new experiences into future actions. Specifically,
M-EVN stores environmental features and state value function
observed in the past into episodic memory. In the training
period, M-EVN obtains the state with high similarity to the
value function the current state from the episodic memory,
calculates more reasonable value function estimation, and
improves the navigation performance of the agent in partially
observable environments.

The navigation performance of M-EVN is weaker than
that of VIN in a 9 × 9 maze with observation depth of 5,
due to the following reasons: the 9 × 9 maze is a simple
maze, which is more like a fully observable environment with
observation depth 5; VIN has better navigation performance
in small and fully observable mazes. In fully observable
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environments, especially in simple and small scale mazes,
some useless information stored in episodic memory will
affect the navigation policy of M-EVN.

Table II shows that M-EVN is more suitable for large
scale and partially observable environments. M-EVN stores
the environmental state features and the value functions of the
past states in episodic memory. Meanwhile, value functions of
the similar states are weighted and summed to obtain the value
function of the current state. In essence, episodic memory
stores the embeddings of past observations and assimilates
new experiences into future behavior. Therefore, M-EVN has
better navigation performance than VIN in partially observable
environments.

V. CONCLUSION

In this paper, episodic memory is introduced into the value
iterative network to enhance its navigation performance in
partially observable maze games, and a memory-augmented
episodic value network, called M-EVN, is proposed. M-EVN
provides a memory-based value function estimation based on
similar states, and constructs a Net-to-Net module embedded
within to ensure the whole neural network differentiable during
training period. We train M-EVN agent in partially observable
maze games, and the experiments show M-EVN outperforms
the original VIN in visual navigation.
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